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alous" diagrams makes no difference to our general
argument.

~~For any time-ordered single-particle electroproduc-
tion diagram, the leading power of q~ in the q~
limit can be checked following the general power-count-
ing method described in Sec. IV in connection with elas-
tic ep scattering. The only subtlety in the present case
is the proper identification of each of the intermediate
states that contributes a factor cc q~

~ to the diagram
from its energy denominator. Any intermediate state
that appears after the interaction of the virtual photon
and before the absorption of the last wee parton has to
be included independent of whether it contains a wee
particle or not. In the energy denominator of such a
state the terms proportional to q~2 cancel out because

of over-all energy conservation, but the terms propor-
tional to q~ persist. See the particular example in
Appendix C.

This buttresses our claim made towards the beginning
of Sec. V that the external spin factors do not affect the
leading q~ dependence.

2~These examples are not expected to give the correct
q~ dependences for the corresponding physical process-
es. Only their general feature is being used to propose
a relation between &&& and [F] .
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The problem of the quadratic dependence on momentum transfer of the form factors in';3
decay is analyzed. Assuming that the (3, 3 ) + (3*,3) model provides a reasonable description
of approximate SU(3) x SU(3) symmetry, several new sum rules have been written down which
involve form factors defined at different momentum transfers. A solution of the various E)3
parameters is obtained and discussed.

I. INTRODUCTION

There has been a great deal of discussion re-
cently'- on the validity of the soft-pion theorem' in
K)3 decays . The diff iculty aris es be cause the soft-
pion theorem relates form factors evaluated at the
momentum transfer t = m~', which lies far beyond
the physical region mP &t&(m~ —m, )'. . Thus in
order to test such a relation, one necessarily runs
into the problem of momentum dependence of the
form factors in the unphysical region. It has been
customary to assume a linear t dependence of the
form factors and indeed such a linear dependence
seems to be consistent with the present experimen-
tal data. ' However, if this linear relationship is
extrapolated to the unphysical region, the experi-
mental results seem to contradict the soft-pion
theorem. A possible way out is that the form fac-
tors as a function of t may have nonlinear terms,
which may be relatively unimportant in the physical
region, but may become sizable in the extrapolated
region near t- m~'. This paper deals with an in-
vestigation of this possibility.

Theoretically, one can study the momentum de-
pendence of the form factors through the use of
dispersion theory. In this case, inevitably, two
problems arise. The first problem has to do with
the number of subtractions to be used in the dis-
persion relations, or the knowledge of the asymp-

totic behavior of the form factors, about which very
little is known. The second problem arises in eval-
uating the absorptive part of the form factors, for
which one usually assumes pole dominance. Since
the K* and ~ poles are rather far removed from
the K» decay region of interest, it is not quite
clear how good this assumption is.'

In this paper, we avoid dispersion theory and in-
stead parametrize the t dependence of the form
factors, retaining, however, the quadratic terms
in t2, which are generally ignored. The K» prob-
lem is then studied solely within the framework of
chiral SU(3) xSU(3) symmetry. Such an investiga-
tion has many advantages, and in particular it
serves to sharpen the experimental confrontation
of our ideas regarding chiral SU(3) xSU(3) symme-
try and its breaking. Our attitude in this paper
will be to start with the idea that SU(3) xSU(3) sym-
metry realized through an octet of pseudoscalar
Goldstone bosons, is indeed a reasonable approxi-
mate description of nature. Based on this descrip-
tion, two sum rules relevant to K» decays are well &

known: the usual soft-pion SU(2}xSU(2}theorem'
and the Dashen-Weinstein relation. 4 A third soft-
pion SU(3) xSU(3) sum rule has also been obtained
by us' recently. To investigate the quadratic de-
pendence on momentum transfer of the form fac-
tors, clearly more information is required. In
this paper we derive what we believe is a maximal
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II. DESCRIPTION OF APPROXIMATE

SU(3}X SU(3}

The (3, 3*)+(3*, 3) model of Gell-Mann, Oakes,
and Henner' and of Glashow and Weinberg' can be
described by the Hamlltonlan density

H =Ho + eoSO +&888, (2.1)

where S„(n=0, 1, . . . , 8) is a nonet of scalar den-
sities which, together with a suitable nonet of
pseudoscalar densities, transforms as the (3, 3~)
+ (3*, 3) representation of SU(3) xSU(3). Also in
Eg. (2.1), e, and e, are the symmetry-breaking
parameters. It will be profitable if instead we
choose these parameters to be g and a, where"

(2.2)

H, describes an SU(3) xSU(3)-invariant world real-
ized through the zero-mass octet (m, A; q) of pseu-
doscalar mesons.

It is well known' and simple to check that the
Hamiltonian density (2.1) would be SU(2) xSU(2)-
invariant for a=-1. In this limit the pions are
massless but K and q acquire masses. Also at
a=0, one realizes the usual SU(3) symmetry and
at iz=2, H is invariant under chimeral' SU(3) sym-
metry realized by massless K but massive m and q.
Note that these subgroups of SU(3) X SU(3) are real-
ized for arbitrary e, . Also, in the SU(3) xSU(3)
limit, eo -0, ~, -0, and since the way in which eo
and ~, go to zero is not important, a can take any
arbitrary value. Thus if the matrix elements are
well defined in the SU(3}&&SU(3) limit, they cannot

set of SU{3)xSU(3) sum rules relevant to R» de-
cays. Specifically, these sum rules are derived on
the basis of the (3, 3*)+ (3*,3) model of SU(3) XSU(3)
symmetry breaking, using a technique discussed
recently in the literatux e, ' and summarized in Sec.
II. These sum rules are not obtained by using per-
turbation theory around the SU(3) xSU(3) limit, but
are expected to be good if the (3, 3*}+(3*,3) model
provides a reasonable description of an approxi-
mately SU(3) xSU(3)-invariant world. The precise
sense in which we define approximate SU(3) &&SU(3)

symmetry is also discussed in Sec. II.
After some preliminaries in Sec. III, we obtain

in Secs. IV and V various soft-pion SU(2) xSU(2)
and soft-kaon chimeral' SU(3)' sum rules. Aside
from the usual soft-pion and -kaon sum rules, 'we

obtain two extra relations using the extrapolation
technique outlined in Sec. II. Sections VI and VII
are devoted to obtaining what we call the "physical"
sum rules. Numerical results of our investigation
are presented in Sec. VIII, which are discussed in
Sec. IX.

depend on a in this limit. If now SU{3)XSU(3) sym-
metry is broken, dependence on a would develop,
but if the symmetry provides a reasonably ap-
proximate description, we do not expect any drastic
dependence on a. To be precise, we shall take ap-
proximate SU(3) xSU(3) symmetry to mean that the
matrix elements are as smooth functions of a as
possible consistent with various subgroups con-
straints. Thus, if a matrix element M is known

in the SU(2) &&SU(2), SU(3) and chimeral SU(3) lim-
its, and if SU(3) xSU(3) is an approximate symme-
try, the matrix element may be written by at most
a quadratic function of a:

M = M, (e,)+aM, (e,)+a'M2(e, ). (2.3}

m2-m2
Sgg + P Biff

(2 4)

Thus knowning M in the various subgroup limits,
the smooth or gentle a dependence in Eq. (2.3),
allows us to obtain the physical value of M for a
given by Eq. (2.4).

An alternative but related way to look at the
smoothness assumption is to argue as follows:
The usual hypothesis of partially consex'ved axial-
vector current (PCAC) for pions implies gentleness
in the extx'apolation from tI1e physical point to
a= -1, while the kaon PCAC hypothesis implies a
similar gentle behavior when extrapolated to a=2.
Furthermore, near a=O, the gentle behavior such
as {2.3) can be viewed as a perturbation expansion
about the SU(3}-symmetric limit. The combined
success of the pion PCAC hypothesis, SU(3) per-
turbation theory, as well as the fact that the kaon
PCAC hypothesis is not inconsistent with experi-
ments suggests strongly that the assumption of
gentleness in the whole region -1 &a &2 may indeed
be quite reasonable. It is worth emphasizing that
statements of smoothness such as (2.3), which are
valid fox all a in the region -1 ~ a & 2, are not con-
sequences of a pex'turbation theory in the variable
a.

Note, in the SU(3) xSU(3)-symmetric limit, we
must have M, (e, = 0) = M, (e, = 0) = 0. Since, we shall
not discuss in the following the exact SU(3) xSU(3)
limit, the eo dependence can be ignored. Stated
otherwise we may fix ~, to be equal to its "physical"
value. Since the various subgroup symmetries are
realized at a= -1, 0, and 2 irrespective of the value
of e„ there is no loss of generality in fixing z, as
far as considerations of these subgroups symme-
tries are concerned. The physical value of a,
where the pion and kaon acquire the experimentally
known masses, is given by the well-known formulae
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III. THE E)3 PROBLEM: DEFINITIONS

To be specific we shall consider E,', decay. The
fox m factors are defined through the matrix ele-
ment

&"(q)Il '„-"(0)I~'(p)&

In the SU(3)-symmetry limit, note that f» =f, and

f„=o.

IV. SOFT-PION RELATIONS

%e have shown elsewhere' that in the soft-pion
limit, besides the usual soft-pion theorem'

~. , t. ((p+ q)p.(t)+ (p —q)g (t)],

(3.1)

f.(m»')+ f (m»') = f»lf„
one can obtain another result,

(4.1)

&"(q)I~„I"„-"(0)I~'(p)&= —, , ~.„.d(t)
2 4poqo V

(3.2)

so that

d(t) = (m, ' —m, ')f,(t)+ tf (t).

We shall parametrize f,(t) as follows:

(3.3)

f, (t)=.j(o)(1+x, , +z'. . . 0- t&m *
'mm '

mm
(3.4}

and define, as usual,

&=f-( )0/f. ( )0.

From Eqs. (3.3)-(3.5), we may express

(3.6)

d(t) = d(0)+d'(0}t+ d" (0)—,+ d"(0)—,,
0 0

(3.6}

where t=-(P —q)'. Note that in the SU(3) limit
f,(0) =1 and f (t) =0. For the physical decay mP
« t«(m» —m„)'. We shall use the metric such that
the scalar product of two four-vectors is given by
a b =a 5+a4b~=a b —a,g. For later convenience,
we shall define the divergence of the matrix ele-
ment (1}as

f (m»'} —f-(m»'} =
2

(3f»'- f.'+ f.') (4 2)2

Note that the relation (4.1) is strictly valid in the
SU(2) xSU(2)-symmetric world, irrespective of
how good chiral SU(3) xSU(3) symmetry is. The
validity of the relation (4.2), however, requires
the stronger assumption that SU(3) x SU(3) symme-
try is also a good approximation. To see how this
arises and for completeness, we shall briefly
sketch the derivation of (4.2) here.

Consider the matrix element

M„,=z d'. xe ""0 T* A. '„x V'„-' 0 Z'p,
(4.3)

which from general invariance arguments can be
wl ltten as

4

Mq, ——
( ),t, (Apqq„+Bp, qq + Cpqp„+Dqqq„+Ebq, },

(4.4)

where the invariant amplitudes, A, 8, . . . , E are
functions of q' and t=-(P-q)'. In order to derive
the soft-pion results, we start with exact SU(2)
xSU(2) symmetr@ realized through a zero-mass
pion. From Eq. (4.3), and using the definition
(3.12}, we then obtain the Ward identity,

d(0) = (m»' —m„')f,(0),

d'(0)=f,(0)(&+ ', ''~),
(3.'I)

(3.8)

(3.9)

g.

qv pU 2 (2p y)g/2 f»pp

so that from Eq. (4.4), we get

(4.6)

d"'(0) =
yn. ' (3.1o)

A+p' qC= 2f»q

p qB+ q'D+E =0.

(4.6)

(4.7)

i fm
&0I&'„(0)l»'(q)&=

(2 y)i)2 ~~ q~ (3.11)

&0I&'„-"(0)I~ (p)&=
(2 ~),t.f»p„

0
(3.12)

For later use, we shall also define the ~, K, and I&:

leptonic decay constants f„ f», and f, through the
matrix elements

The re»tions (4.6) and (4.7) are valid in an SU(2)
xSU(2)-invariant world for all q' and t. Letting
now q' -0, only the zero-mass-pion poles in A. and
D will contribute, the residues being related to the

K„ form factors defined in Eq. (3.1). Thus for the
massless pion, we get

)
0

(3.13) f,(t)+f (t)= (f»-(t-m»')C(q'=—o, t)],f »» (4.8)



f (t) f (t) = ——[2E(q = 0, t)+ (t —m»')B{q' = 0, t)].
(4.9)

xSU(2) limit. First note that in the limit of exact
SU(3) symmetry, B„V40 "=0, so that from Eqs.
(4.3) and (3.12) we obtain the Ward identiy

In the soft-pion limit (q-0, t- m»'), since the in-
variant amplitudes have no poles at t = mx'» Eq.
(4.6) reduces to the well k-nown soft-pion theorem
(4.1). In this limit Eq. (4.9) becomes

=i" "" 2 (2P V)'"f P"'

k =P - q and t = -k2.

(4.11)

(4.12)

f,(m ')-f (m ')=- —E(q'=0, t=m '). {4.10) Letting ~ 0 Rnd uslllg {4.4), we obtRm:from Eq.
(4.11)

In order to obtain an expression for E(q', t) in
the soft-pion limit, we follow the procedure dis-
cussed in Sec. II. Accordingly, we first obtain
expressions for E in the exact-SU(3) and chimeral
SU{3) li1111'ts. If SU(3) xSU{3) ls R11 Rppl'ox1111ate

symmetry in the sense of Sec. II, we would then
extrapolate our results to obtain E in the SU(2}

E(u' =0, p'=q') =--,'f [SU(3)].

In the soft-kaon limit, the matrix element (4.3) can
be expressed in terms of the two-point functions for
vector and axial-vector currents. Using the Leh-
mann-Kallen spectral representation (o., P. = 1, 2,
. . ., 6)

"m' vd4~8 fQ XQ g +0' g 'V8 Q Q -Q dyyg2+q q dying

q +$8

and a similar one for axial-vector currents» we get

E(k' = q', p' =0) = — ' ' ', ', ' dm' [chimeral SU(3)],
» 0

(4.15)

where p, is the spin-one spectral function, and p2= p, +p„p, being the spin-zero spectral function.
We now obtain E in the soft-pion limit from the information (4.13) and {4.15) which are valid in the limits

of exact SU(3) and chimeral SU(3) symmetry, respectively. Following the ideas outlined in Sec. II, it is
now profitable to consider the following function of a for fixed e,:

-(m»' —m, ')(2m»' —m, '). . . ;,, 2, a 1 p~I'(m', A) —pI44(m', V)
7R PE~

d'
(4.16)

From Eqs. (4.13) and (4.15), we observe that

X(a=0) =X(&=2}=0. (4.1V)

y(a= -1)=0.

Evaluating (4.16) at a=-I, we then get

E(k' = —m»', P2 = —m»2, q' = 0)

(4.16)

p,"(m', a) p44(m', V—).
4» m 2 dm .

(4.19}

Note that the various masses and couplings in Eq.
(4.16) Rl'e Rlso 111 ge11el'Rl functions of 4I. If liow

SU(3) X SU(3) is a good symmetry in nature, the
discussion in Sec. II leads us to expect that y(a) is
a reasonably smooth continuous function of a in
the region -1- a- 2 so that we may express g(a)
by a linear function of a. Equation {4.17) then im-
plies y(a) = 0 for all a in this region, and in par-
ticular

Now using %einberg's first, sum rule, "
J p,"(m', X) —pP(m', V), p,"(m', X)„,

(4.20)

and the asymptotic SU(3) sum rule, "
p,'4(m', v) -p,"(m', v), p", (m', v)2

t
~ ~

~

~3 2
~

~

~~~ ~~ ~
~~ ~

»

m'

(4.21)

l p,'3(m', a) -pp(m', V)
m2

po m, A -po m, V

(4.22)

Using z and I{,
' dominance" to evaluate the integrals

over spin-zero spectral functions in Eq. (4.22), we
obtain on substitution in Eq. (4.19),



250 V. 8. MATHUB AND T. C. YANG

E(k' = —m»', p' = —m»', q'=0}
I

—;f + (f,' f„') [SU(2)xSU(2}].

(4.23)

(5.5}, we get

p'B'+p ~ qD' =— 2' (5.6)

Substituting Eq. (4.23) in Eq. (4.10), one obtains
the soft-pion sum rule (4.2}.

V. SOFT-KAON RELATIONS

p qA. '+ p'C'+E'=0. (5 '0

In the limit P' -0, only the massless-kaon pole
contributes to B' and C', and we obtain, using the
definition (3.1),

Proceeding in a fashion analogous to Sec. EV, we
now obtain the following two soft-kaon results:

f,(m„2) —f (m.2) = —, (5.1)

f.(m, ')+f (m. ') = (3f,'-2f»'+2f, ') (5 2)2 1

The relation (5.1) is the analog of Eq. (4.1), and as
before the soft-kaon result (5.2} is valid only if
SU(3)xSU(3) symmetry is a good symmetry. In
order to derive these results, we consider now

the following matrix element:

T&, =i d xe'~'"mo q T* g~+'5 ~ 'I/"~ '5 0 0,
(5.3)

which may be wlltten Hl tel ms of invar1RIlt ampli-
tudes

f.(f) +f (f) = [E'(p' = 0, t) + —,' (f —m„')a'(p2 = O, f)].
v2

(5.9)

Since D' and A' do not have poles at t= m, ', in the
soft-kaon limit (p -0, t- m, '), Eq. (5.8) reduces
to the result (5.1), and Eq. (5.9) becomes

f,(m, ')+ f (m, ')= E'(p'=0, t=m„'). (5.10)
v2

As before, in order to evaluate 8'(p', t) in the
soft-kaon limit, we first discuss its value in the
SU(3) and SU(2) xSU(2) limits. In the SU(3) limit,
we get from Eq. (5.3) the Ward identity

((v ( )I/2 ( P(}fv P}}f}}+~P Pv+D 4 f ++ $ )
0

(5.4)

Working in the exact chimeral-SU(3} limit, real-
ized through massless kaons, one obtains the
Nard identity

'll'

}(P (2 y)1/R

Qn letting k-0, one obtains

E'(k = 0, p = (p) = " [SU(3)].

(5.11)

(5.12)

f~
P}} ((}( (2 I/}I /2 ~2 I(( (5.5}

using the definition (3.11). From Eqs. (5.4}and

In the soft-pion limit the matrix element (5.3}can
be expressed in terms of the two-point functions as
before. Uslllg Eq. (4.14) alld a sllllllal' deflllltloll
for the case of axial-vector currents, we get

m V — mZ'(u2 = ' '=0) = — p' ' ' ' dm' [SU(2) xSU(2)].P'+ m'

%e now define

,
( } @,(~,

(m. ' —m '}(nm. ' —m '}
26lff + Pgr

( 1) f, }(2a p (m', V) -pf'(m', A)
ding,

(5.13)

(5.14)

Equations (5.12) and (5.13) imply y'(a=0)=y'(a=-1}=0. Assuming, as before, that X(a) is a linear function

0«, we s« that X(a} must vanish also in the chimeral-SU(3} limit, so that

Using steinberg's first sum rule in the form"

(5.15)
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f p4'(pg', y)-pP(/pe, /}„~ py(eP, A)-p~(m', V}d, 1,
m2 (5.16)

E'(0' = —m, ', p'=0, q'=-m, ') = f — (f„'-f„') [chimerai SU{3)]. (5.1V}

From Egs. (5.1'I) and (5.10) we obtain Eg. (5.2).

VI. "PHYSICAL" SUM RULES

Introducing the notation

f» fK'= X&f, ' fzf. (6.1)

we have shown that in the SU(2) x SU(2) limit, i.e.,
Qt a= -ly

f,(mx')+ f (mx') =x,

f.(~z') f (~—~') = 5(3x I/x+-y),

and in the chimeral-SU(3) limit, i.e., at a =2,

f,(m, ')- f (m, 2)=I/x,

f,(m„')+f (m, ') =3/x-2x+2y.

(6.2)

(6 3)

(6.4)

(6.5)

f,(n.)+f (n.) =x,

f,(d.) -f (~) =-,'(3x-1/x+y),

f,(n')-f (n')=Iix,

f,(n.')+f (n') =3/x-2x+2y,

(6.6)

Our purpose now 1s 'to use Egs. (6.2)-(6.5) snd the
information in the usual SU(3) limit as boundary
conditions to extrapolate and obtain information
for all a (-1 & a & 2), and thence at the "physical"
value of a given by Eg. (2.4). Obviously the ex-
trapolation is not unique, but as discussed in Sec.
II we shall be guided by requirements of minimal
a dependence, in accordance with the expectation
that SU(3}xSU(3) is a reasonably good symmetry.

At first sight it appears that the smoothest and
the most obvious extrapolation is

where e is a first-order SU(3)-breaking term, then
correct to this order x- 1/x= 2m, so that the right-
hand side of Eq. (6.8) has O(c, ) terms. The left-
hand side of Eq. (6.8}, on the other hand, is at
least O(e, '). This is because f (A) -f (n. ')
= (d —6')f'(0}+ and the leading terms itself
is at least O(e, ') if 4- b, '= O(~, ), since f'(0) =O(e, )
in the SU(3) limit. Furthermore, if we make the
obvious choice 6=-6'=m~'- m„', . which is con-
sistent with E|I. (6.7), then it is easy to check by
adding all the eryxations in (6.6) that one violates
the Ademollo-Gatto theorem. " Clearly then the
set (6.6) is unacceptable.

The next step is to try the following extrapola-
tion:

f,(&)+f (&) = —ax+(1+ a)E(x),

f+(&) -f (n) = —2&(3x-I/x+y)+ {1+a)G(x),
(6.10)

f+(&') —f (n') = —+ 1 ——If (x),2x 2

a 3 af.(n')+f (&') = ——-2x+2y + 1- —I(x),2 x 2

with the condition

Z(O) = G(0) =a(0) =I(0)=1. (6.11)

(6.12)

At this stage, it is worthwhile to point out that x
itself depends implicitly on a. However, it is
evident that x would be a rather insensitive function
of a. Note, for instance, that at a=0, x=1, where-
as at the physical value a= -0.89, one knows that
fx/f, is not too different from unity. Indeed in the
model (2.1) x is given by'

s=m ' at a=-l, a=0 at a=0,
6'=m„2 at a=2, 6'=0 at a=0.

(6. I)

f (&) —f (&') =-'( —I/x) ——,'y (6.8)

Note that the right-hand side of Eg. (6.8) has first-
order SU(3)-breaking terms. This can be seen ex-
plicitly if we write

X= —= 1+6yEC

f. (6.9}

Note in the SU{3)limit x= 1 and y = O{e,'). However,
from Eqs. (6.6}one readily obtains

{oiS,io)
(6.13)

It has been argued' that ~b
~
«1 for all a, -1 & a & 2,

so that the vacuum state is nearly invariant under
SU(3).' In terms of the parameter e introduced in
Eg. (6.9), we then have ~e~ «1 for a in the range
-1 & a & 2, so that we may to a good approximation
express the functions E{x},G(x), H{x}, and 5(x) in
Eg. (6.10) by expanding them in powers of e, and
neglecting for the present quadratic and higher
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terms. We shall return to a discussion of the
quadratic terms later. Now the ~ parameter y de-
fined in Eq. (6.1}also represents a second-order
SU(3)-breaking constant. Also at the physical
value (2.4) of a, most estimates show that y is
small compared to unity. Thus it seems plausible
that y -=f„'/f„f» = O(e2}. Indeed in the model (2.1),
it has been shown that"

termined uniquely. In this case, comparing Eqs.
(6.15) and (6.18) at a= -1 and at a=2, we get

(6.19)

Also comparing Eqs. (6.16) and (6.1?) at these
values of a, we obtain

(6.2o)

9 $2

(1 lg)2/2(1 +5)1/2

(6.14)

Note that, adding Eqs. (6.15) and (6.16), we now

obtain f,(A) = 1 —2'. Around the SU(3)-symmetry
limit, since the ae term is O(e2'), expansion
around the SU(3) value b, = 0, and the use of the
Adelllollo-GRtto tlleol'enl f+(0) = 1 + O(62 ), 'tllell 1III-
plies 'tllRt b must go to zel'0 111 tile SU(3)'111111'tRt

18Rst Rs O(E2 . ) Th.us,' lf we tRke b = g =A:, wllel'8

Dropping all O(6') and higher terms, we obtain
from Eqs. (6.10) and (6.11)

f,(S)+ f (a) = —ax+ (1+a)(1+ne)

=1+no+ (a —1)ae,

b, "=m„2 at a=22,

~"=o(~;) at a=O,

(6.21)

f,(a) —f (/1) = --,'a(3x-1/x)+ (1+a)(1+pe)

= 1+Pe + (P - 2)ae,

f,(/I') -f (n')= —+ 1 ——(I+ye)2x 2

=1+ye --,'(y+l)ae,

Q 3 0f,( A) +f(~')= — —-2x+ 1-- (1+5.)2 x 2

(6.16)

(6.1'?)

the various symmetry constraints on the set of
Fqs. (6.15)-(6.18}are satisfied if we choose n, p,

y, and 5 given by Eqs. (6.19) and (6.20). At a=o,
we have chosen A" as O(e22}, although in principle
a faster approach to zero is also consistent. There
is no ambiguity, however, if we confine ourselves
to the philosophy of mU1imal a dependence. Indeed
a minimal variation with respect to -a, consistent
with the conditions (6.21), yields"

= 1+ &e ——,'(5+ 5)ae, (6.18)
(m»' —m„') '(4m»'+ m„')

(2m '+m ')' (6.22)

where n, P, y, and 5 are constants.
It is important to note that although we have

neglected O(c2) terms, we do not neglect terms
proportional to a~, since we do not consider a to
be a perturbation parameter. In the SU(3) limit,
1.8., 116RI' a —0, of coul'86 'tile aE' tel'III 18 O(62 );
however, for large values of a, and in particular
near the physical value of a, the ae term is only
O(e). Note, as also emphasized in Sec. II, the
linear structure in a on the right-hand side of Eqs.
(6.15}-(6.18) is a consequence of our smoothness
assumption. Perturbation expansion is made only
for the parameter e defined in Eq. (6.9) or equiva-
lently for the parameter?I in Eq. (6.13).

We now turn our attention to the constants n, p,

y, and 5 appearing in the sum rules (6.15)-(6.18).
Note llitllel'to A Rlld A SRtlsfy tile conditions (6.7).
How A and /1' go to zero in the SU(3) limit is, how-
ever, not specified in Eq. (6.'?). Also unspecified
is the information on what 4 is at a= 2, or -4'at
a= -1. For the moment, leaving unspecified how

L or L' go to zero in the SU(3) limit, we will first
show that in the special case when ~ = ~' at a=-1,
0, and 2, the constants n, P, y, and 5 can be de-

For the momentum transfer (6.22), Eqs. (6.15}
-(6.20) then yield the following sum rules':

f,(~"}+f(~")= 1 -e-2a~,

f.(&")-f (&")=I+~- «. (6.23)

1 f+(0) ——' ]. — (6.24)

For f»/f, =1.28, f„(0)=1, as an illustration, we
obtain the result

X, =0.036. (6.25)

For the physical masses and the coupling ratio
f»/f„, and with a given by Eq. (2.4), Eqs. (6.23)
constitute the "physical" sum rules valid for the
squared momentum transfer 6" given by Eq. (6.22).
Numerically, 4"= 0.8m~'. This is still in the un-
physical K»-decay region, but is somewhat closer
to the physical region than the corresponding value
of the momentum transfer that appears-in the soft-
pion result Eq. (4.1).

If we make the usual assumption that f„(t}is
given by a lineal function of ~ ln the region w)
& b,", the sum rules (6.23) can be solved to obtain
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If we further assume that d(t) defined in Eq. (3.3)
is a linear function of t fox m, '& t & 6", which for
a linear f,(t}, implies a constant f, we obtain for
the parameter $ defined in Eq. (3.5) the correspon-
ding numerical result

& = -0.16. (6.26)

where x and y are defined in Eq. {6.1}. We may now
estimate ~, and g from Eq. (6.2V) assuming linear
expansions for f„(t) and d{t}, as before. There are
various estimates for y in the literature. Using
Eqs. (6.12) and (6.i4} for small 5, y= 4(1-x)'.
Then for x=1.28, f,(0) = 1, we get

Alternatively, we may use the formula of Glashow
and Weinberg'

2f,(0) =x+1/x-y,
so that for x=1.28, f,(0) =1, we obtain

x, =0.03V, ( =-O.j.5.

(6.29)

(6.30)

VII. MORE "PHYSICAL" SUM RULES

Recall that the results (6.23) were derived for a
speclRl VRlue of the squared moIQentuIQ tx'Rnsfel
4" [see Eq. (6.21)] which in the SU(3) limit is of
order e,'. %hat about the case when 6 Rnd 4' are
nonvanishing up to first order in SU(3) breaking.
In this case, the arguments of Sec. VI show that we
cannot have 4= 6'. This section is devoted to R

discussion when 4 and 2 ' have the following prop-
erties:

The results (6.25) and (6.26) are numerically close
to the corresponding solutions' of the soft-pion re-
sults (4.1) and (4.2) obtained under similar as-
sumptions of linearity. In order to go beyond the
linearity assumption, cleax'ly more infox'mation is
requix ed, In Sec. VD we show that mox e x elations
at different momentum transfer can indeed be de-
rived starting from the results (6.15)-(6.18).

Before we conclude this section, we wouM like
to point out that the sum rules (6.23) have been de-
rived by neglecting terms of order e'. We can,
however go to the next RpproxiIQation Rnd x'etRln

terms of order e'. It would be interesting to see
how the results (6.25) and (6.26) change For. the
squax'ed momentum transfer 6" defined in Eq.
(6.21),. and using the technique that leads to the
sum rules (6.23), one can easily show that correct
to O{~'), the sum rules are

f,(a")+f (b,")= -ax+ (1+a)/x+ -', (1+a)y,

f,(&")—f (a")= (1-a/2)x+ a/2x+ —,'(1 ——,'a)y,

6=m» at a=-1, A=O(c, ) at a=0,

h'=m, ' at a=2, A'=O(es} at a=0.
(7 1)

It is simple to see now that the considerations used
in Sec. VI do not determine all the constants a, P,
y, and 6 uniquely. Note first that the requirement
that 6 Rnd 6 have IQlnlIQRl Q dependence now leRds
to the following values of the squared momentum
transfer:

f,(a) =1+ (n+P)-,'e+ (u+P —3) a~,

f,(-a) =1 —(a+ P)-,'e + {o.+ P —6}-,'ac„

f (s) =(n -P)-',e+(n-P+I)-', ae,

(7.6)

(7 7}

(V.8)

(V.2)

Now, adding Eqs. (6.15) and (6.1V) and similarly
Eqs (6 16) and (6.18), and using Eq. (7.2}and the
SU(3) constraints, it is easy to check that

{V.3}

It is worth emphasizing that the constants o., p, &,
and 6 as they appear in Eqs. (6.15)-(6.18) are a
completely diffex'ent set in the two cases defined by
the properties of a and a' given by Eqs. (6.21) in
the previous case and by Eq. (V.l) in the present
case. For economy, we shall, however, use the
same symbols. It is easy to check that Eqs. {V.3)
are the only conditions we can derive in the pre-
sent case, so thRt two out of the foux' constants A,

P, y, and 5 cannot be fixed from the present con-
sidel RtloDs.

We shall now show that one of the two unknown
constRDts cRQ be fixed lf we use the Dashen
%einstein' result. In our notation this result is

(~»' —~.')f'(0)+ f (o) = 2(f»lf. —f.If»)

+ second-order terms

in SU(3) &&SU(3) breaking.

(7.4}

We would like to mention that the Dashen-Wein-
stein relation is a perturbative x esult Rnd may not
be correct if the perturbation theory around SU(3)
&&SU(3} limit breaks down. In contrast, we em-
phasize again that the relations {6.15)-(6.18) are
corx'ect up to second ox'dex' perturbatlon only ln 6y

defined by Eq. (6.9). We shall show later that our
numerical results for A, , and g do not depend or do
not depend sensitively on the use of Eq. (7.4). Sub-
tracting Eq. (6.1V}from Eq. (6.15) and using Eqs.
(V.2) and (V.3) together with the definition (6.9), one
readily sees that Eq. (V.4) implies

(7 5)

Using the results (7.2} and (7.3) in Eqs. (6.15)-
(6.18), we obtain the following relations:
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f (-&)=(a P-)2~-(~-P+4)l«, (V.9) VIII. NUMERICAL RESULTS

where o. =1 if we accept Eq. ('l.4). Furthermore,
from Eq. (6.23), we have the extra relations"

f,(t ")=1 ——,'a~,

f (a")= -(1+ka)e.

(7.10)

(V.11)

3Q g It2

1+ ,'a(1+ 3t "/a) a"— (7.12)

Now using the quadratic expansion (3.4), we may
solve Eqs. (7.6), (V.V), and (7.10) to obtain a + P,
A. „and A. ,'. Note that since we are dropping terms
of order e', we should for consistency put f,(0) = i.
This is because we expect the SU(3)-breaking
term 111f+(0) to be proportional to 6 rather than ae
or a'. Indeed this follows if we use Eqs. (6.29),
(6.14), and (6.12). From Eqs. (V.6), (V.V), and
("1.10), we then get"

From Eqs. (V.12)-(7.14), we evaluate X, and X',

using Eq. (2.4} for the physical value of a, and
Eqs. (6.23) and (V.2) for expressions of a" and a.
Eq. ('I.12) gives

n+P=3. '79. (8.1)

The numerical estimates of X, X', and $ follow
from Eqs. (V.15}-(7.17), if we use n —P = -1.'l9 as
determined from Eqs. ('l. 5) and (8.1). Note that $

is essentially independent of n —P, as mentioned
before. For f~/f, we take the value

which follows from the experimentally determined
value" fr/f„f, (0) =1.28+0.06 if we use f,(0) =1. We
then obtain the results

1+ — (n+ P—)
Ply Q

4 2

(o. + P —4).
fPlg 3ac

(7.13)

(v. i4)

A, , = 0.037, A, ', = -0.0001,

x =0.010, x' =-0.0014,

$= -0.16.

(8.2)

For the physical value of a given by Eq. (2.4), and

the experimental value of fl/f„one can then ob-
tain X, and A. ', without requiring n and P separately
The results for A. , and A. ,' thus do not require the
special value of a obtained in Eq. (7.5). These
numerical results will be discussed in Sec. VIII.

Using the quadratic expansion (3.4) for f (t), we

can further solve Eqs. (7.8), (7.9), and ('l. ii) to
obtain $, X, and A. '. We get

gA' pl/Q

$ ——
(

„,/, )
1+ 2+3

alt pit
+ (o. —P)—3a+ —(4+ a),8s

(v. i5)

With the values of X, and A. ', in Eq. (8.2}, we
observe that the quadratic terms in the t depen-
dence of f,(t) and d(t) are negligible in the physical
Kg 3-de cay region and do not make any sizab le con-
tribution even up to the soft-pion point t= no~'.

We would also like to point out that from rather
general considerations, Okubo and Shih" have re-
cently derived the following bounds on the deriva-
tives of d(t) at t=0:

-0.095 «d'(0) «0.52,

-1.1 x io-' «m, 'd" (0) «3.7 xlo ',

-1.6~10 ' «m, 4d"{0)«4.6xlo-'.
(8.3)

Oul lesults fo1 the dellvatlves al.e consistent with
these bounds. For comparison, we list our numer-
ical values,

82 vf QC—(a —P+ 2),
8

(7.16)

m C QC-g+(~-P) —+ —(n-P-2) . (V. iV)
2 8

d'(o} = o.2v,

m, 'd" (0) = 0.5Vx 10 '
m„'d'"(0) =1.35 x 1O-'.

IX,. MSCUSSION

(8.4)

For the numerical evaluation of (, A. , and A.
' we

now need the value of n —P. This can be obtained
if we use Eq. ('l.12) and the result (V.5) based on
the Dashen-Weinstein sum rule. Note, however,
that in the evaluation of $ from Eq. ('l.15), the
multiplicative factor of e —P for physical a is so
small that unless o. —P is very large, ( is sensi-
tively independent of the value of n —P. In con-
trast, A. and A.

' do depend quite sensitively on

n —P.

Using appro~i~ate SU(3) x SU(3} symmetry withm
the framework of the (3, 3*)+ (3*,3) model, we
have obtained in this paper several new sum rules
involving the E» form factors. Specifically we have
assumed that the extrapolation of the results from
one subgroup of SU(3) &SU(3) to another is as
smooth as possible, consistent with the constraints
available when the various subgroup symmetries
are realized exactly. We have argued that if SU(3)
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A, =0.04+ 0.015, $= -0.36+oo ~2~. (9.1)

(3) A crucial quantity. is the slope of d(t) vs t.
With the expansion

d(t) =d(o'I(l. + ' t+ ) (9.2)

, d'(0)
ho= m„'

( )
——0.022, (9.3)

xSU(8) symmetry is a reasonably good symmetry
of nature, such a smooth extrapolation is to be ex-
pected. Using the sum rules, we have been able to
solve for the var1ous K)3 parameters using Quadra-
tic expansions in f for the form factors f,(t). Our
main results can be summarized as follows:

(1) We find that the quadratic terms make a
negligible contribution in the region of interest. In
particular, f,(t) and d(f) are reasonably well de-
scribed by linear functions of t up to the soft-pion
POHlt t= tSg .

(2) Although our value of X, is consistent with
experiments, most experiments yield a larger
negative value for (. The experimental spread is
however substantial, and for comparison, we
quote results from a recent Rochester-Wisconsin
collRbo ration~

which is almost the same result as one gets from
the soft-pion theorem (4.1), and is inconsistent
with the experimental value' -0.024+ 0.02. ShouM
future experiments support this latter value, it
would imply a drastic modification in the soft-pion
result. Such a situation would imply a breakdown
of our smoothness hypothesis or even of the (3, 3*)
+ (3*,3) model if indeed approximate SU(3) XSU(8)
symmetry itself still makes sense. It has been
suggested"" that the experimental contradiction
of the soft-pion value of A., may be explained if
nonlinear terms in d(t) become important near the
soft-pion value of the momentum transfer. Our
calculations is this paper do not bear out this pos-
sibility. Clearly, a great deal of interest attaches
to more experimental information on Xo.

On the Question of SU(3) xSU(3)-symmetry break-
ing, it is worthwhile to point out that a xecent re-
sult of Cheng and Dashen'3 seems to suggest that
the (3, 8*)+(3*,3) model is insufficient to explain
the large o term that the mN scattering analysis
seems to require. It has, however, been pointed
out" that if in the SU(8) &&SU(3) limit, one also
realizes scale invariance through a scalar Gold-
stone c meson, this difficulty in the (3, 3*)+ (3*,3)
model disappears, with all the advantages of this
model still preserved. A scalar o, however, is of
no interest in the II:„problem.
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