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The lowest-order velocity-dominated solutions to the Einstein dust equations of Eardley,
Liang, and Sachs are quantized using the canonical methods of DeWitt and of Arnowitt,
Deser, and Misner. The quantum dynamics of these models is shown to be governed by the
Einstein-Klein-Gordon (EKG) equation. Exact solutions of the decoupled EKG equations in
the discrete limit are obtained, which have the striking feature that the state amplitude van-
ishes at the singularity for anisotropic models. The geometry of the manifold of the classi-
cal 3-metrics is studied and it turns out to be composed of conformally flat geodesic sub-
manifolds. Other difficulties related to the quantum theory such as factor ordering, diver-
gence, interpretation of the volume measure, etc. are also discussed.

I. INTRODUCTION

Recently, Eardley, Liang, and Sachs' introduced
the concept of "velocity-dominated" singularities
in irrotational dust cosmologies in general rela-
tivity and obtained the lowest-order solutions near
these singularities by explicit integration. In this
paper we are going to apply the methods of Dirac, '
Dewitt, ' and Arnowitt, Deser, and Misner' (ADM}
to canonically quantize special models correspond-
ing to these lowest-order velocity-dominated
(IOVD} solutions. The purpose of this exercise is
at least twofold: (a} to gain insight into the compli-
cated formalism of canonical quantization in gen-
eral relativity through the study of some simplified
field models; (b) to obtain some meaningful physi-
cal results concerning the quantum structure of
space-time singularities since the LOVD solutions
may be a good approximation to the early universe.
(It is at present still obscure whether or not the
mixmaster' or mixmaster -like models' ultimately
become velocity-dominated near the singularity. )

With irrotational dust as source, the dust flow
lines provide a natural and unique 3+1 decompo-
sition of space-time, which is necessary for the
canonical approach. The "velocity-dominated" as-
sumption then simply says that the spatial curva-
ture ('R etc.) of the t= const surfaces is small

compared to time-derivative terms in the Einstein
equations, and can be dropped near the singulari-
ties (where the matter-energy density becomes in-
finite}. This is true for a large class of exact so-
lutions. The reduced equations can then be explic-
itly integrated to give the lowest-order approxima-
tions near the singularity. Some of the integration
functions are restricted because of the constraint
equations and self-consistency requirements.
These solutions may, of course, also be exact
models whose spatial curvature is identically zero
(i.e., exact models with flat 8-spaces). The cru-
cial properties about these LOVD solutions are:

(a) They can be written in the form (8). (See Sec.
III. This form is originally introduced by Lifshitz
and Khalatnikov. ') In other words, they can be
diagonalized by time-independent frame fields.

(b) They are spatially pointwise decoupled since
all spatial derivatives are contained in the 'R
terms. The situation is a little similar to that of
ordinary quantum field theory when one ignores
the coupling between particles at t=~~ and quan-
tizes the free fields, except that here the individ-
ual "particles" are not particles but field variables
evaluated at different dust world lines. The LOVD
solutions obviously contain less degrees of free-
dom than a generic exact solution. For more de-
tails, the reader is referred to Ref. 1.
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In Sec. III we develop the Hamiltonian formalism
for the LOVD solutions, in terms of the now popu-
lar Misner' coordinates. The momentum con-
straints (corresponding to G', =0}are also reduced
to the lowest-order canonical form. In Sec. IV we
set up equal-time commutation relations for the
conjugate pairs. Quantum dynamics is then for-
mally described by the Einstein-Klein-Gordon
(EKG) equation. Factor -ordering problems and
divergence difficulties prevail. The role of the
quantum momentum constraints is also discussed.
In Sec. V we bypass the divergence difficulties by
going to the discrete limit. The EKG equation is
then reduced to an infinite decoupled system of
"one -particle" SchrMinger -like equations. Exact
solutions of these equations are obtained and their
consequences discussed. In Sec. VI we follow the
approach of DeWitt' and Misner' to recast the
Hamiltonian equations in geometrical language.
The LOVD dust solutions are shown to be the time-
like or null geodesics in a pseudo-Riemannian
manifold of LOVD 3-metrics with a metric struc-
ture induced by the form of the Hamiltonian. A co-
variant formulation of the quantum equation is pre-
sented after we make use of DeWitt's convention'
to avoid, temporarily, factor-ordering problems.
Finally, we give some speculations concerning the
relation between the structure of DeW'itt's' mani-
fold of Riemannian 3-metrics and our manifold.

II. NOTATIONS AND CONVENTIONS

p, , v=0, . . . , 3; a, b=1, . . . , 3; A, B=1, . . . , 3.

Signature g„„=(-, +, +, +) .
Units: SmG= c=8 = 1.
Riemann curvature tensor: u„.&„&

=- ~u R"„„,.
Ricci tensor: R„,=—R„„.
Einstein tensor: G" -=R" —-5"R' R =R„".

Four-dimensional co-derivative denoted by a
semicolon (;).

where p is treated as a function of g"' through the
subsidiary conservation equation

(pu"), „=0.
Here u" is in turn related to g"' via

u" -=g"'u, , u„u„g"'= -1.

(2b)

(2c)

We now restrict ourselves to comoving Gaussian
normal (CGN) coordinates in which

ds'= dt'+-g„(x', t)dx'dx', u"= t)", . (3)

Then variational principle (2a) is reduced to the
following (3+ 1}-canonical (ADM)' form:

I= d'xdt m' 8,g„-X,
1 2& =- —(-.' w' —w,

'
w f) - n'R - 2n p,

(4)

and all indices are raised or lowered by the 3-
metric g„. Equation (2b} can be explicitly inte-
grated and substituted into the Hamiltonian density
x:

p=, p, integration functionp (x')
Q

1~K = —(-, w' —w,
' w', ) —n2R —2p, .

Equations (4) and (5), on independent variations
with respect to g, &

and n'~, will give the equiva-
lents of the "evolution equations" G,'=0. The
"constraint equations" G', = 0 and G,'= p, however,
can no more be obtained from (4). Instead, they
have to be considered as additional constraints
supplementary to (4). In terms of g„. and w'~, they
have the following forms:

(a) the "Hamiltonian constraint": X=0

where the "momenta" w" conjugate to g, &
are re-

lated to the second fundamental form K~ —= gg" 8, gfj
of t=const hypersurfaces by

w" = n(Kg" K"), K-=K' n —= (—'g)'"

III. HAMILTONIAN FORMULATION

Consider the Einstein dust equations

G~„= -pup u„,

where u& are the irrotatio)2al fluid 4-velocity (cc„„
—= ul„„)=0) and p is the proper matter-energy den-
sity. Using a method similar to that of Taub, "one
can show that (1) can be derived from the varia-
tional principle,

(b) the "momentum constraints": d" = -2w'~~&

= 0, ( I)

where a stroke "~"denotes co-derivative with re-
spect to g,~.

We are interested in metrics with the following
properties:

(a) They can be written in the form (no sum for
capitals in general)

5E
JJIt 0 $ I d X g R + 2p (2a)

g ( c t ) e2O(x, C)ge28g(z, t) ~ (Xc)~ (X c)
A

A=1, . . . , 3 (8)
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where Q„p„=0 and ur'„'s are a given set of 3-vec-
tors orthonormal with respect to some prescribed
"singularity metric"' ~,b(x'} (i.e., metrics with
their singular time factors "stretched way"). (See
Ref. 1 for details. )

h=—2m,

Jl. -=(S,+~3tl, S, —~&e, -2J3,)

12v„=—(v, + W3 v, v, —v 3 v, -2v, ) .

Then Eqs. (12) become

(13)

c a b b
agbb(X )~A ~B AB t ~Aa 0+ah A &

g„(x')=g &u„,(x')&u»(x'), etc.
A

We then have o = e'"e, where e =—+det
~ ~„,~

& 0,

-~&Q&+~, and Q -~~ Q 0

(9)

(10)

and

I= )/d xdt(as, n+~, s, p, +v s, p -X)

-30
K=-2tb+ (Ib' —v, ' —v ').

24(d

(14)

(15)

and

I= dtd'X(2mB, 0+2 mA&, PA -X
A

(12a)

at the singularity.
(b) g„(x', t) satisfies field equations generated

by (4) and (5) with the 'R term dropped.

Property (a) is satisfied by the LOVD solutions of
Ref. 1. What (a) says is essentially that the met-
ric can be diagonalized by time -independent frame
fields, which is in turn equivalent to the assump-
tions of Lifshitz and Khalatnikov. ' As is obvious
from (8), the metric now has only three degrees
of freedom contained in the diagonal components.
Assumption (b) is equivalent to the "velocity-domi-
nated" assumption of Ref. 1. Since all spatial de-
rivatives are contained in 'R, solutions obtained
by dropping it in the field equations are spatially
pointwise decoupled. In all, the restricted models
we are considering represent two possibilities:

(i} They correspond to those exact solutions of
Einstein equations which have flat 3-spaces (e.g. ,
flat Friedmann, "Heckmann-Schucking, " etc.),

(ii) They represent the towest order ap-proximate
solutions of the Einstein equations near a singular-
ity which satisfy the "velocity-dominated" assump-
tion. In this case there will in general be addition-
al constraints on the initial data (e.g., &o„,'s) re-
quired by the self-consistency of the approxima-
tion. For convenience, we will always call our
models the LOVD solutions.

Equation (8} now implies that we can put v,
' in the

form

v,
' =g[v„(x', t) + —,

' v(x', t)] (u'„(x') (u~(x'), (ll)
A

where g„w„=0 and v= vI bNote that Q, p„'s trans-
form as scalars and n, mA's transform as scalar
densities. Using assumptions (a) and (b) and Eq.
(11), Eqs. (4) and (5) reduce to

The system is thus reduced to Hamiltonian form
with ]tb, Qf, ]v, , P,] as conjugate pairs. They are,
however, not completely independent, but are sub-
ject to the constraint equations (6) and (7). We
now show that this system is completely equivalent
to the LOVD equations of Ref. 1.

The Hamiltonian equations associated with (15) are

5H -h
5h 12m

(16a)

5H
B,h = ——= -6tb (after using X =0), (16b)

5H mp
P e-30

5n'~ 12' (16c)

5H
8, m, = — =0,

&P.

where H—=fd'x 3L The "Heckmann-Schucking-
like" (general) solutions of (16) are

(16d)

h= -6p. t—

e'" = (t ,t )(t —,t'), ——

(17)

where pt pt p77& and pP& are arbitrary functions
of integration. Putting solution (17) back into met-
ric (8) we see that in order that Q„ur„I81 u„be the
metric of the singularity we need p, = -', co and pP,
= 0. If we now put bv, = (,t —,t') and take the limit
,t- bt', we obtain the "Friedmann-like"' (iso-
tropic) solutions

a=-8~(t-, t), e'" =(t-,t)', v, =P, =o.

(18)
-30

X= —2p. + 2
8 ~ A
—1T —L w

A

Following Misner, ' we now redefine

(12b} On the other hand, if we put p, = ', cu/bt', rew-rite
,y, =,y', ln(-bt'), and take the limit, t'- -~, we ob-
tain the "Kasner -like"' (anisotropic) solutions
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h= 4&v, e'" = (t —ot ),

P, = y'„in(t-ot),
(19)

[Q(x, t), h(x', t)] =i5'(x, x'),

[p, (x, t), v, (x', t)] =i 5'(x, x')
(24)

P, = (,v, —v3, v }+—,',
12(u ' ' (20)

P, = -g (.v.)+ .3

Let us now look at the constraint equations (7).
Multiplying (7) by $, and integrating over all 3-
space, one obtains

j~d.x ~~a~'i. =O

= J(d'x v"((,~, +$, ~, )

d'x m" gg„. , (21)

where R& is the Lie derivative with respect to $',
and we have assumed that 3-space is either closed
or m" g, - 0 at spatial infinity so that the surface
terms vanish. In terms of (Q, P„h, v,}and the
u'„'s (21) has the form

Jd'x $'(hQ, +v, P, ,+v P,)

(22)
A

where "~ ~" denotes co-derivative with respect to
,g„. Equation (22) is an exact relation. However,
using solutions (17), (18), or (19) one can check
that the last two terms contain only higher-order
terms in (t -ot). Thus to lowest order we need
only keep the first three terms. We therefore
take

(23)

as the new "momentum constraints" for our mod-
els. Note that $' is arbitrary up to the boundary
condition $, n "-0 at spatial infinity if we do not
require closed 3-topologies.

IV. CANONICAL QUANTIZATION

We now consider JQ, P,}etc as q numbe. rs and
&u„,'s as c numbers and set up (equal-time) com-
mutation relations for the conjugate pairs:

This is equivalent to putting p = 0 in (15), so that
"matter does not matter near an anisotropic sin-
gularity. " One can easily check that the equiva-
lents of,E,', K', =DE', =1' are satisfied by the
above solutions. In fact, the eigenvalues (P„p„p,)
of 0 K y can be explicitly computed to be

1
P, = (,v, + v3, v }+-,',

12(d

(other commutators vanish). Here x denotes a
matter line with coordinates x' and 5'(x, x') is a
distribution density (at each slot) with the usual 5-
function properties. The unequal-time commuta-
tors [Q(x, t), Q(x', t ')] etc. are in general q num-
bers because of the nonlinearity of the field equa-
tions (16), and cannot be computed explicitly.
However, because the field equations are point-
wise decoupled, it is clear that all commutators
must be proportional to 5'(x, x'). So there is no
"propagation" of quantum interference from one
world line x' =const to another, as commutators
with any time difference vanish if xcx'.

From now on we work in the SchrOdinger picture
and freeze out the variable t. Instead, one can,
following Misner' or DeWitt, ' consider the volume
measure Q as an "intrinsic" time variable. (Com-
pare Kuchar. ") The dynamics of the system is
then described in turns of 0 alone. Since 0 is in
general a function of spatial variables, it corre-
sponds in some sense to the "many-fingered" time
of Schwinger" and Tomonaga. " However, in both
the Misner and Schwinger and Tomonaga cases,
0 is treated as a c number, whereas in our case,
0 is a q number, coming closer to the & time of
DeWitt. '

The Dirac quantization involves transforming the
classical constraints (6) and (7) into quantum con-
straints on the state vector ~4) of the total system.
3C and (P' become operators in a Hilbert space (with
yet undefined inner product):

(25a)

(25b)

We see immediately that there is ambiguity in fac-
tor ordering in 3C. Different factor orderings lead
to different quantum models and they are in gen-
eral inequivalent. This is one of the basic diffi-
culties in canonical quantization of gravity, or,
nonlinear field theories in general. In fact, since
all operators in X are evaluated at the same
space-time point, in general this will bring about
divergences of the form 5'(x, x). DeWitt' has ar-
gued (or suggested) that this should be set equal to
zero. In our opinion, however, setting 5'(x, x) =0
corresponds to throwing away some divergence
and should be done only in cases when it is physi-
cally required or justified. For instance, in the
functional formulation of the spin-zero boson field,
say, setting 5'(x, x) equal to zero in the ground-
state equation corresponds exactly to the removal
of the infinite energy term Q& —,'hu& in the particle
representation, a practice well justified. How-
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ever, in our case there is not yet any interpretable
physical guideline, and the meaning of such prac-
tice is obscure.

In any case, one can formally write equations
(25a) in the functional representation' h = (1/i}
x (6/MI}, v, =(1/i)(5/5P, }as

Q2 Q2 Q2

+

(26)
modulo some factor ordering (represented by::}
adjustments. Equation (25b), however, has no or-
dering problem because [Q,(x), h(x}] etc. vanishes
[5',(x, x) =0],

i
J

d'x~ Q —+p +p q[Q, P.]=0'I, "~P -'~P
(27)

Here 4'[Q, p, ] —= &Q, p, ~q), in general a functional
of (Q(x), p, (x)), is interpreted as the wave function
of state ~4) having the geometric configuration
[Q(x), P, (x)j. We call Eq. (26) the "Einstein-
Klein-Gordon" (EKG) equation. 9 It is the sole
equation governing the quantum dynamics of our
system. On the other hand, Eq. (27) says that the
functional +, considered as dependent on (Q, P,)
alone, is invariant under the infinitesimal spatial
coordinate transformations (gauge transforma-
tions)x'-x'+g'. Strictly speaking, 4 depends on
+'„(x) too. But since in the classical case terms
involving ~'„'s are of higher order, we assume
that variations of 4 due to v'„'s are also of higher
order and ignore them in our models. How Eq.
(27) actually affects the form of 4' is not yet clear.
In the following we will leave it aside and concen-
trate on (26} alone.

V. SPATIALLY POINTWISE-DECOUPLED EKG EQUATION

sg] 8 8 8
e '"' —

2 +, + 2 -48up, p, 4'(Q„P„, . . . , Q„~, P+ ~):=0, i =1~ ~ ~

8P+i 8P-~

To decide upon the factor ordering, let us first try to endow the Hilbert space of [4 ) with an inner
product. Although we have previously discussed the option of thinking of 0 as a time variable, there is
no a Priori reason that one cannot treat it on equal grounds with (P,) as configuration variables. In that
case, however, (28') is no more a "dynamical equation" in the ordinary sense, but rather becomes a sta-
tionary Schr5dinger equation. It is then natural to define the inner product as

(28')

Because of its nonlinearity and divergences, the functional equation (26) is very difficult to analyze. On

the other hand, to see the qualitative quantum behavior of the system, one can approximate the 3-space
continuum by ~' infinitesimal cubes, one at each x, . Then the field system can be decoupled into ~' inde-
pendent "one-particle" systems. Let 0, , P„,+, , etc. be appropriate averaged values of Q, P„co, etc.
over the volume at x, . Equation (26) is reduced to an infinite system of partial differential equations:

&X, @&-=J IIdQ dp (dp-&X"4 for any X 4'
i= I.

in which case 4 can be correctly interpreted as a probability amplitude. Note that the measure is coordi-
nate-invariant since (Q, P,j are scalars. If we now require the Hamiltonian operator to be Hermitian,
then the simplest symmetric form is

(
82 82

e '"' +e '"'
2 +e "&

2 -48ar& p, &
4 0„.. . , p» 3 =0. (28)

In the following discussion of this section we will
tentatively adopt this point of view and take (28) as
our quantum equation. In Sec. VI, however, we
will go back to the 0-time concept, which follows
more naturally from geometrical considerations.
Since (28) are decoupled, we can write 4' in the
form

oo 3

e-3 + -sQ

(
g 8 8

ag an ap, '

82+e-s
2 48+@ ~ P» 0ap'

(30)

~=III( Q, P. ) (29) Linearity in P» suggests we Fourier analyze &tj:

Putting (29) back into (28) and dropping the i 's for
simplicity, we get the spatially pointwise-
decoupled EKG equation (compare Misner'},

y= J( dp, dp e" ' "- -
g(p, Q), p —= (p„p }

(31)



QUANTUM MODE LS FOR THE LOWEST-ORDER. . . 2463

—e '"—+e t"p'+48(op, y(p, Q)=0,
dn dn

P =0+ +P-

In terms of the variable p =—e'"/', (32) reads

d' 1d
, ———+ —,+k' /=0,

dp p dp p

where

(32)

(33}

constructed in a special way. Suppose we take the
Z's as the I' s:

&'/t(«)
Take a linear combination of the form

y=, «[e/~l«, 2 1/t(/{e "()
+e '"I «zt &&/t(Ke )].

To make g's with different ~'s orthogonal to each
other, we need

y2 —4 p2 k2 —g4

Suppose we forget for a moment about the origins
of X and k. Then k' resembles the "energy" ei-
genvalue of a one-particle stationary state, and
-X' the "angular momentum" eigenvalue. Now a
quantum Heckmann-Schucking-like model is a gen-
eral solution P with arbitrary eigenvalues k and A,,
whereas a quantum Friedmann-like model corre-
sponds to A =0 (zero anisotropy eigenvalue), and
a quantum Kasner-like model corresponds to
k = 0 (zero "energy" eigenvalue).

Classically, k' ~ 0 because we assume p, & 0.
However, it is at least conceivable that in the
quantum theory one may "analytic continue" k into
the complex axis so that there may exist k'& 0
(negative ener~) states In th. at case (33) becomes

1
, ———+ —,-g' /=0, K= ok.

dp p dp p
(33'}

The general solutions to both equations are just
the generalized Bessel functions

4,(Q) -e'" 'Z,
{& F2~1/t(+ke'" '},

4,( Q)

e'" 'Z, -{g gt)1/t(ktKe' '),
(34a)

whenever k c 0, where Z is any cylindrical func-
tion. For the Kasner-like case (k'=0) however,
only special combinations of the Z's are allowed,
and the solutions are of rather simple form:

P (Q) etc{i&{i-&0 ]/t (34b}

We note the following features about the solutions.

(a) For f l{[& 1 (or f pJ & —,'), everything is all right.
(Pt, P„)form a complete orthonormal set with con-
tinuous spectrum -~& k'&~. If we choose Z to be
the Hankel functions, H, then we get asymptotic
waves for kt & 0 and normalizable bound states (ex-
ponentially decaying} for kt& 0. The state with k'
=0 (Kasner-like model) is not normalizable, as
usual.

(b) For ( X
~

& I (or ( p )
& t), the order of the Bessel

functions becomes imaginary. According to Case, "
different k'& 0 eigenstates are in general not or-
thogonal to each other, unless the solutions are

y = B —(&' —1)' ' In/{, B some constant

after some calculation, and asymptotically

(35)

In ordinary quantum mechanics, B is determined

by the cutoff of the potential term (I.e.,. the attrac-
tive potential ceases to become effective within a
radius of,x, and gets replaced by, say, an infinite
repulsive potential. Then B is determined by, x
through boundary conditions. ) However, in our
case, we want to assume no cutoff (i.e., gravity
predominates up to the singularity x=0). So B is
arbitrary and can be put to zero without loss of
generality. In any case, (36) predicts "energy-
level quantizations" for bound states. Thus we
conclude: For quantum states of the lou/est order-
velocity -dominated uni verses ski th shear eigen-
values ~P ~

& 3/2, and energy density ei gen-values
k & 0, discrete energy levels aPPear.

(c) Solutions (34) have the peculiar property that
$(Q)-0 as Q- -~ for any choice of Z as long as
A.
' w0. For X = 0, one solution goes to a constant

at 0 = -~. Thus we conclude: Eor quantum states
of the lou/est-order velocity dominated un-iverses
u/ith nonzero shear eigenvalues (~P )eo), the am-
Plitude of finding the universe at the singularity
0 =-~ is zero.

This is the strongest statement on how quantization
may "remove" the classical singularity in general
relativity so far obtained. This special property
of our quantum solutions may be traced to the fac-
tor ordering we choose. Whether other factor or-
dering choices might give similar results is not
known. (Compare Misner. '}

[(e'~+e '")e""+(const)e '*],
(2 w/{)'/t

x=-e'"'

to be decaying. Then we need cosy = 0~ y = (n+ —,')w.

Thus

B —(X' —1}'/' ln/{ = (n+ —,')w

m K„=exp([B —(n + z) w)/(Xt —I)'/t)

m -/{„'= -exp{2[B—(n+-, ) w]/(At —I)'/tj.
(36}
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VI. GEOMETRY OF THE MANIFOLD OF LOVD

METRICS
(Q, P,) system, we have

Fsc = 2(5s5c+5c5s n-scnA 3 A & A 0 AQ (41)

sg=g M(x},

dimM(x) = 3 » dim3g= 3 x~'.
(37)

Now the form of the Hamiltonian (15) suggests
that we introduce a Minkowski-type metric on

M(x): At each x

ds'(x) = u(x)e'N" ~[-dQ'(x) +dP, '(x) +dP '(x)]

For a fixed-frame field ]ra„(x'}j„... defined on

a spacelike 3-manifold, consider the set of all
Riemannian 3-metrics which are diagonal with re-
spect to (~„j[i.e., the metric can be put into the
form (8)]. Then each 3-metric is uniquely and in-
variantly characterized by the three scalar func-
tions (Q, p, ). Thus (Q, p, ) enter as natural "co-
ordinates" g" on this manifold of 3-metrics, which

we call It;. 3g is both the configuration space in
which our LOVD solution (for a fixed set of (&ug)
evolves as well as the domain space of our quan-
tum state functional 4. 3g as a function space is
very hard to handle. Naively, we can realize it by
decomposing it into an ~'-fold topological product
of pointwise-decoupled subspaces M(x), each con-
sisting of all points (Q(x), P, (x})at a particular x:

=~(h, w„v ) in [Q, P,) coordinates, (42)

pA pA= -4~& 0 for Heckmann-Schucking-9
like or Friedmann-like
cases

pA pA = 0 for the Kasner -like case .

In other words, the curves in 3g corresponding to
the LOVD solutions are either null or timelike
geodesics. In the latter case they correspond to
"particles" with "mass" -', W&u.

Equation (42) also leads to the "covariant" EKG
equation

(&' -48u 8'[g"]

One then checks that Eqs. (16) are completely
equivalent to the geodesic equations (40) provided
one makes the identification 7 = t, so that the co-
moving cosmological time serves as an invariant
parameter in Sg. The Hamiltonian constraint 3C=0
is nothing but the statement that the tangent vec-
tors to the "trajectories" of the solutions satisfy

PAPB+3P =0&

agB

-=G„ed'"dgs, sgnG~=(-, +, +), (38)

GAB =(d8 YjAB q

30

q~ —=diag(-1, +1, +1) in (Q, P,)coordinates

—48'.C
4-G 6gA &g

=0
(43)

(sum over repeated capital indices here and in the
following). This induces, at least formally, a
metric on 3g,

G =—detG

which prescribes a definite factor ordering. The
momentum constraints (7) now read

dS'= d'x G~ x dgA x dg x, (39} bk
s d'x

A gg"=0.
gg A (44)

which is invariant under spatial coordinate trans-
formations. It is remarkable to see that metric
(38) is conformally flat. (Compare Misner. e)

So far we have been working in the particular co-
ordinates (Q, P,j. In the geometrical language
there should be nothing particular about these co-
ordinates, and one should be allowed to use arbi-
trary coordinates. Thus, (15), (16}, etc. should
be brought into covariant form.

Let us first consider the "parageodesic" equa-
tion associated with metric (38),

However, as indicated earlier, functional deriva-
tives in (43) will in general result in divergence
of the form 5'(x, x). For the present discussion,
let us tentatively adopt DeWitt's convention of set-
ting 5'(x, x}= 0, keeping in mind that such practice
merits further justification. The following results
are purely formal.

The "charge-current density'* associated with a
solution 4 of (43) is

() Fz g () g ()a7' ' - aT
"

aT
" (40) ~PA = ~PA ~

%~A ++~A

(45)

where

F" =——,'G~(G +G —G }
and ~ is some invariant affine parameter. In the

~pA satisfies the "conservation equation, "
1

vp", „=v, ~ (v'-G G ps) = 0.v'-G 5g
(43')
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From ~p~ we can define the "total charge" P con-
tained in some spacelike parahypersurface Z with
normal n",

~3

~P =- - D'o 8g ~p„(x)u'-G n"(x}, (44 ')

where $ denotes functional integration. If we
chose Z to be the surface II = const, we obtain (in
{II,P,}coordinates)

00

DP.DP II [(-t)(@*6 4)(~ e'")'"],
Q =const

(45 ')
where

~P satisfies the conservation law 5P/MI =0 pro-
vided functional surface terms vanish. Just as in
ordinary Klein-Gordon theory, P can be both pos-
itive and negative. However, in our case it has an
interesting physical interpretation. Let us con-
sider an eigenstate 4„of

5
4 „=h4„

such that h= h*. Classically we know that
tt = -12e'"~s, fl from (16a), so that

'f[s, f1~~ P&&0—s, g&0 for all x.
~a

(46)

Thus ~„P is proportional to the negative product of
the "expansion rates" at all observers of the uni-
verse whose quantum state is 4 „.

The above experience suggests that we define an
indefinite metric (, ) in the Hilbert space of states
{4}such that ~P = (C, 4& in the preferential 0-time
coordinates. Then we need

for ar.y y, 4 .

(47)
One can check that this inner product satisfies

the following properties:

The following discussions concerning the rela-
tion of our manifold 3g to DeWitt's manifold of

(a} Hermiticity: (X,4'&=(O', X&,

(b) bilinearity: ( n X, + PX„C ) = o *(X„4'& + P~( X„4I&,

&X, o4, +P@&=o&X,@&+P(X,+.&,
6(x, e)(c) ' = 0, provided surface terms vanish .

m3
Riemannian 3-metrics (Mo ) [also called Riem (M)
by Fischer", here M stands for space-time]
are purely qualitative and speculative. We will
not go into the mathematical details because many
aspects of the problem are not yet well understood.

According to DeWitt, ' solutions of the Einstein
equations without the 'R terms can be considered
as geodesics in the manifold of all spacelike Rie-
mannian 3-metrics (Mo } with a metric structure
prescribed by the Hamiltonian. The pointwise-
decoupled subspace Mo(x) at each x is 6-dimen-
sional, since it is just the space of all 3&&3 sym-
metric matrices. But the solutions of the Einstein
equations without the 'R terms are precisely the
LOVD solutions, which also live in our 3-dimen-
sional {0,P,}spaces M(x) for fixed &u„,'s. In fact,
one checks explicitly that DeWitt's geodesic solu-
tions' can actually be put in the form (8). Now at
first glance the relation between our M(x} and De-
Witt's Mo(x) is obscure because given an arbitrary
tensor g„, there is no unique invariant way of
separating it into diagonal components and frame
components with respect to which it is diagonal.
However, if one is given another "reference" met-
ric,g„(in our case this is just the "singularity"
metric}, then one can uniquely diagonalize g,b by
requiring that the eigenvectors ~„,be ortA;ono~mal
arith resPect to og~ (i.e., og' &u„,u»=6„s). Then
the six degrees of freedom of g„ is translated into
the three eigenvalues (corresponding to {0,P,}),
plus the remaining three degrees of freedom in the
~„,'s (&ur, », say) (nine &u„, 's modulo six ortho-
normality relations). Thus given a og,~, there will
be a corresponding 3-parameter family of {fI,P,}
hypersurfaces in which geodesics lie. A different
0 g„will induce another 3-parameter family. Thus
the {I),P„vz}coordinates are uniquely related to
the {g»g» g»} coordinates through, g„. An-
other way to interpret this is to say that giving
,g„prescribes in which family of 3-dimensional
submanifolds the geodesics must lie. In any case,
one result is definite: The geodesic submanifolds
in Mo defined by {II,P,}coordinates are conform-
ally flat.

At this point we would like to stop conjecturing
any further except to point out the following fea-
tures:

(A) The special form (8) of the geodesics of
Mn(x) is definitely highly restrictive How muc. h
does this restriction tell us about the structure of
the manifold itself is not clear.

(B) The fact that {0,P,}are scalars makes one
inclined to believe that they may play a special
role in superspace (—=Mo /group of diffeomorph-
isms}.

(C) The lowest-order mixmasterlike solutions
of Belinski and Khalatnikov, ' if they really exist,



2466 E. P. T. LIANG

are also constrained to (0, P,j submanifolds, al-
though they are not geodesics. Thus it seems that
a large class, if not all, of exact solutions of the
Einstein equations becomes asymptotically
"trapped" in conformally flat (0, P,j submanifolds
near the singularity.

VII. CONCLUSION

In this paper we have used canonical methods to
quantize some restricted models of general rela-
tivity, corresponding classically to the lowest-
order velocity-dominated solutions of the Einstein
equations with irrotational dust source. Some par-
tial success is obtained, but basic difficulties re-
lated to factor ordering and nonlinearity, diver-
gence, inner products, and interpretation problems
remain. The most striking result, however, is the
prediction of the vanishing of the state amplitude
at the singularity for anisotropic universes, at
least for our choice of factor ordering. Although
the interpretation may not be unique, this is evi-
dently in contradistinction to Misner's previous
result' that quantization does not affect the struc-
ture of the classical singularity, which used a dif-
ferent factor ordering. Thus the ordering problem
seems to be crucial in quantum gravity and more

detailed investigation in this direction is impera-
tive.

DeWitt's manifold Mn (superspace before dif-
feomorphism identifications) turns out to be beau-
tifully decomposed into families of conformally
flat geodesic submanifolds, according to our anal-
ysis. The structure of the 6-dimensional mani-
folds MD(x), however, is not completely under-
stood in our terms because of the complicated re-
lations between the g„coordinates and our {0,P,}
coordinates. Further studies of this problem are
underway.

Two different attitudes toward the interpretation
of the volume measure 0 are adopted. In the dis-
crete case, we let Q be on the same footing as P„
and the quantum system is a stationary one. In the
continuum case, however, we follow the more pop-
ular practice of treating 0 as an internal time co-
ordinate, and we have a dynamical system. Nat-
urally, they lead to different inner products and
inequivalent quantum models.
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