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A simple, nonrenormalizable quantum field theory containing a scalar field derivative-
coupled to a nonconserved vector current of massive fermions is investigated. A method is
presented which permits the calculation of S-matrix elements as a power series in a sym-
metry-violating mass difference b mo instead of the usual series expansion in the coupling
strength g: (u~S(P ) =+ax(Amo)x. It is shown that the resulting scattering matrix is unitary
and that for n 4 all of the coefficients in this new expansion are explicitly finite. It is not
yet known whether the proposed method yields finite coefficients for all n. Finally, it is
noted that these techniques can be applied to a number of other nonrenormalizable theories.

I. INTRODUCTION

In the following we study a simple nonrenormal-
izable field theory describing a coupled system of
scalar and spin--,' particles specified by the La-
grangian density '

8(II)
t'g —(x)—l '(x)y„r, l ' (x),

where

), ) ) ()'(x))

is an eight-component spinor field representing an
isotopic doublet of spin--, particles, P(x) is a sca-
lar field, and v. , are the usual 2 & 2 Pauli matrices. '
Our investigation is motivated by the possibility
that the weak interactions may obey a similar (al-
though considerably more complicated) field the-
ory.

If the amplitude for a particular process pre-
dicted by the Lagrangian (1) is computed as a pow-
er series in the coupling constant g, divergent in-
tegrals are encountered in all but the lowest-order
terms. Because of the derivative coupling appear-
ing in Z(x) these infinities are not as manageable
as those found, for example, in quantum electro-
dynamics. In particular, the theory cannot be
made finite by the introduction of a finite number
of renormalization constants. In this paper we at-
tempt to avoid these difficulties by carrying out
systematically, a partial summation of the usual
perturbation series. ' The result of this process
is an essentially unambiguous, unitary scattering
matrix expressed as a power series in the mass
difference 4m~

(a~ s
~ p) =Q a„(bm )" . (2)

The coefficients in this expansion are explicitly
found to be finite for n (4. The finiteness of high-
er-order terms has not yet been established.

%e begin by making a canonical transformation~
on the field variables appearing in Eq. (1). In
terms of

l(x) =e"'&e"l'(x),

the Lagrangian density becomes

1 Bp 2 — 8
Z(x) = —

2 (x) —l(x) y„+m, l(x)
X

li
X

ll

—nm, 'I (x)e' 'te'"'T 'x't@~'l(x) . (4)

Let us further simplify this Lagrangian by normal-
ordering the product of exponentials of the scalar
field using the formula

& aggg(x)
& tig$-(x)&+igg+(x)&-g «+(x), @ (x)]/2

where

(5)

our Lagrangian becomes

(8)

Z(x) =-- -l (x) y„+M 1(x)+1(x)5ltfi(x)

I ( ) .
(

ixe(x)Ttr e -igeix)Tt T ) l(x) (7)

The physical mass matrix M = m+6m~, retains
the original diagonal form because of the symme-
try of our Lagrangian under the discrete operation

4(x)- -4(x),
l(x) eixxs/2l(x) (8)

The standard mass counterterm 1(x)5iif l(x) follows

Q'(x) and P (x) being the usual annihilation and
creation operators. If the divergent constant
exp(--,' g[Q'( )x, P (x)]] is absorbed by the mass re-
normalization

2486



FINITE PREDICTIONS FROM A SIMPLE NONRENORMALIZABLE. . .
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The physical mass of the scalar particle is zero
because of symmetry under the operation

P(x)-P(x)+c,
I (x) —e "'('I(x)

(10)

for any real constant c, possessed by the Lagran-
gian (4). If we treat the final two terms in Eq. (7)
as the interaction Lagrangian and transform to the
interaction picture, we obtain the following Dyson-
Wick expansion for the scattering matrix $:

The fields P(x) and l(x) are now fields in the inter-
action representation having the time dependence
of free fields,

y„+M lx =0,
(13)

In Sec. II a graphical analysis of the time-ordered
product of n operators 3C, (x) found in the expansion
(11) is presented. Modified Feynman rules are de-
duced which allow an amplitude expanded to a finite
order in n,m, (but to all orders in g) to be repre-
sented by a finite number of graphs. Each term
in the amplitude corresponding to a given graph is
written as a sum of products of the singular func-
tions '

/ki4g b,P(x) $ (x.m)~ 4 j4g2hy(x)

(14)

tr[S~(x; m)S~(-x; m')] e" '
Such an nth-order amplitude is an explicit function
of n coordinates x„.. . , x„and possesses essen-
tial singularities when (x, -x, )' =0. Determination
of the physical scattering amplitude requires in-
tegration over these coordinates and a method for
dealing with the singularities.

The expansion in b,m, can now be discussed in
detail using the framework established in Sec. II.
To first order in 6mo the scattering amplitudes,
given by matrix elements of fd~xX, (x), are quite
simple since no loop integrations occur. However,
the second-order amplitudes are proportional to
the Fourier transforms of the singular functions
(14) and, therefore, require careful consideration.

where

X,(x) =nm, l(x) (e "r(y(x)7. e "'(@(*)—~,): l(x)

—l(x)5M l(x). (12)

These second-order amplitudes are studied in Sec.
III. There it is found that the singular functions
(24) can be Fourier-transformed provided the fac-
tor +g in the exponent has a negative real part.
Thus all the second-order scattering amplitudes
fall into one of two categories: (a) those defined
for real values of g, and (b) those defined for un-
physical, imaginary values of g. The amplitudes
of type (a) are unitary and except for exponential
high-energy growth are quite satisfactory. How-
ever, the amplitudes of type (b) require additional
attention. Simple analytic continuation of these
amplitudes from imaginary to real values of g is
complicated by the presence of a logarithmic
branch point at g =0. Consequently, each ampli-
tude defined for imaginary g is a multivalued func-
tion of g being properly defined on a Riemann sur-
face possessing many sheets. For real g we must
then choose among a number of independent am-
plitudes —each corresponding to the original am-
plitude evaluated on a different Riemann sheet.
We will assume that each physical amplitude for
real g of the type (b) can be written as a linear
combination of these various continued amplitudes.
This assumption' and the requirements of unitarity
determine the entire second-order scattering ma-
trix as a function of the parameters m„~m„g,
and six additional real constants. It should be
noted that the methods and results of Secs. 0 and
III are similar to the previous work of many auth-
ors, in particular that of Volkov.

In Sec. IV, these techniques are extended to
higher-order processes. Following the graphical
analysis of Sec. II, we attempt to construct high-
order amplitudes as the integral of products of
lower-order amplitudes. It is found that again, to
both third and fourth order in am„all amplitudes
fall into one of two groups: (a) those amplitudes
that can be constructed as convergent integrals of
products of lower-order amplitudes for real values
of g and (b) those which can be so defined only for
imaginary g. The possibility of such a classifica-
tion to arbitrary order in am, has not yet been es-
tablished. Nevertheless, we will assume that such
a division can be made. Again both types of am-
plitudes are found to possess logarithmic singu-
larities in g' —this time of the type ln"g'. Those
amplitudes of the type (a) are shown to be unitary
and, hence, satisfactory predictions of the theory.
We propose to treat amplitudes of the type (b) just
as was done in second order. Each physical am-
plitude of the type (b) is written as a linear com-
bination of the independent amplitudes found by
continuing from imaginary to real g along various
paths. It is shown that the imposition of unitarity
essentially eliminates the ambiguity inherent in
such a procedure so that the entire $ matrix is de-
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termined by this technique as a function of the pa-
rameters 7%0 4'fflp g and a single additional real
number b.

The proposed method of calculation is not a sim-
ple one; it requires summation in position space
before integration and intricate analytic continua-
tion in the coupling constant. However, the result
is a complete prescription for calculation in a non-
renormalizable field theory which does not require
the introduction of an infinite number of param-
eters. The techniques developed are quite general
and can be applied to many theories in which the
nonrenormalizable part of the interaction can be
written in exponential form. In particular, the ap-
plication of these techniques to a theory of expo-

~ ~ ~

FIG. 1. A diagram representing the amplitude for
a general scattering process involving N scalar and two
spin-~ particles computed to first order in 4mp. The
dashed lines represent incident or scattered scalar parti-
cles and the solid lines represent spin-2 particles.

nentially coupled scalar fields and to a simple non-
renormalizable vector-boson theory is discussed
in Appendix E.

II. GRAPHICAL ANALYSIS

The perturbation series in Am, specified by Eq. (11)has a surprisingly simple graphical representation
which is developed below. We ostpone a discussion of the ultraviolet divergences present in this expan-
sion by omitting the integrals d x, Consequently the amplitudes investigated in this section will be ex-
plicit functions of n coordinates x„.. . , x„. A physical scattering amplitude is obtained from these ampli-
tudes only if the coordinates x„.. . , x„are integrated over and the difficulties raised by the singularities at
(x, -x,.)'=0 overcome.

To first order in ~m, the scattering amplitude for a particular process is given directly by the matrix
elements of 3CI(x). The scattering amplitude A„ for a process involving N scalar particles and two fermions
is

A„=nm, (2g)"U,U,[(7,) „cos(N-,'w)+ (7.,), „,sin(N-,'x)], (15)

where U, is the four-component Dirac spinor and n,. the isospin index for the ith fermion. Such an ampli-
tude is represented by the graph in Fig. 1. Reactions without two external fermions are possible to first
order in the expansion (11), but are proportional to nm and are therefore treated with the second-order
amplitudes; see Ref. 11 in Sec. III.

Let us begin the discussion of higher-order processes by examining the time-ordered product of the sca-
lar field 4~ (y) with 3C,(x).' It is easy to see that

T{y(y)l(x)(.ei&@&"'»,e-'&'ii»'i: ~,)l( x)) =2giae(x -y)l(x): e"~"»,e "@"i:l(x)

+ l(x): P(y)(e"+"»,e "i""&—r, ): l(x) . (16)

Likewise the contraction of N fields g (y,.) with 3C, (x) will contain N factors of 2gin, e(y, -x) and .the 2&2 ma-
trix r3cos(x-,'N)+v, sin(x —,'N). Thus, if we consider the time-ordered product of 3C, (x, ) with 3CI(x2) and apply
Wick's theorem, the term with N scalar fields contracted is given by

[4g'ie e(x, —x,)]"—,l(x,),l(x, )s, l(x,),l(x, )8, : V, (x,),8, V, (x,)

where

V (x) (either&r» e ir@x)rl)-
cxs j ue

and

i = —,'+ —,
' (-1)".

The factor (N.) is introduced to eliminate double counting. Summing over N, we obtain

T{3C,(x, )iC, (x,)) = l(x, ) ~ l(x, ) 8 l(x, ) ~,l(x, )8, (am, ) (:[V (x, )„,e, —(~, ) „ii,] [V (x,),8
—(v, )~, e ]:

+{cosh[kg'n. „(x,-x,)]-1):V, (x, ) „,V, (x,).„,:
+ sinh[4ig'n. e(x, -x,)]:V, (x, ) 8 V, (x,)

(17)

(1S)
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Hence, a general second-order amplitude can be
represented by a graph with two vertices. These
graphs are of three types as shown in Figs. 2(a),
2(b), and 2(c) corresponding to processes with a
total number of zero, two, or four fermions in the
initial of final states. The three graphs in each
category represent the separation of the right-
hand side of Eq. (18) into terms depending on the
boson propagator Az(x, —x, ) as 1, cosh[4ig'
xhz(x, —x,)]-1, and sinh[4ig'n. (x-y)], where the
cosh -1 and sinh factors are represented by lines
labeled e and o, respectively. The factor corre-
sponding to each vertex in Fig. 2 is A„(2g)"
where A„ is defined by Eq. (15), N' is the number
of external scalar lines attached to that vertex and

N is the number of external scalar lines plus the
number of o-type internal lines attached to that
vertex. Of course, multiplication by the spinors
U,. and U,. is replaced by the appropriate spin- —,

'

propagator iS~(x, —x,.) if the corresponding fer-
mion line happens to be internal.

A general amplitude of nth order in ~m, is ob-
tained from the time-ordered product of n opera-
tors 3C, (x,.). Such an amplitude can be determined
by the same procedure as was applied above in the
second-order case. One must systematically sum
all possible contractions of scalar fields between
each pair of operators K/(x, . ) and K/(x, .). Thus, a
general nth-order amplitude will be represented
by a graph with n vertices where each pair of ver-
tices is connected by (a) no boson propagator, (b)
an e line, or (c) an o line. Two fermion lines,
either internal or external, must be joined to each
vertex. Again to each vertex there corresponds

FIG. 3. A typical fourth-order graph representing one
term in the scalar-fermion elastic scattering amplitude.

the factor A„(2g)"' x described above; while to
each wavy line connecting vertex i with vertex j
there corresponds the factor cosh[4g2iaz(x, —x,.)] -1
or sinh[4g'in. ~(x,. —x,.)] for cases (b) and (c), re-
spectively. A typical fourth-order scalar -fermion
elastic scattering graph is shown in Fig. 3.

An alternative classification of these amplitudes
which will be useful later decomposes a particular
amplitude into separate terms according to the ar-
rangement of the functions exp[+4ig'~~(x, —x,.)].-1
rather than the occurrence of even or odd powers
of the quantity 4ig'a~(x, -x, ). To obtain this rep-
resentation for a particular nth-order amplitude,
we need only take all the terms corresponding to
graphs with the same topology but different assign-
ments of e and o to the internal lines, split each
hyperbolic cosine or sine into the usual sum of
two exponentials, and group together all terms
containing a given combination of the functions
exp[+4ig'n, z(x,. —x,.)] -1. This new arrangement
of our amp&itude has a graphical representation
identical to that just described —we need only label
each internal line connecting the vertices i and j
with the symbol plus (+) or minus (-) to specify
whether the particular term represented by the
graph contains the factor exp[+i4g'b, ~(x, —x,.)] -1
or exp[-4ig'a~(x, -x, )] -1. Thus, the particular
graph for second-order fermion-fermion elastic
scattering shown in Fig. 4(a) represents the posi-
tion-space amplitude

-i(nm ) U U U U, (e ~ '~F'~ *2 —1)
~ ~ ~ r

~ ~

r
~ ~ ~

/
~ ~

/
~ ~ ~

{c)

~ ~

FIG. 2. Diagrams corresponding to the amplitude for
a general second-order scattering process involving the
interaction of scalar particles with (a) zero, (b) two,
and (c) four spin-2 particles.

(19)

where U,. is the four-component Dirac spinor and
n,- the isotopic spin index for the ith fermion.

Although the arrangement of Pauli matrices cor-
responding to a single graph of the plus, minus
type is considerably more complicated than that
for the first graphical representation discussed,
the second description does obey a simple rule
which limits the possible distributions of plus and
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B

(b)
FIG. 4. Diagrams representing (a) fermion-fermion

elastic scattering and (b) fermion-antifermion elastic
scattering to second order in b, mo.

minus lines in graphs of a given topology. First,
let us consider any subset of wavy lines in a par-
ticular graph which form a closed polygon; for ex-
ample, lines 1, 2, and 3 in Fig. 3. In the represen-
tation specifying sinh and cosh -1 factors we can
exchange all the o lines with e lines in the polygon
and leave the Pauli matrix structure of the ver-
tices unchanged. In fact, the amplitudes repre-
sented by the two graphs would be identical except
for the exchange of the factors -sinh and cosh -1
corresponding to the lines in the polygon. [The ex-
tra minus sign preceding the hyperbolic sign fac-
tor is necessitated by the trigonometric functions
in Eq. (15).] Thus, when all the amplitudes corre-
sponding to graphs of such a topology are decom-
posed and added to form amplitudes arranged ac-
cording to the distribution of the factors exp[+~
xA~(x, -x~)] -1, the only amplitudes which occur
will be those containing an even number of plus
lines in that polygon. Hence, in our second graph-
ical representation, all closed polygons of wavy
lines must contain an even number of plus lines.
This rule allows a simple enumeration of all
graphs with a given topology. First consider a
graph with n vertices connected in all possible
ways by wavy lines [there must be —,'n (n —1) such
lines] with plus and minus lines distributed in some
particular fashion. Pick one vertex, a, and let A

FIG. 5. A fifth-order graph containing the maximum
number of wavy lines illustrating the division of vertices
into two sets A and B as described in Sec. II.

be the set of all vertices connected to a by an un-
broken chain of minus lines (A includes a).
Clearly, all the vertices in A are connected to
each other by minus lines. Choose a second ver-
tex, b, not in A and let B be the set of all vertices
connected to b by an unbroken chain of minus lines
(B includes b). Again all the vertices of B must be
connected to each other by minus lines while any
line connecting a vertex in A with a vertex in B
must be of the plus type. The two sets A and B
must include all vertices since if there existed a
third vertex c not in A or B the triangle with ver-
tices a, b, and c would contain an odd number of
plus lines. Thus, the vertices of a general graph
containing the maximum number of wavy lines nat-
urally divide into two sets A and B with the above
properties. Such a grouping is illustrated for the
fifth-order graph shown in Fig. 5. It is not diffi-
cult to see that an arbitrary nonvanishing graph
can be obtained from a nonvanishing graph with the
maximum number of wavy lines by the deletion of
a subset of those lines.

In summary, the results of this section demon-
strate that the explicit summation of a general
scattering amplitude to all orders in g but nth or-
der in Am, is quite easy provided the coordinates
x„.. . , x„ in Eq. (11) are not integrated over Sub-.
sequent integration over these variables and in-
vestigation of the difficulties associated with the
singularities at (x, -x,.)' =0 is carried out in Secs.
GI and IV.

m. SECOND -ORDER PROCESSES

In this section we will complete the determination of the second-order scattering matrix begun in Sec. II,
by performing the coordinate-space integrations over x, and x, . Carrying out these integrations amounts
to evaluating the Fourier transforms of the singular functions (14). Let us begin by considering the func-
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tions which correspond to the plus and minus wavy lines in momentum space,

g B gP = (f4xe-"'(e"'"~ '"-1),' 4m'
(2o)

for spacelike p in a reference frame where p, =0. We will first examine the xp integration, choosing the

usual contour passing above the -~x~ singularity and below the +~x~ singularity. The Iarge-x, behavior of

the integrand in Eq. (20) allows the rotation of the xo contour to the imaginary axis. The angular part of
the resulting four-dimensional Euclidean integration can be performed with the result

i ' '~' 2lf B /' f ~~ dz2 (z2P2)1/2g ((z2p2)1/2)(eh(g /&( ) (1/x ) I )+2 4 4+2 ~2 1
0

(21)

The function B (g'p'/4)/') is clearly well defined by Eq. (21), provided g' is positive —the initial summa-
tion in coordinate space having damped the singularities of the individual terms. The function B,(g'p'/4)/')
is not determined by Eq. (21) unless we consider unphysical, imaginary g. If we define B,(g'p'/4v') as the
function determined by Eq. (21) with the plus sign but negative g', then

B,(g'P'/4)/') = B (-g'p'/4)/') (22)

for negative g'.
The properties of the function B (z) are determined in Appendix A. There it is shown that B (z}has the

following series expansion:

~( 2&!( ~ !)! ! ' * (' ( 2)!( ~ !)' ' =, (/ 2&(/ !)/)

=- + f, (z) lnz +f, (z },
1

where y=0.5772. . . is Euler's constant, f, (z) and f, (z) are analytic functions of z. The asymptotic behav-
ior for large positive z is found to be

(24)

If z is continued to large negative values by passing above/below the logarithmic branch point at the origin,
we find

(28)

Thus, for real g and spacelike p', B (g'p'/47(') is real and hence diagrams of the type shown in Fig. 4(a)
will represent unitary amplitudes. As in the conventional case we can obtain amplitudes for timelike p~ by
continuing p' from spacelike to timelike values through the lower half-plane. ' The resulting imaginary
part of B is

g'(p' —fe) g (g'p'/4v')"
4z' „,(n+ 2)!(n+ I)!n! '

which is consistent with unitarity for processes of the sort

l+l l+7,

illustrated in Fig. 4(b). In terms of B (z) the scattering amplitude' represented by this graph is

(28)

2 2
7', ;,-„;=(!.U()(!I(,)...,(,)...,—(.)..., ('*&...,)(! .&'(2 ), )&- ~, )(&'(P. /, /, P,), --

(28)

where -p' is the square of the center-of-mass energy, Uz U3 V2 V4 and pz p2 ps p4 are the appropriate
particle and antiparticle spinors or four-momenta and the a, their isospin indices. The product of the low-
est-order amplitude for the annihilation
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l, + L, -n P's

with the complex conjugate of the amplitude for

l3+l4-n P's

integrated over n-body phase space yields
4g4 ( g2p 2/4 2(()fl 2

(2 }
(p +p p p }~((n 1}((

(29)

(30)

(31)& V,U, U, V4[(w, )„,(r,), cos'(-,'nw) —(v', ), , (w, ). ..sin'(-,'n(()] .

By comparing Eqs. (26), (28), and (31), it can be seen that the amplitude proportional to the isospin ma-
trix (~,)..., (7., )„...—(7.,).. .(7.,),„,, satisfies

OO

lyly l3l4 lgl4~ lyl2 n 1 12 n5 t3lg~nf
11=2

(32)

as required by unitarity.
Now 1st us turn to the problem of defining B,(g'p'/4v') for spacelike p' and g'& 0. Simple analytic con-

tinuation of B,(g'p'/4~'), defined for negative g' by Eq. (22), from negative to positive values of g is made
difficult by the logarithmic dependence on g' revealed in Eq. (23). If we define [B,(g'p'/4v')]„ for n, a pos-
itive or negative integer, by continuing B,(g'p'/4(('} from negative g' counterclockwise n times about the
g' =0 branch point, even an arbitrary choice

B,(g'p'/4v') = [B,(g'p'/4w'}]„ (33)

will not be real and hence inconsistent with unitarity. In order to define a unitary B,(g'p'/4((') we will gen-
eralize the continuation procedure of Eq. (33), postulating

2 2 OOB, = Q a„[B,(g'p'/4((')]„
n= -~

=a —,, + f — +ln P f — ~, +5f, (34)

where

a= g a„, b = Q 2v(n+~)ia„.

Unitarity requires that a = 2 and that b is real. This method for defining B„one among many alternatives,
is of particular interest because of its general applicability to similar situations occurring in higher-order
processes -as will be shown in Sec. IV.

The Fourier transforms of the other functions listed in (14}can be obtained in the same manner that the
functions B, were determined. I.et

E,(g'p' m'/p')p'+E'(g'p' m'/p')m= —, d'xe "'S (x m)e"'"~. '*'1

and

(36)

The functions F, F' enter, for example, the
Compton amplitude represented in Fig. 6(a), while
A, is required for the boson-boson elastic scatter-
ing amplitude corresponding to the graphs" sho~
in Figs. 6(b) and 6(c}." The functions E, E', and
A are defined directly by Eq. (35) for positive g'
and the same choice of x, contour made in the der-
ivation of Eq. (21). The resulting amplitudes are
unitary and possess logarithmic singularities at

the point g' =0. In particular, the functions F
and E' have the form 6, (g') ln'g'+ 6:, (g') lng'
+ 60(g'} —1/g'(p2+ m') where 6:„6:„andF2 are
analytic functions of g while A contains an ad-
ditional term proportional to ln'g'. The functions
E„E„', and A+, involving the exponent +g'/(('x',
are determined by a continuation procedure identi-
cal to that summarized in Eq. (34). In this way
five more constants are introduced into our sec-
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P) P4 P) P4

(a)

P2

Pi P4 P2

II C

FIG. 6. Diagrams representing amplitudes determined
by the functions (a) F (g p, I /p ), F' (g p, m /p ) and

(b), (c) ~ (g p, m /p ) defined in Sec. III.

ond-order theory if F, and F,' are treated identi-
cally. The functions F„F.', and A, are studied
briefly in Appendix A where the single logarithmic
singularity in g' is established and the asymptotic
behavior for large p' or g' shown to be similar to
that of B,(g'p'/4m').

Thus, by adopting the analytic -continuation pro-
cedure displayed in Eq. (34) we have determined
all scattering amplitudes to order (am, )' as a func-
tion of n~„~m„g, and six additional parameters.

IV. HIGHER-ORDER PROCESSES

We will now try to extend the methods introduced
in Sec. III to the calculation of matrix elements of
higher order in ~n~, . The analysis of Sec. II shows
that such amplitudes can be written, at least for-
mally, as the integral of products of lower-order
amplitudes. For example, the third-order graphs
of Fig. 7 represent two amplitudes which can be
written in terms of the integrals

for i =1 and 2, 0 =+, m, =m+4m, and mt= m —bm.
In most cases the expressions obtained this way
contain exponentially diverging integrals so that
only particular amplitudes can be directly defined
in terms of lower-order amplitudes. This situa-
tion is illustrated in third order by Eq. (36). For
the case of Fig. 7(a) and o = —, the asymptotic
forms shown in Eqs. (24) and (A3) indicate that the

(b)

FIG. 7. Graphs representing two third-order ampli-
tudes discussed in Sec. IV.

n

Euclidean' integration J d'k converges so that Eq.
(36) defines the required amplitude for positive g'.
On the other hand, for Fig. 7(b) and o =+ the as-
ymptotic behavior of B, for positive argument, as
indicated by Eqs. (22), (25), and (34), is so strong
that the integral in Eq. (36) diverges for positive
g . We may attempt to obtain finite values for
these diverging amplitudes by considering imag-
inary values of the coupling constant, as was done
in Sec. III. If a particular amplitude can be defined
for imaginary g, then the physical amplitude might
be obtained by the continuation procedure adopted
in Sec. III.

Let us examine this possibility in third order by
investigating the amplitude represented in Fig. 7(b)
for negative g . In fact, it is possible to write this
amplitude as a convergent integral of products of
second-order amplitudes defined for negative g'.
If g' is negative, the two lines labeled plus repre-
sent the function B,defined directly for negative
g' in Sec. III. Although the amplitude represented
by the combination of the third wavy line and the
fermion line is defined directly by Eq. (35) only
for a positive real part of g', we can try to obtain
the appropriate amplitudes F,. and F,' for negative
g' by a continuation procedure of the sort specified
in Eq. (34). Thus we can determine the amplitude
represented in Fig. 7(b) for negative g' from the
integrals

for
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s(g) =g (om, )"s„(g),
tf= Q

U(g) =Q (Am. )"U.(g),
n=Q

(38)

where both S„(g) and U„(g) can be written as a fin-
ite sum of x„ terms corresponding to our various
possible nth-order graphs,

S„(g}=Q S„,(g),

U„(g) =g U„,(g).
(39)

In defining the operators S„,(g) and U„,(g) we have

F' (g'k', re/k') = Q C„[F' (g'k', m'/k')]„,
n= -~

where [F' (g'k', m'/k')]„ is obtained from the func-
tion F' (g k2, m /k2), defined for positive g' in Eq.
(35), by continuing g from positive to negative
values along a path circling the origin counter-
clockwise n times. The integral over k in Eq. (37)
converges. Using these techniques it is not diffi-
cult to see that all third-order amplitudes fall into
one of two classes: (a) those defined directly as
integrals of products of lower-order amplitudes
for positive values of g', and (b) those amplitudes
so defined for negative values of g'. This third-
order discussion suggests that the amplitude cor-
responding to each nth-order graph can be simi-
larly defined in terms of lower-order amplitudes
for either real or imaginary values of g.

Thus, our investigation of the expansion in b,mQ

leads us to consider two operators: (i) the physi-
cal scattering matrix S(g) to be evaluated for real
coupling constant g, and (ii) a second, unphysical
scattering matrix U(g) defined for imaginary g.
Each is to be determined as a power series in Am„

FIG. 8. Third-order graphs belonging to same class
of graphs as defined in Sec. IV.

grouped all nth-order diagrams into a finite num-
ber of classes. The amplitudes which enter S„,(g)
and U„,(g) correspond to graphs in the ith class.
These classes of graphs are chosen so that two
graphs belong to the same class if they differ only
in the number or arrangement of external boson
lines, the direction of a fermion line, or if they
are both connected and can each be obtained by de-
leting zero or more wavy lines from the same
more complicated graph. Finally, two graphs are
to be placed in the same class if they can both be
divided into the same number of disjoint connected
subgraphs and these subgraphs can be put in one-
to-one correspondence in such a way that corre-
sponding subgraphs belong to the same class.
Members of such a class of third-order graphs
are shown in Fig. 8. If nth-order graphs of the
type i have 2p, external fermion lines joined to p(
different vertices (p( & p',. &2p,.), the operator S„,.
will have the form

tf

(g) II dip ~t d4+ —P('
& (s+(gu@(xp) ( -(grgg (x&))

n, i f~ f $f uf Bf jyf=1 4

I

" II t'(.),«.),] II rf.,(.),] II V.,(.) ]
k=2p -p'+1 k=pi+1

1 ... ~ ~tt 2pi-p i+1 ~ .. ~ ~pi ~~i~+1 ~ ~ ~ ~

x M ((g,Pq ~ - ~ ~P~n, i 1 1 "~ ~yf pi+1 ~ ~ ~ .~n' &2pi-p'i+1 ~ ~ ~ fop'i (40)

Likewise, U„,. can be written in terms of a function
M„,(g'). In the discussion to follow, we will deal
simultaneously with all those amplitudes which
have been added together to form the function
M„,(g ) or M„,(g ). This is natural and conven-
ient because (i} Any procedure which makes finite
an nth-order amplitude containing the maximum of

(n —I) plus and minus wavy lines should be ex-

I

pected to render finite those amplitudes corre-
sponding to graphs obtained by deleting some of
those lines. (ii} As was noted for a particular
case in Ref. 10, there may be significant cancella-
tions between members of the same class of am-
plitudes. (iii) Given a sum of functions M„,(g )
over all classes i of graphs with the same p, and
p'„ it is possible to project out a particular func-
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tion M„,. (g') by acting only on the isotopic spin in-
dices a, P, y, 6, and the Dirac indices 0.

As indicated above, we will hypothesize that for
each n and i either

(a) M„,(g') can be obtained as a convergent in-
tegral of products of lower-order functions

M„,,(g'} for real g, or
(b) M„,(g') can be obtained as a convergent in-

tegral of products of lower-order functions
M„. ; (g') for imaginary g.

This assumption is verified through fourth order
in Appendix B. As was discussed in the second-
order case, we will assume that those matrix ele-
ments of either S or U which are not directly de-
fined above can be obtained by analytic continua-
tion. If case (b) above is valid we will assume

M„,.(g')= Q c (n, i)[M„,.(g')] (41)

h(n, i)
M...(g') = Z f.",', (g')M.",', (g'),

l=o

f "' (g'}= Q c (n, i)[lng'+(2n+1)lli]', (45)

while for case (a) Eqs. (42) and (43) imply

b(n, i)
M ( g2) g ho) (g2) M (I) ( g2)

h(n, i)
S. , (g) = Z S.".';(g)»'g',

&=o
(44)

D(n, i )

U. .. (ig) = Z U".,', (ig)»'g',
E=O

for real g, where the operators S„"';(g)and U„'",(g)
depend analytically on g. If case (b) holds, we

can use Eq. (43) to simplify (41), providing a di-
rect relation between M„,. and M„"', ,

for positive g', while if case (a) holds,

M„,(g')= Q d (n, l')[M„,. (g')]. (42)
for

i=o

h'„";(g') = g d (n, i)[lng'+ (2n+1)lli]' . (46)

for negative g'. As before, [M„,(g')] is the func-
tion obtained from M„,.(g') by continuing g' from
negative to positive values along a path circling
the origin counterclockwise m times. Likewise,
[M„,(g')] is obtained from M„,(g') by a similar
continuation in g2 from positive to negative values.
These two assumptions allow us to proceed induc-
tively, determining the functions M„,.(g') and

M„, (g2) for arbitrary n in terms of the constants
c„(n', i') and d (n', i') for n'~n. It is shown in
Appendix C that the resulting functions have the
form

A(n, i)
M (g') = g [M"' (g') ln'g'

~ M &(l& (g2)~g2»lg2]

A(n, i)
M -(-g')= Q [M'" (-g')»'(g')

l=0

+ M.",,'(-g') vg' »'(g')],

(43)

for g' positive, where M„'",(g'), M'„",'. (g'), M'„",(g'),
and M„"",(g') are single-valued functions of g, ana-
lytic in the entire g' plane except for the point
g2 =0. The functions M„'llI(g*) and M„",'(g2) are
known to vanish for n «3 and may well be zero for
larger n; for simplicity we will neglect them in the
following discussion -their inclusion somewhat
complicates the arguments presented below but
does not alter the conclusions drawn at the end of
this section.

Equations (40) and (43) imply a similar decompo-
sition of the operators S„,.(g) and U„,.(g):

In both Eqs. (45) and (46), g is real. We can write
identical equations for the operators S„,(g) and

U„;(g):
A(n, i)

S., ;(g) = Z f.".';(g')U". .';(g)
1=0

(47)

for g real and if case (b) applies, while for case (a)
and imaginary g

h(n, i)
U...(g)= Z h"' (-g')S.",';(g)

E=O
(48)

All of these equations, (41), (42), (45)-(48) can be
extended to hold for both the (a)- and (b)-type
graphs by inverting Eq. (41) in case (b) and Eq.
(42} in case (a}. This is not difficult because of the
simple logarithmic dependence of M„, and M„,. on
g'. In each case we find the same set of s(n, i)
equations for the f„'"; and h'„",,

I"!(I - I' —I")! '
(48)

which can be solved for the a(n, i) f„'",' s in case (a)
or the heal', 's in case (b). Thus the hypothesis de-
scribed at the beginning of this paragraph, when
coupled to the procedure specified in Eqs. (41) and

(42), determines the nth-order scattering matrix
in terms of a finite number of arbitrary param-
eters.

Just as in the second-order case studied in Sec.
III, we should expect the requirement of unitarity
to reduce the number of parameters entering the
calculation of the nth-order scattering matrix. %e
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will now show that the imposition of unitarity re-
duces the number of new parameters in this theory
to one. For nth order in Lm0 unitarity requires

S„(g)+S„(g)t=—Q S„,(g)S„„,(g)
n'=I

(50)

for real g. Similarly, we will construct the oper-
ator U„;(g) so that it obeys a "pseudo-unitarity"
condition

n-I
U, (g)+U, (-g) = —Q U, (g)U, , (-g) (51)

n'=I

for imaginary g. These equations can be made
more specific if we project out the contribution of
a particular class of graphs (i) and equate equal
powers of lng':

n-1 t
S(i) (g)+S(i& (g)t Q g Q [S(i') (g)S(i-i') (g)t]

n'=I l'=0 j,k

(52)

for real g and

n l
U'.";(g)+U."',(-g)'=- 5 Z Z[U„",', (g)U"-" (-g)']

n'=I l'=0 j,k

(53}

for imaginary g. The product operators appearing
on the right-hand side of Eqs. (52) and (53) can be
written as a sum of operators of the form displayed
by the right-hand side of Eq. (40). The symbol [ ],.
indicates that the operators corresponding to
graphs containing 2p,. external fermion lines con-
nected to p', vertices should be retained and from
the multiplicative isospin and Dirac tensor [cor-
responding to the function M„,(g) in Eq. (40)] one
should project that tensor represented by graphs
of the type i.

Let us proceed inductively assuming that Eqs.
(52) and (53) hold for all orders n'& n for some
choice of f„"',, and h„'"; . It seems reasonable to
expect that Eq. (52) will be satisfied automatically
in nth order for classes of graphs i of the type (a)
above, for which the corresponding scattering-ma-
trix elements M„,.(g') are constructed directly
from lower-order, unitary amplitudes. Similarly,
we expect Eq. (53) to be valid for classes of graphs
of type (b). That this is in fact the case is demon-
strated in Appendix D. Thus, for graphs i of type
(b) Eq. (53) will be assumed automatically valid
and we need only impose Eq. (52), which can be
written

6(n, i )

(g) +S (g)t Q [f0) U(i) (g) ~ f (i& wU((&i(g)t]

= —P Q [S„,(g)S„„,,(g ) ],n'=I j,k

n-I
= —Z Z ([f.",',U.'l,';(g)1 [f."'.*; U.".', (g)']].

n'=I l, V,j,k

If Eq. (53) is continued to real g and used to eliminate the operator U„"&t in Eq. (54), we obtain
&(n, i) d(n, i) n-I n-I

(f (i&i f (l&~g}U(i) g fg g g g[U(i'& (g)U( i)t] g-g g Of ~U )[f{i')* U(i') ( )t]}

(54)

and

f (l) f (l)g
n, i

f (l) f (l') f (l-l')g
n i n'j n-n' k

(56)

(57)

provided

(58}

Although derived for i of type (b), Eqs. (56)-(58)
are also valid for case (a) since both Eqs. (52) and
(53) were used in their derivation. Because the
first-order scattering matrix is directly defined
by the interaction Hamiltonian (12) for both real
and imaginary g, f',0'=1. From Sec. III, Eq. (34),

Equating coefficients of the independent operators" we find

f,",'(g') = lng'+ k, (59)

(l) (l)
fn+N, i fn, j ' (60)

We can then split this i-type graph into a
(n+N —2)th-order graph of type k and a second-
order graph of the type j = 2, where this j = 2 class

where we have labeled the class of second-order
graphs containing the graph shown in Fig. 9(a) as
i =1. Beginning with an nth-order graph of the j
type, we can use Eq. (57) and f,(o& = 1 to determine
f„'"j by sequentially joining N vertices to our graph.
Each additional vertex is to be connected to every
other by all possible wavy lines, producing a
(n+N)th-order graph of type i for which
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scalar fields and to the theory of a neutral vector
meson W„coupled to an axial-vector current of
massive fermions, which are discussed in Appen-
dix E.

(b}

FIG. 9. (a) A member of the i=1 class of second-order
graphs and (b) a member of the i =2 class.

of second-order graphs contains the graph shown
in Fig. 9(b). (It follows from Sec. II that for bl'&2

this division is always possible. ) If N is suffi-
ciently large so that condition (58) holds, then

&(i) (i -x) +-(~)f n+N, i fn+N -2,Af 2,2 ' (61)

For large N this can be repeated until we obtain

fn, i fn+N, i I.f2,2] fn+iIi-2i, a mfa. al' (62)

Consequently, all the parameters f„",. can be writ-
ten in terms of the single real constant b,
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APPENDIX A

In this appendix a derivation of the properties of
the functions B, F, F', and A, defined by Eqs.
(20) and (35), is presented. Many of the results
derived below have been obtained previously by
other authors, "but are included here for com-
pleteness. Let us first consider the expression
for B given in Eq. (21). If this equation is written
in terms of z =gap'/4z', it becomes

f &i (lng +b)', (63)

and Eq. (49) can be solved for the constants hiII,

oo

'B (z)= —, dy ay J,(Wy)(e '" I). -
0

(Al)

h«i. = (lng' —b)' . (64)

Thus, the parameters f i'i and h~", which through
Eqs. (47) and (48) completely determine the scat-
tering matrix, are themselves fixed in terms of
the single real constant 6 by the requirement of
unitarity. " We have therefore shown that with the
methods and assumptions developed above, the nth-
order scattering matrix can be computed as a func-
tion of the parameters m„Am„g, and a new real
constant b.

By using the Bessel differential equation and inte-
gration by parts, it is not difficult to show that Eq.
(A.1) implies

d—.t.z'B (z))=B (z).

Series expressions for the three solutions to Eq.
(A2) can be easily obtained. The proper combina-
tion of these series solutions, as determined by
the small-z behavior required by Eq. (Al) is dis-

V. CONCLUSION

In summary, we have attempted to solve the sim-
ple nonrenormalizable theory specified by the La-
grangian (1). The techniques developed determine
partial summations of the usual perturbation
series, organized into a power series in the sym-
metry-breaking mass difference Amo. Although a
definite method of calculation to arbitrary order
in Lm, has been deduced, its implementation in
nth order depends upon a property of the lower-
order amplitudes which has not been established
for n «5.

Finally, it should be noted that the techniques
discussed in this paper can be applied to a large
class of models in which the nonrenormalizable
part of the interaction can be written in an expo-
nential form of the sort shown in Eq. (4). Thus,
for example, our methods can be successfully ap-
plied to the theory of two exponentially coupled

+p +im

FIG. 10. The k contour that results if the integral in
either Eq. (A4) or (A5) is written in polar coordinates,
the angular integration performed and g continued from
a real value through a full circle about the origin in the
complex plane. The crosses locate the singularities of
the integrand in k.
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played in Eq. (23). In a similar way, the behavior
of B (z) for large complex z can be found from Eq.
(A2} in terms of three constants. These constants
are then determined by examining the large-posi-
tive-z limit of Eq. (Al). The results of this pro-

cedure are given in Eq. (24).
The other well-defined functions F, F', and A

have quite similar properties. Their asymptotic
behavior for large positive p' or g2 follows readily
from Eq. (35):

1 2 2

p &m /p }
(27/)2

E- 4z2
2 2 2 2 g P

3 g 2p2 1/3 3~3 g 2p2 1/3
F' (q'p'&m'/p')-, ,~ exp ——, sin (A3}

2 2 2 2

( g 2p2 m2/p2 m&z/p2) g p fl g p

(A4)

The analytic structure in g' of these functions can be studied by rewriting Eq. (35) in momentum space:

g'
„t d k p (p+k) g'k' 1

z'p' (2z)4 (p+ k)'+m' 4z' g'(p'+m') '

d'k 1 g'k' 1
v' (2z)' (p+ k)'+m' 4z' g'(p'+m'} ' (A5)

d k k (p+k)F (g k, m' /k ) mm'F'-(g k, m' /k ) (A6}

for spacelike p' and Euclidean integration fd'k.
Introducing four-dimensional polar coordinates
for the integration variable, k„= (k sinvsin8 sing,
k sinvsing cosset), k cosv, k sinvcosg) for

0 (y (2p, Q (g(g, Q (v(g, 0 (k(oo

(AV)

and letting p, =p, =p, = 0, we find that the inte-
grands in Eqs. (A4)-(A6) depend on the variables
p, k, v. If the v integration is performed first, the
resulting integrands have singularities for fixed p
at

k=0 and k=+p+iyg.

The integrand in Eq. (A6} also is singular when

finity is always maintained. Consequently, the
functions F, F', and A are singular in g' only
at the point g2 =0. It is not difficult to see from
Eqs. (A4) and (A5) that continuation of F and F'
in g2 clockwise through 2m about the origin yields
new functions, corresponding to the deformed k
integration contour shown in Fig. 10, which differ
from the first by added functions of the form

4z(i lng-'+ z)r, (g') —2zi6:,(g'), (A10)

5,(g') lng'+ P,(g') lng'+ Po(g')—gz&. z +mz)

where 6', and &, are analytic functions of g'. There
fore, the functions F and F' have the g2 depen-
dence

k =aim'. (A9) (A11)

Thus the singularities in k lie in a bounded region
of the complex k plane. Continuation in g2 away
from real values can be achieved by rotating the k
contour outside this region of singularities in such
a way that convergence of the k integration at in-

where 5, is an analytic function of g2. Using the
same methods, it can be easily seen that the func-
tion A has a form similar to (All) but contains an
additional term proportional to ln'g2 and lacks the
pole at g2=0.

APPENDIX B

We discuss below the construction of fourth-order amplitudes from products of lower-order amplitudes
for either real or imaginary g. Three graphs are shown in Fig. 1%, each belonging to one of three classes
of fourth-order graphs with no internal fermion lines. Those fourth-order graphs possessing internal fer-
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mion lines will not be explicitly discussed since such a graph can be treated in essentially" the same
manner as the graph obtained from it by cutting all internal fermion lines. Clearly the amplitude repre-
sented in Fig. 11(a) can be obtained for g & 0 as a product of six second-order amplitudes (B ), and there-
fore falls into the category (a) defined in Sec. IV. Figure 11(b), on the other hand, represents an ampli-
tude which can be constructed for negative g as a convergent integral of a product of second-order ampli-
tudes and thus belongs to category (b). However, if the amplitude represented by Fig. 11(c) is written di-
rectly as an integral of products of second-order amplitudes, divergent integrals result for g' either posi-
tive or negative. Instead, as wQl be demonstrated, this amplitude can be constructed for negative g from
the product of one third-order amplitude and three second-order amplitudes.

The appropriate third-order amplitude corresponds to the graph obtained from that shown in Fig. 11(c)
by deleting vertex number 4 and all the lines connected to it. This amplitude can be constructed directly
for g' positive and is given by

3,1( pp" p-')'-'"')1 =I:(&s)- 8 (&s)- 8 (&s) 8
—( 3)-, 8 «2)))), 8 ( 2)- 8

—( a)- 8 ( 2)- 8 ( s))) s

(-imam, )' ig' ' 1
2 ~g, Bg( 3 ))'2 82( 2)))'s, 8g) 4 v2 (2v)12

x i d4kB 2 B 2 B 2
54 p+p' -p,

where this amplitude has been labeled as a member of the class i =1. For simplicity let us define

am ''O4( "+ '—
( p pre pz)1, 1,1 Og (p p p)@(p2 p&2 (p p&)2)

(Bl)

(B2)

for g' positive and

(83)

for g2 negative. We will now show that the amplitude represented by Fig. 11(c)can be constructed for g
negative by integrating a product of E(p', p", (p -p')') with three second-order B, functions over Euclide-
ans~ and p

2

FIG. 11. Three graphs representing amplitudes of
fourth order in 8 m() which contain no internal fermion
lines.

FIG. 12. The contour followed by the k integration in
Eg. (B5) if g2 is continued from positive to negative
values along a path circling the origin twice counter-
clockwise. The small crosses in the Ggure specify the
location of the singularities of the integrand in k.
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d d 'E P P' P-p' )B+ 2 B, 2 B, (84)

In order to study the convergence of the integral (84) it is necessary to determine the asymptotic behav-

ior for large p and p' of the function E obtained, for negative g', by analytic continuation from the function

E. We .begin by introducing angular variables in the integral (Bl). For k= (k')'", p = (pz)'p2, p' = (p")'",
k p =kp cos8, k p' =kp'cose', p p'-pp'cosv (0 & v ( w), and g' positive, E is given by

a(p'. p". (p-p')')= . f d(cosa) f d(cose"if k'dka (".)a (' ' )a(' ';"). (Bk)

ritten in this form we can easily continue E in g' by deforming the k contour for large k in such a way
that the k integral is always convergent. For example, the function [E],for negative g' obtained by con-
tinuing E in g' along a path circling the origin twice counterclockwise is given by an expression identical
to (85) except that the k contour is changed from the positive real axis to the contour c, shown in Fig. 12.
Thus the continued function E for negative g' is given by

=2m
cos(e fj&

E(p', p", (p -p')') = . d(cose) d(cos8')
S1IlV ~:os(e+fj)

x +Id (3, 1)( F — g )

x kdkB 2 B 2 B

d, „(3 1) k'dk ~ d, „(3 1)f k'dk a ('". )
a (' ".'"'

) a (' ".'")
II III

(86)
where the k contours c„c„,and c«, are shown in Fig. 13 and Eqs. (85) and (42) have been used. " We can
now bound the asymptotic behavior of E by bounding each term in the sum found in Eq. (86), assuming for
each factor [B ],, m'3-'0, the largest asymptotic behavior consistent with Eq. (A2).

Let us first consider a term in Eq. (86) with k contour c, . For z =e'e and z' =e'e such a term can be
written as

'. f(( —'.)d, f (1
—',.)d. f kdk a ('".)

a (' '"'*'"""*') ('*'""'"""")
(87)

where the contours c and c' are shown in Fig. 14. Since the singularities of B (x) are of the type 1/x or
ln x we can split the integrand in the expression (87) into four parts each containing only three singularities
in k. If we later symmetrize in P and p' we need only consider two terms: the first, A, singular when
k =pz, p'z', or 0 and the second, B, singular when k =pz, p'/z', or 0. The z' and z contours for the second
term, B, are deformed so that iz'i = [zi = (p'/p)'". where possible. Then, for each of these two terms the
k contour is shrunk around the singularities and split into two parts so that the integral (87) is made up of
four terms having the singularities and contours shown in Fig. 15. Since we will later symmetrize in p
and p, only the terms A., and B, whose contours are identified in Fig. 15 need be investigated. Further
deformation of these contours to those shown in Fig. 16 yields for the two terms

(A, (p, p', )l- . f dkf de'f 'd
(d

—
) (,) (—,—1)sick'

lln(K -p'$e'e ) I+ lln(K -p'e 'f~/g)
I

K 'l(K -Pg)(» P/ls)I"'I(» P'$e -')(K P'e '-'/g)I"'-

g2 /S
x exp 3 2 (((-K ) +[-(K -p()(K -p/$)] ' +[-(K -p'$e' ')(K -p'e ' /&)]")

(86)
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Z8

C

26

III P Ittlll

—C

FIG. 13. The k integration contours c&, c&&, and c&&&

which occur in Eq. (B6). The hatched line locates a
branch cut; note however that not all of the branch cuts
present have been so specified.

and

FIG. 14. The contours c' and c followed by the inte-
gration variables z' and z in the integral (B7). Breaks
in the integration contours signal a change from one

integrand to another.

IE, (p, p', v)l - l&i(p. p'")I

167t 9' /p} ]
(p'/p)(l/g}-e gf-6 2 3(4g2 4 ~ -iv ~iv

d$'t »d»~
~ 2 1-

~,sinv t, 4 g+g &p 3 kg

x I (» -p&)(» -pe *'/&)I "'l (» -p't'e '")(» -p'/&')I "'
1/3

x exp 3 f[ »' e""]'-"+[-»e2'"- p' 2+p»'(g' +e'" /$')]"~ +[- »e2'"-p 2+»p($e "+1/t)]" )4@2

(89)

for g' real and negative, e very small and positive. " The bounds (86) and (89) can now be used to investi-
gate the convergence of the integral (84) For th.is purpose we neglect the external momenta l„ l„and l,
and define r =p'/p so that the integral (84) becomes

26m t rsdr sinmvdv p'dpE(p', p", (p -p'p)B, B, 4 2 B, 4 s
4 0 0 Jo

(810)

A straightforward computer search using the bounds (86) and (89) reveals that if the term (8'7) is substi-
tuted for E, the integral over p in the expression (810) is convergent if r& 0.04 and either r & 0.6 or
v &,m." A similar analysis can be performed for the terms involving the k contours t."„and c«, yielding
identical conclusions.

Thus, we must examine the regions r & 0.04 and r & 0.8, v & +~m in more detail. Since these two regions
correspond to small p'2 or small (p -p') and are consequently related by a change of variables, only the
region p' & 0.04p need be considered. Direct evaluation indicates that even for p'& 0.04p the p integral in
the expression (810) converges if the representation (BV) is used for E, contours of the type shown in Fig.
16 chosen and the region -p «k & -0.6p omitted. Fortunately, the large-p asymptotic behavior of the in-
tegrand in Eq. (BV) for this choice of contour, p'&0.04p and ~k~ &0.6p can be determined quite simply if
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FIG. 15. The 0, z', and z contours which result if the integrand in the expression (B7) is subdivided and the c& con-
tour deformed and split in the manner described in the text.

we expand in the small quantities p'/p and (p+k)/p. Each term in this integrand grows exponentially with

an exponent whose real part is given by

3 gz 1/3
dd" [(d +eP -P (t ~*) ]

' — „—
d

~ tt'deer-order terms) (B11)

for -p k - -0.6p, -1 - z «k/p, -v -8' & v, and g' negative. The exponent (B11) is a maximum for z =1,
k = -&p and is readily seen to grow more rapidly with increasing p than the damping exponent arising from
the three factors of B, in the integral (810), whose real part is

3 2 1/S Id (-d 2/s + td2/s 2 p cos&
24~2 ~ ~ 3 p&" (B12)

This discussion suggests that for the ratio p'/p fixed and small, the integrand in the expression (B4) may
grow with increasing p. It is possible that this asymptotic behavior in p for small p may be radically al-
tered if we integrate over p' in the region p'& 0.04p and include the amplitude corresponding to the graph
obtained from Fig. 11(c)by deleting the line connecting vertices 2 and 4." Therefore let us first integrate
over p' in the expression (B4), including this second amplitude, and substituting for E only the contribution
to the integral in Eq. (B6) coming from the region -p & k & -0.6p discussed above. Labeling this truncated
function E~, we wish to determine the large p behavior of
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I"IG. 16. The ke k, ~', and z contours used to obtain the bounds pg) and (pg).

~2~2 4 +0.02P - 2. r2 2

4 g dp' B +—(2 )6(p') B (p p' ( ')
4v' fg~ 4,2 (813)

(+14)

If the quanti in large square brackets is written in terms of its Fourier tra f E . (22~ns orm using qs. ( ~ and

( }, e resu ing expression can be divided into 16 terms in such a way that 'th gl
component of x has only one sign:

y a wi in a sing e term each

—g'p" m' 1 m' 4
r, , + —. , (ee)'e'(r ')=——. , )(I

r'e err -'ger ',. (~e, ()
e""*

16 zg /=I

If any of these terms is substituted into Eq. (B13) the path f h p,'.
' t t'e pa o eac p,. integration can be deformed into a

semicircular contour in the u er ~o. = -1) rpp (;= — ) o lower (o,. =+1) half of the complex plane. The asymptotic be-
havior for large p of the contribution of any of these terms to the integrand in expression (B13) for values
of p',. lying on these contours is such as to insure convergence of the final p integration

APPENDIX C

The analytic structure in g specified by Eq. (43)
for the amplitudes M„,(g') and M„,(g') can be de-
duced from the following theorem.

Theorem: Let f„(g,k„... , k„) be a function of
n+1 complex variables which satisfies the follow-
ing

(x) f„(g, (d, /g, . .., (o„/g) is an analytic function
of the variables g, cu„... , ~„except possibly for
the point g =0, or points satisfying one of the equa-
tions

(c2)

then

~(y)( ~ x (y)I
Qn (ge ~X) ~ ~ ~ e 4'n) =On &ge ~&+~re ~ ~ ~ e ~r+("n)

(c3}

where Q~~~ is a homogeneous polynomial of degree
v~ in the n+1 variables g, co„... , ~„which cannot
be factored into the product of two similar, non-
constant polynomials. Each polynomial Q„pos-
sesses the following property: If the n real num-
bers z„.. . , ~„satisfy

Qi"(0, (d„.. . , (u„) =0,

q&»(g, u „.. . , ~„)=0, I-q - M„, (cl) for arbitrary complex values of g, ~„..., ur„.
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Nn

(n) f„(g,k„.. . , k„)=Pf„")(g,k„.., .k„)ln'g,

(c4)

where f„' (g, k„... , k„), 0& l- N„are single-
valued functions of g, analytic in the entire g plane
except for the point g =0. The function

fg(g» a +.bx/g» ~ ~ ~ » ag+bg/g)

for real values of 5„... , b„has a singularity at
g=0 of a similar form,

f„(g, a, + b, /g, . . . , a„+b„/g)

Nn

P h('!(g, a„... , a„,b„.. . , b„)ln'g,

(cs)

where f ' (g) is a single-valued function of g ana-
lytic in the entire g plane except at the point g = 0.

Proof: We will establish this theorem by induc-
tion, showing that if f„(g,k„.. . , k„) satisfies the
conditions (i}, (ii), and (iii) then the function

f„,(g, k„.. . , k„,) f=d „f„(g,k„.. . , k„„„fg)
(C11)

also does. It is convenient to choose" the vari-
ables k„... , k„so that each of the polynomials
Ql')(g, gk„. . . , gk„) appearing in Eq. (Cl) contains
a term of the form (k„}'g.

Consider first condition (i). Label the r,. dis-
tinct singularities of the integrand in Eq. (Cll) by
(d»„"(g, (u„. . . , ru„, ), where

where, given 5)0, there exists e &0 such that the
functions h~')(g, a„ . . . , a„,b„ . . . , b„) depend ana-
lytically on g in the region 0 & Ig I

& c, I b, P)~'»
provided

)!"((k (.). . , k.)I „k(g ik, l') ', (-»-M„.
(c6)

(iii) If the n variables k„.. . , k„are split into

we have the following:

(a) For fixed, real k, , , . . . , k, , g and real
values of ~, . =g k, , 1™i&m, there exist positive
real numbers A, B, andR such that

lf„(g, k„.. . , k„)I Ae
(ggBf; I ., I-') (C»)

j=l
if I (u„ I

&R for all 1 & i & m.
(b) Equation (CV) remains valid if the variables

are continued from the real values
g ",~,",. . . , cu„"' into the region

llgl —Ig"'ll (, ig"'I pl, — i'I')»)v (»),
j=l

(C8}

(c9)I 0!"(g, ~„",~.) I
& b. I

W'. (o) I'

for

nt +2~.(o) = p I(o'(0 Im

some real preassigned v(v~, 1 5, 0, 5, 0, suf-
ficiently small y and all values of ~, 1 & i & m,
obeying I

~ ' I&R.
If these conditions are satisfied, then

n oe

dk, f„(g,k„.. . , k„)= Q f~'i(g) ln'g,
j=o j=o

(C10)

(C13)
for alii &i' orj wj '. To see that the conditions
(C13) can be written in the form of Eq. (Cl) we
need only apply a basic theorem~ obeyed by poly-
nomials in many variables: Given two polynomials
P,(x„.. . , x„) and P,(x„... , x„) inn variables, the
equations

P,(x„.. . , x„}=0 and P,(x„.. . , x„)=0 (C14)

have a common root when viewed as equations in
x„ if and only if

R(x„... , x„,) =0, (C15)

where the resultant R(x„.. . , x„,) is a polynomial
ln xy ~ ~ ~ x

y which can be written

R(x„.. . , x„,) =f,(x„.. . , x„)P,(x„.. . , x„)

+f,(x„.. . , x„)P,(x„.. . , x„),
(C16)

f, and f2 being polynomials in x„.. . , x„. The re-
sultant R (x„.. . , x„,) cannot be identically zero
unless P, and P, have a common factor. Thus in
the casej kkj ', Eq. (C13) is equivalent to

Rf f (g» (dk» ~ ~ ~ » 4'g-k) =0» (clv)

where Az &, is the nontrivial resultant of the poly-
nomials Q„' and Q„~'. Likewise, for the case
j =j ' it is not difficult to see that Eq. (C13) is equi-

Q.'"(g & ",~. , ~!'(g,~„",~. ,)}= o

(C13)

for 1&i &r,. & v,. and 1&j &M„. Since Q„' contains
a nonzero term of the form (&u„)"f, &uf„' is finite for
all finite values of co„... , ~„,. Therefore,
f„,(g, k„.. . , k„,) is an analytic function of the
variablesg and coj =gkj, 1&i & n —1 at all points
except possibly those satisfying

~ I 1
(kfn' (g» (k)»» ~ ~ ~ » (»fn-k} =(dn '

(g» ~» ~ ~ ~ » (k)n-k)
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valent to the requirement that the equations

4"(g,~„. , ~.)=0

and (C18)

8
q, ' (g~ &i~ ~ ~ ~ ~ &,) =0

be simultaneously valid, which in turn implies
Eq. (C17) if we identify R»(g, ~„.. . , &u„,) as
the resultant of the polynomials q~j' and (8/sar„)q~~'.

Thus f„,(g, &u, /g, . . . , ~„,/g) is singular for val-
ues of g, (d„... , ~„,satisfying an equation of the
form (Cl). Finally, if

R& &, (0~ +i~. . . , +„,) =p (C19)

for real ~„... , cu„, and if the pointg=0, ~f Qpgy

1~ l» n-1 is an actual singularity of

fn i(g& ~i/g) ~ ~ ~ ~ &n-1/g) t

then, as will be seen below, either

q&'l(p, ~„.. . , (a)„) =q~~ ~(0, (u„. . . , u„)=0 for j ej '

or

q&'&(0, (u„. . . , ~„)= q&~'(0, (u„.. . , (u„) =0

(C20)

for j =j'

for some real value of ~„. It then follows from the
standard Euclidean construction" of By gl and
Eq. (C3), that

=R& s'(g~ ~i + ~» ~ ~ ~ ~ 4'n-i + ~n-i)

(c21)
for all g, ur„. . . , &u„,. Thus f„,satisfies condi-
tion (i) if n is replaced by n —1.

Let us turn to condition (ii). If the function

f„,(g, k„ . . . , k„,), for fixed values of k„ . . . , k„ „
is continued in g along a path circling the origin
once counterclockwise, the function [f„,j, results.
This continuation can be performed by simulta-
neously deforming the path of the cv„ integration
in Eq. (C11) in order to avoid the singularities (in
&u„) of the integrand, all of which are linearly pro-
portional to g. An cu„contour of the sort shown in
Fig. 17(a) results. Condition (iiib) implies that
our integral is convergent throughout this continua-
tion. From Eq. (C4} and Eq. (C5) for b„.. . , b„„
a„all zero we can deduce that for real values of
co„ lying on this contour which are either near zero
or very large, the integrand differs from that in
Eq. (Cl1) by continuation in g through 2n about a
"logarithmic" branch point. Thus, for sufficiently

),[f. i(g ki " k. iH.

(c22}

can be written as an integral over a contour lying
wholly on a circle enclosing all the singularities
ing. Therefore, Eq. (C4} is satisfied when n is
replaced by n —1. Likewise, if

f„,(g, a, +b, /g, . . . , a„,+b„,/g)

is continued in g along a sufficiently small" circle
about the origin, the resulting ~„contour has the
form shown in Fig. 17(b). Using an argument like
that above, we can then conclude that Eq. (C5) is
also obeyed when n is replaced by n —1. The form
of the contour shown in Fig. 17(b) depends critical-
ly on the linearity in g of those singularities in co„
which approach the real axis as g tends to zero,
i.e., the linearity ing of

b. (u' '(g) =s)„' '(g, ga, +b„..., ga„, +b„,)
—(u„"(0,b„.. . , b„,) (c23}

for real ~~'(O, b„.. . , b„,). Using Eq. (C3) we
can rewrite Eq. (C12) as

q„" (g, g~, . . . , ga„„«u„'(g))=0 (c24)

which implies this linearity.
Let us now show that f„,also obeys condition

(iii). Divide the n —1 variables into two groups,

(b)

FIG. 17. An example of the co„contour which results
if: (a) the function f„&(g,k&, . . . ,A„&) is continued in

g through 271 about the origin, (b) the function

f„-&(g, a&+&&/g, . . . ,a„&+b„~/g) is continued counter-
clockwise in g along a very small circle about the origin.
The crosses locate singularities of the integrand, f„,
in co ~

large /,
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For real values of k„.. . , k„„g, the condition
(iii a) obeyed by f„ implies that

nt

If Iy.., ,y„.. . , y:„,II A'e
yyy( yyZI -., I"')

j=l
(C25)

if
I u&„ I

& R' = max(R„R, }for all 1 «i «m. Here R,
is chosen so that if I ur, , I &R, for all 1 « i «m+ 1,
then

for all 1~ i & rj. The co„contour can be chosen to
satisfy (C33) provided

l&25" W "i'~
n n nt (cs4)

(j)
=fy(gy 4'iy ~ ~ ~ y ~n)Qn (g'y &iy ~ ~

y &, )

+fy'(g& ~iy ~ ~ ~ y ~n) QN (gy ~iy ~ ~ ~ y n) ~
(j')

for i oi' or j 4j ' .For j &j
' use Eq. (C16) to write

Ry, y (gy ~iy ~ ~ ~ y ~n-i)

nt+ 1

If.(a&, ",, y'.)I'& (-&, Q I, I"')
j=l

(c26) (C35)

If we set cv„=~j' in this equation and require

n-1
(o)

llgl —Ig II & If I pl '
') y'ty (y),

j=I

(C28)

I Q."',(g, ~„",~. ,) I
& 5.'[&.(o)]"' (c29)

for real g, u[ ~, . . . , &u~ „and I &u, . I
&R, 1 «i «m.n-1y

Define

Qn ("a,y ~ ~ ~
y &a y &n) = Qn» &gy ~ ~ ~

y &g) I g, -o y

-(j) (j)

m+1&i «n. (C30}

By assumption Q„j is a homogeneous polynomial
in ~,,, . . . , ~, , ~„of degree vj. Given y & 0 there
exist values of R, and y' such that

while R, is the largest value of R required for the
validity of Eq. (CV) as I &o„ I

is varied from zero to
R,. The constants A. ' and B' are given by

A'=2 vw, '„+2R,A, B=min(B, B,). (C27)
3 A.,

B1

Thus f„,(g, 0„... , 0„,) satisfies condition (iiia).
Now continue f„,analytically from the point
g ~' cu„', into the region

I R, , (g, ~„~ ~ ~, ~. g) I
& 5,' w ",

we obtain

(cs6)

let ~„=~„"and assume Rj j bounded from below
by 5,'S' '; one obtains

(cs9}
which is equivalent to Eq. (C34). Thus for values
of g, &u„. . . , u&„, consistent with Eqs. (C28) and
(C29), the ~„cnot uor can be chosen so that the
bound (C25) is satisfied.

U j
52W. ' 'f&(g, ~i, ",~. „~!')II(~'. ' -~."),

(cs7)
which implies Eq. (34) for some value of v' less
than the degree of Rj,'. Similarly for j =j', write

R) )(gy ~iy ~ ~ ~ ~n-i)

=f, (g, ~„,~.)Q'. (g, ~„,~.)
I 8

+fg (g, &iy ~ ~ ~, &n) s Qn(gy +Iy ~ ~ ~ y +g) y8(d

(cs8)

(C31)

uniformly in cu,', ... , cu, where cuj j is a root
of @(j)

(cs2)
Thus as we continue g, co„... , cu„, into the region
specified by Eqs. (C28) and (C29), the singularities
in ~„stay sufficiently close to a discrete set of
fixed points to insure the validity of Eq. (C8).

Therefore, the inequality (25) can be maintained
during the continuation described above if we are
able to choose the ~„contour in a manner consis-
tent with Eq. (C9). This is assured if we require

I ~„-&u~ '
I

& 5 "w "i"~ (C33)

APPENDIX D

We will now demonstrate that the terms S„;(g)
in the S-matrix expansion (38), (39) which can be
constructed for real g directly from lower-order
unitary amplitudes automatically satisfy the uni-
tarity condition

S„;(g)+S„,(g) = —g g[S„,,(g)S„„„(g)'],.
n&-1 jok

(D1)

Such terms correspond to case (a) in the discussion
of Sec. IV. Likewise it will be shown that those
terms U„,(g) falling into case (b) must obey

n-1
U. , i(g) U. ,~(g*)'=- Z Z[U. ;;(g}U. ...(g*)']i

n'=1 jtk

(D2)
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if they are constructed out of lower-order ampli-
tudes which obey a similar pseudounitarity condi-
tion. The method of proof developed below was
suggested by the solution to a similar problem ob-
tained by Veltman. zz For simplicity, we will limit
this discussion to amplitudes which correspond to
graphs containing no internal fermion lines.

Let us begin by considering the nth-order ampli-
tude

M„,(g', p„.. . , p„)()~, " ':
corresponding to the class i =1 of connected graphs
containing only minus lines. This amplitude can
be expressed as a series of terms, each term cor-
responding to graphs containing a particular ar-
rangement of L internal lines. We will assign the
integers k = 1, . . . , n to the vertices and j = 1, . . . , L
to the internal lines of such a graph. Let P~
= (P„ i E,) be the total four-momentum entering the
kth vertex and I,. = (I,, i e,) the four-momentum car-

FIG. 18. A fourth-order graph constructed of minus
lines only. For this example n =4, I =5, a&=4, bs ——2,
etc.

ried by the jth internal. line from vertex a& to ver-
tex b, An example of such a graph is shown in
Fig. 18. The term in the amplitude M„, represen-
ted by graphs with such an internal structure can
be written

( imam-o)" ig4 z L l n L L4
,,(r ..r )H.. 2 I.I zzz --' ' Q, ll z, , I r, zzz ,—,';, P z I z...l r, )Wj j 1 f =0 A 1- I

J
r=l =1 0!ps'

where p„ is the total external four-momentum entering the kth vertex and

1 if k=b,

-1 if k =a,.

0 otherwise .
(D4)

The function E„L is then given by

n

E., (p p.}=II II J d(I,}
J

d R- 4,. ~
II 6'(P, )

r=i -i=i -~ -&'I ) ( A=i
(D5)

and is initially defined for imaginary external energies (p, ), and internal integration over Euclidean four-
momenta as indicated by the imaginary e„contour in Eq. (D5).

Using the techniques developed in Appendix C, it is not difficult to show that E„(p„z.. . , p„}can be con-
tinued to real values of (p4}„.. . , (p„)o. Consider

F„(z,e,', . . . , e„' }=+ d'I„' g B
~ 4+ gq, , I,'+p& — Qzq;;e,'+z(p&) +X& (D6)

k=i i=i i=i

where the 6 functions in Eq. (D5) have been eliminated, the resulting integration variables labeled I,
= (I,', ie,'), 1 & i & n', and the total external four-momentum carried by the jth line labeled p~, 1 & j & L. The
srriall "masses" X,. have been introduced to regulate the familiar infrared divergences present in such a
theory of interacting massless scalar and massive spinor particles. The function F„z(z, e,', . . . , e„'z) de-
pends analytically on the variables z, e,', . . . , e„' at all points except possibly those satisfying

where P„"is a polynomial in the variables z, e,', . . .
nary values of e,', 1 & i & n ' and (p&}„1& j & L, F„z
can be continued to all but a finite number of points
divided into two subsets, e', , . . . , e' and e'

m . ~nt+l
R such that [ e, , ~

&R for all 1 & i & m implies

(*, z,', . . . , z„' )I-Ae p( Bzf'Iz l"')z-

, e„'.. It follows directly from Eq. (D6} that for imagi-
(z, e,', . . . , e„') is analytic in the half-plane Rez & 0 and
on the imaginary z axis. If the variables e,', . . . , e„' are
, e' „ then there exist positive real numbers A, B, and

(Da)
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for z real and e,', 1 & i & n', imaginary. For sufficiently large R and A, Eq. (D8) remains valid if the varia-
bles z, e,', . . . , e„'. are continued from the real values z~ ), e, , . . . , e„) into the region

n'
I)z[-)z"'[I&5)z"'), gaze& -z"'e',"['&y' g aze"')'

i=1 i=1
(D9)

for some real, predetermined v, 1&5y&0, 5, &0, sufficiently small y, and all values of e,'~, 1& i~m obey-
ing [ e~,")&R, 1 & i& m. Using the method of Appendix C, we can sequentially integrate over e„', e„' „.. . , e,'
maintaining ihe analytic structure in z. Note that since the location of the singularities in z does not de-
pend on g, the singularity structure in g, established for Euclidean momenta, is not altered by the continu-
ation in z from real to imaginary values.

In order to show that the amplitude M„,. is unitary after being continued to real values of the external en-
ergies, it is convenient to use a somewhat different representation for the term E„~:

(P., "u , ) II(, JI.d=") n&'(p)II f «, & (4'+'*) (2„)" n( '„- ',), (Dlo)

where for imaginary (p,)„.. . , (p„)„ the contours c„coincide with the imaginary axis and the small real
quantity e indicates in what way each c, avoids the singularities 1/E„1& k & n. As we continue the exter-
nal energies from imaginary to real values, we will distort each contour c„ to avoid a discrete set of sin-
gularities. We will choose each contour c„for real external energies so that (i) c„ lies along the real axis
for

~ e, ~ &E, where E is a real number much greater than the magnitude of any external energy or momen-
tum, '4 and (ii) the quantity Re(e,) never decreases as e„ follows the contour c,. For example, the contours
c, and c, entering the amplitude corresponding to the graph found in Fig. 18 are shown in Fig. 19. In addi-
tion to avoiding the singularities in e„of the function

8„, ,(e„.. . , e ) =g „' deR „", Q
%1T El, t+ E EI,t- EL rt

(D11)

Ji
Ci 8p

JL

Cp
8, -(Pl)o -' s

X X 84 —85 + (P J)P

+ (pg)p + 2s—
I &Jl + (Pi)o+ s

84-85 X X
8Z- 8&-(PZ)0 k 4'

r s r

I l(l + (p()p+ s—Ii, l + I &&I+ ITJ I

FIG. 19. The contours c& and c2 followed by the variables of integration e& and e2 appearing in the amplitude
E4 5 (p f p 2 p 3 p 4), derived from the graph in Fig . 1S . The se contours result after continuation from imagi nary to real
external energies.

we will also route the contour c„around left and right distinguished values of e„defined inductively as fol-
lows: A distinguished value of the function g„„,(e„.. . , ez) is either the location of a singularity in e„or
a value of e„ for which a left and a right distinguished value of e„, for h„„,(e„„e„,. . . , e„) coincide. A

di,
"

anguished point is called left if it moves to the left when e is increased and called right if it moves to
the right. The singularities of E„„in e„naturally fall into pairs of points whose difference is real and de-
pends only on e and [ 1J, . . . , ( 1„(. Each distinguished point lies on a straight line connecting two members
of such a pair. We will choose c„to pass above right distinguished points and below left distinguished
points. The contour c, in Fig. 19 is so chosen.

Given a permutation o„.. . , o„of the first n integers, define a new function E„(p, , . . . , p, ~ p, , . . . , p, )
from Eq. (D10) by altering the contours c„,1&r & I.. Let a(r) =o

&„&, b(r) =os&„&, 1 &r & L and distinguish four
cases:
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a(r) &p

P(r) & p

e,

rrPr r
rw

a(r) &p

P(r) & p

—
I l. „I

Ivrr r r r r r r r

r r rr r r r rrrrrrr ~

rrrrrri rr Jrnrrrrrrrr rrr

+ I l., I

rrrrr rrrrrrr n
X X —

I lrI + I l, I

rrrVrrrr A rr rr rr~rr rrrr

a(r) &p
P(r)& p

e„ rrrrrrr&rrr rrrr r w
a(r} & p er

P(r) &p

rrr rMrrrrr w

ir's

rr array v irrrrrrr'rrrrAArrrr
v rJrrrr~rrrrrrrrr

+It, I

r Jr r rArrrr r V r r i r rArr rrrr

FIG. 20. The integration contours c„, c„', c„,and c„required by the definition of the function
E,r{&a( .&ap.l&aa, ( . .&a„).

a(r)- p p{r) & p

II. a(r) ~ p, p(r)&p,

III. a(r) &p, p(r) ~ p,
IV. a(r) &p, p(r) & p .

(D12}

In case I the contour c„'=c„ is used. For case II
the contour c„ is followed down from +~ until it
passes above the singularity e, =+(I, (; this singu-
larity is circled counterclockwise and the contour
c„ followed back toward +~ untiI the last distin-
guished point on c„ is reached; the contour c„" then
circles this point clockwise and is directed down-
ward, parallel to the imaginary axis, to -~. The
contour c„"' is defined so that if e„ follows c„'",
-e„will follow a contour similar to c„". Finally,
c„' is a combination of those parts of c„"and c„"'
which differ from c„. Examples of these four con-
tours are shown in Fig. 20. It should be noted that

FIG. 21. The graph corresponding to the function
E4 5(p~, p2, p4)p 3) formed by appropriate modif'ication of
the amplitude represented in Fig. 18.
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(DI8)

the location of the distinguished points in e, of the function $„„,(o, p, e„, ... , e„), defined from Eq. (D11) by
making the above replacement of contours, is the same as for the original function h„„,(e„, ..., e„). How-
ever, the locations of actual singularities in e„are different for the two functions. Qur new function
E, z, (p ~ "~p, Ip, ~,p, } can be represented graphically by (i) moving the vertices of a graph corre-
sponding to the original amplitude E„ I sa that the vertices 0„..., v all lie to the left of the vertices
vz„, ... , cr„and (ii} drawing a vertical dashed line separating these two groups of vertices. Thus if we
consider the amplitude E, ,(p„p„p„p,} corresponding to the graph in Fig. 18, the graph representing
E~,(p„p~, p4l p,} is shown in Fig. 21.

With this choice of contours, the integration variables e„.. . , e~ entering the definition of
E„~( p. . . . . p. lp. . .p. ) obey

Re(e„)& 0, 1 & i & d

Re(-e, ) & 0, d& i & D

where [r,]. . .is the set of lines of case II, o(r, ) & p, p(r, )&p, 1 & i& d, while for d& i&D, n(r;)&p,
t}(r,) & p. Since energy conservation requires

(D14)

D

E„,,(p... . . . ,p. lp. . .p. )=Q d'I„,»imE 4, ' -ie g[8(e„,. -li„.l)] Q [e(-e„-ll„,.l)]

(P.,), = g(P.,), = g e„, —g e„.,
i = p+1 f=l $ =1 f=d+I

only those parts of c„"and c'," lying on the real axis can contribute to E„(Lp, , ~,p, Ip, . Po )
Thus we can write

D D

D D

XE„ i i D p + 6„. L„, . . . p +

The amplitudes E~ ~. and E
p z z L) correspond to the left- and right-hand graphs obtained by dropping all

of the internal lines cut by the dashed line in the graphical representation of E„~(p, , . . . , p, l p, , . . . , p, ).
The second amplitude E

p z L p can be related to a conventional amplitude containing only contours c'„
by applying the following equation:

8„„(o,0, e„„.. . , e~,) = (-I)"&'"$„, ,(e„„.. . , e~, ) * (D16)

valid for real e„„,. . . , e~ . Equation (D15} can be derived by using induction on r. First, for r=0 the
1

validity of Eq. (D16) follows directly from Eq. (Dl1). Next, assume that Eq. (D16) holds for r & r, and con-
sider

(DIV)

and

(-I}""""'" «r, +off 4,2 n, ,;(e-;+i~. , eg, )
C

(D18)

for real values of e„,„,. . . , e~,. If the internal lines 1 & r & r, make up a disconnected graph, then our in-
duction hypothesis easily implies that the expression (D1V) is the complex conjugate of (D18). Otherwise,
the singularities in e„„ofh„, (o, 0, e„„,. . . , e~ ), an amplitude defined entirely with the contours c„'v,
can be naturally grouped into pairs whose difference is real just as in the case of h„„(e„„,. . . , e~ }.
However, for each such pair, there are distinguished values of e„„lying on a straight line connecting the
pair, a right distinguished point lying to the right of the right-hand member of the pair and a left distin-
guished point lying to the left of the left-hand member. Typical contours c' and c' occurring in the ex-
pressions (D1V) and (D18) are shown in Fig. 22. Continuing Eq. (D16) for r =ro in e„,and referring to
Fig. 22, we can conclude that the quantity (D1V) is the complex conjugate of (D18). %hue Eq. (D16) is es-
tablished by induction. If Eq. (D16) for n, =n —p, I,,= L —L' -D, and r = L, is integrated over the internal
spatial momenta l„j.& i& L„we obtain
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C
IV e,.+ } e,.+}

c'

—
I l ~.+ i I +Il, +&I

—
I lr. + i I + Il . }I

FIG. 22. Typical contours c and c occurring in the expressions (D1V) and (D18).

E„q~ ~. I(((k„.. . , k„ l) =(-1)~ ~ ~E„~ ~ D(k„. .. , k„ l)*

for any real four momenta k„.. . , k„
Finally let us observe that

(D19)

(D20)Q (-1)'E„,(p... . . . ,p, l p, ,, . . . , p.„)=0,
(~.P)

where Q, » indicates a sum over all distinct divisions of the first n integers into two groups v„.. . , ol and

ol„, . . . , o„. Equation (D20) can be derived from Eq. (D10} if we first write

rr
' ' -iz fr~ (D21)kl~kkgt+6 Et —f tt

6.
y

I tftt

where Q(; represents a sum over all permutations 6„.. . , 5„of the first n integers. If Eqs. (D10) MId (D21)
are substituted into the left-hand side of Eq. (D20), we obtain

2„~ I: II(f +()III(('(&)](-(&'ll Jf d, (( ( 4 i ) r Z II „, II
1 g (fI P) (I (( -I E& +e (( -I(+I-

=j. g'=n"

(D22)

where the contour c„,(c, p), for a particular grouping (o, p) and variable e„., is cI, cII, cIII, or cIY, fol-
lowing Eq. (D12). Consider a particular term in this sum with a specific division of the vertices into left
and right groups, 0„.. . , cr; v „,. . . , o„and a definite permutation 5. Assume that 5, =ok and that k ~ p.
A second term in this sum with the same permutation |( and a grouping (o, p —1) of the form o„.. . , a, „
Qk $ 0p ok ap $ . , 0„differs from the first term only in the choice of contours c„ for r such that
u(r) =k or p(r} =k. However, if p(r) =k then the form of the energy denominators in Eq. (D22) implies that
the variable e, has no singularities to the right of the contour c,(o, p) except for the point +~ 1,[. Inspection
of Fig. 20 reveals that for n(r) & p the appropriate contours c„' and c„"are equivalent; or in the case a(r)
&p the contours cI„"and cIv are equivalent. Similarly, if c((r) =k, then e, has no singularities to the left
of c„except the point -~1„[. Then if P(r) cp the relevant contours cI and c„"I are equivalent while for
P(r}& p the contours c„"and cIv can be deformed into each other. The case k& p behaves in a similar man-
ner. Thus the sum in Eq. (D22) can be separated into pairs of canceling terms and Eq. (D20) is estab-
lished.

If Eq. (D20) is combined with Eqs. (D15) and (D19) and summed over all possible, connected, arrange-
ments of minus lines, then Eq. (Dl} for i =1 follows.

Clearly this method of proof applies directly to all amplitudes formed as a multiple integral of a product
of the functions B and B,. However, our method can also be applied to the general case with only slight
modification. If, for example, a subgraph (not necessarily connected) of the graph of interest must be
computed for imaginary g and then continued to real g, we will apply the above method integrating over
that subgraph's internal momenta first. Equations (D15) and (D19) are then satisfied, for imaginary g,
by the amplitude obtained after integrating over only those variables appearing in this subgraph provided
the other variables have values lying on the appropriate contours. If we continue in g according to Eqs.
(45) and (63), Eqs. (D15) and (D19) will continue to hold. Equation (D15) and Eq. (D13), valid for the re-
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maining integration variables, will then imply that the full amplitude obeys Eq. (D15}, while Eq. (D19) can
be established inductively for the full amplitude as before. Finally Eq. (D20} can be derived using the

same arguments as above, so that unitarity is established.

APPENDIX E

Let us briefly consider two other nonrenormalizable field theories to which our techniques can be ap-
plied:

(i) A theory containing two scalar fields P(x) and 8(x) coupled by the interaction Lagrangian density

Z, (x) = -~: 8'(x)e "&*~:, (El)

where the interacting field P(x) is massless while 8(x) has a nonzero mass. In this theory only the function

B, occurs and, therefore, the operator U(g) can be computed to arbitrary order in X. The results of Ap-
pendix C, when combined with our continuation procedure, then yield a finite, unitary scattering matrix
depending on A,, g, the 8 particle's mass, and an additional real parameter b."

(ii) A neutral-vector-boson theory determined by the Lagrangian

P(x) =-— — " " — " —~zmv 2W W —l'(x) y +mo+Amo v~ I'(x) —igW I'(x)y v, l'(x),1 8WP BWV 8 WP 8Wv

4 Bx ex ex 8x ' " " "ex
V P V P

(E2)

where W„(x) is a vector field and all other notation is the same as that appearing in Eq. (1). The scatter-
ing matrix predicted by the Lagrangian (E2) can be developed as a standard perturbation-series expansion
in 4mo and g. In such an expansion we can divide the vector-boson propagator Az(x)„„ into two terms:

A,(x)„,= A~,'&(x)„, + A~,'&(x)„„

(E2)

If taken by itself, the first term, 4~~", yields amplitudes no more divergent than those of a renormalizable
field theory. On the other hand, the second term has exactly the same effect as an exchange of the deriva-
tive-coupled scalar boson analyzed before. Thus, if all Feynman graphs of a given order in 4mp' are
grouped according to the number of powers of &~&'~ and 4~' which they contain, our methods can be used to
sum the contribution of all powers of 4~~) for a fixed power of 4mp and 4~' . The result is a series expan-
sion for the scattering matrix of the form

rP')
S= Q Q Q g"(b.m, )" ln" (g')B„„.„

n=p n'=p h =p
(E4)

For n =0, the coefficients B„p p are simply the predictions of a renormalizable field theory. For n ~ 0,
the results presented previously imply that the B„„„~are unique functions of the physical masses m, m
and a new real parameter b, and are explicitly finite for n' ~ 3.

*This research was supported in part by the U. S.
Atomic Energy Commission.

)Alfred P. Sloan Foundation Fellow.
This theory, or one similar to it, has been discussed

previously by a number of authors: M. K. Volkov,
Commun. Math. Phys. 7, 289 (1968); S. Okubo, Progr.
Theoret. Phys. (Kyoto) 11, 80 (1954); R. Arnowitt and
S. Deser, Phys. Rev. 100, 349 (1955); B. A. Arbuzov,
N. M. Atakishiev, and A. T. Filippov, Yadern. Fiz. 8,
385 (1968) [Soviet J. Nucl. Phys. 8, 222 (1969)];A. T.
Filippov, Topical Conference on 8'eak Interactions
(CERN, Geneva, 1969), p. 395; F. J. Dyson, Phys. Rev.
73, 929 (1948); B. Klaiber, Nuovo Cimento 36, 165
(1965); T. D. Lee, ibid. 5gA, 579 (1969).

2Throughout this paper we specify a four-vector p by
three spatial components p&, p2, p& and an imaginary time

component p4 =ipo,. P =P, +P, +P, -P, . %'e use2 2 2 2 2

p'=-iy&p„, ='d /Bt -V and for a Dirac spinor U, U
= U~y4. On occasion, the same symbol p will be used to
represent ~p2.

3Similar techniques have been used previously by many
authors: G. V. Efimov, Zh. Eksperim. i Teor. Fiz. 44,
2107 (1963) [Soviet Phys. JETP 17, 1417 (1963)];Phys.
Letters 4, 314 (1963); Nuovo Cimento 32, 1046 (1964);
Nucl. Phys. 74, 657 (1965); E. S. Fradkin, ibid. 49, 624
(1963); 76, 588 (1966); G. Feinberg and A. Pais, Phys.
Rev. 131, 2724 (1g63); 133, B477 (1g64); M. B. Halpern,
ibid. 140, B1570 (1965); B. A. Arbuzov and A. T. Filippov,
Nuovo Cimento 38, 796 (1965); B. A. Arbuzov and A. T.
Filippov, Zh. Eksperim. i Teor. Fiz. 49, 990 (1965) [So-
viet Phys. JETP 22, 688 (1966)];H. M. Fried, Nuovo
Cimento 52A, 1333 (1967); Phys. Rev. 174, 1725 (1968);
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M. K. Volkov, Ann. Phys. (N.Y.) 49, 202 (1968); R. Del-
bourgo, A. Salam, and J. Strathdee, Phys. Rev. 187,
1999 (1969); in addition to the first three references
listed in Ref. 1.

4F. J. Dyson, Phys. Rev. 73, 929 (1948).
The Feynman functions hz(x) and Sz(x;m) are given by

1
D,&(x) =- d4p e ~"

Sz(x™)=-
4

d p e p2+m2-iE '4 p,„ P + m

This analytic-continuation procedure, or one similar
to it, has been suggested previously: Okubo, Ref. 1;
Arnowitt and Deser, Ref. 1; L. Cooper, Phys. Rev. 100,
362 (1955); Volkov, Ref. 1, and Ann. Phys. (N. Y.) 49,
202 (1968); Arbuzov, Atakishiev, and Filippov, Ref. 1.

Throughout this section we will ignore the mass
counterterm l 6M l found in Eq. (12) and omit any refer-
ence to wave-function renormalization constants since
both quantities enter here in essentially the usual way
(except for the situation discussed in Ref. 11). For a
complete discussion of the usual situation found for ex-
ample in ordinary quantum electrodynamics see
J. Bjorken and S. Drell, Relativistic Quantum Fields
(McGraw-Hill, New York, 1965). We will also omit the
factors e "~'"~/(2P0)~ accompanying the absorption or
emission of a particle of four-momentum p at the ith
vertex.

In both Secs. III and IV we will attempt to define an
amplitude corresponding to a particular graph by first
performing a phase rotation of —2x for all time coordi-
nates or +2~ for all energies so that a Euclidean region
is reached. We will then return to the physical region by
reversing this procedure and continuing all energies back
to real values in a clockwise sense. Our ability to per-
form this second continuation is established in Appendix
D.

90ur scattering amplitudes are invariantly normalized
matrix elements of T =i(S —1).

~ The functions S&(x', m) exp[+ 4ig 6+@)] and
tr[Sz(x'; m)Sz(-x; m')] exp[+ 4ig 6z(x)] each contain a
term with no boson propagator and consequently corre-
spond to the sum of two graphs, one with and one without
a wavy line connecting the two ends of the fermion line(s).
Note that the integral in Eq. (35) defining A is conver-
gent only when both terms are included.

~~Note that the center diagram in Fig. 6(c), containing
the mass counterterm 6M is proportional to the mass
difference Dm-hmo. Only the hmo term enters the am-
plitude A+ . The term containing the factor 6m is to be
combined with the quadratically divergent first-order
term represented by the left-hand graph in Fig. 6(c).
The amplitude resulting from this combination still con-
tains a logarithmic divergence, proportional to km oem)
which is canceled in a similar way by terms of third and
fourth order in our expansion.

These operators are of course independent only for
values of n, n', l, l', l",i, j,k for which none of them
vanish.

~Although the parameters f„'; and h„'; are all that is
needed to determine S„(g) it is interesting to ask what
series of constants c~(n, i) and dm(n, i) are required by
Eqs. (45), (46), (65), and (66). These equations can be
reduced to

eo ~ 2

c (n, i)m'=

and

Q d (n, i)m' =
m= -~ 27rz

for l ~h, (n, i). The above equations do not uniquely deter-
rnine c (n, i) and d (n, i); however, there is no solution
for real b in which c (n, i) and d~(n, i) are independent
of n and i.

S. Okubo, Progr. Theoret. Phys. (Kyoto) 11, 80 (1954);
M. K. Volkov, Commun. Math. Phys. 7, 289 (1969); A. T.
Filippov, Topical Conference on S'eak Interactions (Ref.
1), p. 395.

SThe function [B (z)] is obtained by continuing B (z)
from real values of z along a path circling the origin
through a total angle Q, where (2m- 1)x& Q ~ (2m+1)x.
It is intended, for example, that in the k integration
over the contour c& in Eq. (B6) the function [B (g2k /
4m )] i be used for k near the starting point 0 of the c&

contour, but as the argument of k decreases through-m the function [B (g k /4x )] should be replaced by
its analytic continuation [B (g% /4n. )]

6The small positive number e is introduced because
of the divergence of the integrals in Eqs. (B8) and (B9).
at the end points. The extra terms, corresponding to
those parts of the contours circling these singular points,
have been omitted. It can be shown that the inclusion of
these extra terms will not alter our estimate of the
asymptotic behavior of E.
~~There is a small region around v = ~x and 0.7 ~r ~ 1

for which the bounds (B8) and (B9) do not imply conver-
gence. However, if for values of r and v in this range
the k contour is deformed slightly from a straight line,
the resulting bounds are sufficiently improved that they
require the convergence of the p integration in the inte-
gral (B10).

A similar phenomenon can be seen by comparing Eqs.
(A3) and (A4). The asymptotic growth for large p and
axed k of the integrand in Eq. (A4) is considerably
greater than that obtained after the integral over k is
performed as is indicated by Eqs. (A3) and (24).

~SMaxime Bocher, Introduction to Higher Algebra
(Dover, New York, 1964), p. 185.

Ref. 19, pp. 212-216.
This construction is presented for the case of two

variables on p. 206 of Ref. 19.
Using an argument similar to that found in the begin-

ning of the Qnal paragraph of Appendix C, one can show
that it' IQ(~'i(o, b &, . . . ,&„q)I

-d'(Q( = ~pl&gl')"~ «»)) j
and positive d' and if 0 &)g)& e'(g";:&~ b&( )~~ for suffi-
ciently small c', then the singularities of
f„(g,a&+gb&, . . . , a„&+gb„&,co„) in cu„are clustered in
small groups about widely separated roots of
Q„(0,b&, .. . ,b„ l, con), 1 ~j ~M„, as is shown in Fig.
(17b).

M. Veltman, Physiea 29, 186 (1963). The author is
indebted to Professor H. Lehmann for bringing this paper
to his attention.

24This choice can be accomplished by first considering
the final integration over eL, the integrals over
ez &, . . . , e& having been performed. The resulting inte-
grand will be singular in ez at the points z f g s ~ ~ ~
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and cz can be chosen so that [ez-z; z ~& 3zE implies that
e~-z; ~ is real. This procedure can then be carried out
inductively, routing c„ in such a way that ~e, -z«~& 3 'E
implies that e„-z& „ is real. Such a choice of c„might
be impeded by two singularities z«and z„, with

Im(z„; -zy f) & 0 and (z«-z„&t~»3"E. However,
the choice of the contour c„+&

rules out this possibility:

~z„;-z„&~
& 3"+ tE implies that z, ; -z„,. is real.

2~For a slightly more complete discussion of this model,
see N. Christ, in Nonpolynomial Lagrangians, Renormal-
isation and Gravity, Proceedings of the 1971 Coral Gables
Conference on Fundamental Interactions at High Energy,
Vol. 1 (Gordon and Breach, New York, 1971), p. 69.
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The modified WEB method due to Miller and Good is used to derive the scattering phase-
shift formula including h terms for the radial equation of the three-dimensional scattering
problem.

I ~ INTRODUCTION

Previous papers have developed a derivation, in
the spirit of Miller and Good, ' which yields the
scattering phase shifts in terms of an expansion in
powers of S. A previous paper' presents the terms
to the order h2.

The present paper is an extension of the previous
result to terms of the order of 84. Section II of the
present paper recapitulates the rigorous derivation
of Ref. 2. A rigorous derivation of the scattering
phase shifts to order h4 by the method of Ref. 2
would, however, require a very great expenditure
of labor.

Therefore, in Sec. III we present a less rigorous
derivation which can serve the purpose nicely.
This same procedure can be easily followed for ob-
taining terms of higher order than S4 for the meth-
od developed is a straightforward expansion. This
is, however, not so if we follow the rigorous deri-
vation and try to obtain some higher-order terms
by that process.

The divergence of the perturbation terms to h'
was successfully avoided in the scattering cases. '4
The main idea there is to replace the divergent in-
tegrals by contour integrals. As a result, we were
able to obtain some meaningful results. In the
~pi~it of the modified WEB method of Miller and
Good, we can express the phase shifts which we
want in terms of the known phase shifts of a known
potential. In the specific example chosen in Ref. 4,
the terms of second order in 8, in general, contrib-
ute to the phase shifts to the second decimal place

while the zeroth-order terms in some places can-
not give the result even to the first decimal place.
An important question to be answered in this note
is the extent to which improvement is possible.
When the potential of the known part is sufficiently
different from the potential of the unknown part,
we may need to go to terms of higher order than
h' in order to get results of higher precision.
We, therefore, investigate the contribution due to
h4 terms.

Throughout this paper we avoid Langer's substi-
tution, which replaces the three-dimensional dis-
tance r by e' with x being the one-dimensional dis-
tance. Breit raised the point that it is difficult to
give a physical justification for the lower limit
used in the integration if Langer's substitution is
introduced. Here we simply consider the case
where the angular momentum quantum number I.
t 0 for expansion in I/L will be made later.

In the derivation of the formula in Secs. II and
III the basic assumption is that g(r) has the form
g(r) = T(r)g(S(r)), where g(r) is the unknown wave
function and p(S} is the known wave function that
we want to make use of. Care should be exercised
in the choice of the known part, P(S). For ex-
ample, in solving to order I, we find that it is
inadequate to represent the Coulomb scattering
problem by the fractional-order Bessel-function
formula as was possible when solving to order 5'.
This situation may be changed if we set, for ex-
ample, g(r}=T,g(S(r))+ Tzg'(S(r)) where T, and T,
are functions dependent on r and Q'(S(r)) = dp/dS.
However, if short-range forces are the main con-


