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Foundations are laid for studying weak electromagnetic fields around a rotating black
hole. In particular, Maxwell's equations in the Kerr geometry of the black hole are reduced
to a single second-order partial differential equation. Although this differential equation is
probably not separable, it is sufficiently simple to yield theorems about electromagnetic
properties of black holes.

The analysis of perturbations to the Kerr geom-
etry is a problem of considerable importance for
current research in relativistic astrophysics,
since it seems quite likely that the gravitational
collapse of a rotating star will result in a Kerr-
metric black hole. ' ' Despite the insight yielded
by Carter's' recent theorem, it is clear that any
detailed discussion of gravitational perturbations
to the Kerr geometry will be rather complex. Con-
sequently, it is desirable to deal first with the
simpler problem of weak electromagnetic fields
("electromagnetic perturbntions" } in the Kerr ge-
ometry. An analysis of this problem may be ex-
pected to cast light upon the more difficult problem
of gravitational perturbations. Moreover, electro-
magnetic perturbations are of interest in their own

right; they deal with the evolution and fate of the
magnetic field of a collapsing star, and with the
form of the light and radio waves that a distant ob-
server should receive in the late stages of col-
lapse, if there is no obscuring matter.

In this paper we reduce Maxwell's equations to a
single second-order, hyperbolic, partial differen-
tial equation, which governs the behavior of elec-
tromagnetic perturbations to the Kerr geometry.
On separating out the time and the azimuthal de-
pendence of the solution by using coordinates
adapted to the two Killing-vector fields of the Kerr
geometry, we obtain an elliptic partial differential
equation in two independent variables. Unfortu-
nately, it appears that this equation is not separa-
ble, so it is likely that a, complete discussion of
realistic perturbations to the Kerr geometry will
prove to be very difficult.

The form of the Kerr metric which is most suit-
able for our purposes is that given by Newman and
Janis, ' namely,
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Under these circumstances Maxwell's equations

take the form

DP, —5$o =2pg, +(& —2n)$0,

~ 4'0 —6%i = (2& —&}40—2&ki

D p, - 5tII), = 2&Q, + pQ„

(6)

(7)

(8)

Ep, —6Q = -2~, + (2p —T)$ .
Here

y, =I'„„l,"m",

p, = —F„„(l"n'+ m" m"),

Q2 = E„pm"n",

8' = r'+ a cos'0 (2)
M is the mass parameter, and a is the angular mo-
mentum per unit mass.

In order to derive the basic equation, we follow
the technique used by Price' in his recent discus-
sion of perturbations to the Schwarzschild geom-
etry. This technique uses the Newman-Penrose'
spin-coefficient formalism. In the case of the
Kerr geometry we can choose the null tetrad l, n,
m, m so that the spin coefficients e, rc, A., v, and
o all vanish. ' We shall follow Kinnersley and take
the tetrad to be'
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and F„„is the electromagnetic field tensor. The
nonvanishing spin coefficients are

and

D4 = p sin0 54, , (16)

p = -(r —ia cos 8) ',

JI3 = -4 v 2 cot 0 p,

& = —,
'

v 2 ia sine p',

7 = --,' v 2 ia sin0 pp,

y = ~ Mp —&ia cos 0 pp+ &a' sin'0 p'p,

p = —,p+ —,Mp(p+ p)+ —,a' sin'8 p'p.

It is convenient to introduce a new function

y =(r' —2Mr+a')p'sin8 (12)

psin0~4, = 64, . (17)

Q, = p4, , (19)

since then we find that Q, satisfies the equation

CA, +2lp Q, =0, (20)

Either on eliminating 4, from Eqs. (14) and (15),
or on eliminating 4, from (16) and (17), we find
that C, satisfies the equation

[nD —(p. —p —r —y)D —56+(T+2n)5]C, =0.

(16)

A useful alternate form of this equation is obtained
if we introduce a new dependent variable Q, by

and new dependent variables 40, 4 „and 4, such
that

Q, =y 'p4„f, =p'C„and P, =p4, /sin8. (13)

We then find that Eqs. (6)-(9) become

(14)

(15)

where

OQ, =—g""Q,.~.„. (21)

The equation Q, =0 is separable, ' and the solu-
tions have been investigated recently. ' However,
it does not appear that Eq. (20) can be dealt with so
readily. When written out explicitly, Eq. (20) is
equivalent to
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The local Lie group, G, generated by the solutions of Eq. (22) contains the subgroup S which is generated
by all transformations of the form

0,' = sA, +g(u, r, 9, Q),

where s is an arbitrary parameter and g(u, r, 8, P) is any solution of Eq. (22). Ovsjannikov" has shown that
S is a normal divisor of G, and that the transformations of the factor group G/S are characterized by oper-
ators of the form

8 G)x= E"—+ g"—+ ge —+ g~ —+&Q,8u &r 80 8$ 'BQ, '

where the g's and & are functions of u, r, 0, P only. In our case the determining equations for the g's are
precisely the equations for conformal Killing motions in the Kerr geometry. Since there are only two of
these conformal motions, "namely, the two Killing motions which correspond to p and u being ignorable
coordinates, we only obtain from the factor group G/S the obvious separation of variables

O, (u, r, 8, P) = exp(imP+ i&au) f,(r, 8),

where m and m are constants and f, (r, 8) satisfies the partial differential equation
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In the region outside the horizons the factor r' —2Mr+a' is positive, so that Eq. (24) is an elliptic partial
differential equation.

Equation (24) is the key to electromagnetic perturbations of the Kerr metric. Once it has been solved,

everything else of interest can be calculated algebraically or by quadrature. In particular, C, is given

by

C, = exp(imP+ i&su)p 'f, (r, 8}.

Taking the same time and azimuthal dependence for 4, and 4„namely,

C, = exp(imP+ i&su)f,(r, 8)

and

4, = exp(imP + i&su) f,(r, 8),

we find that Eqs. (14) and (15) are equivalent to the integrable Pfaffian differential equation"
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and that Eqs. (16) and (17) are equivalent to the integrable Pfaffian differential equation
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In both cases the integrability condition is simply that Eq. (24) be satisfied. Once f, and f„and hence
4, and C„have been found, P„P„and P, are given by Eq. (13); and the components of the electromag-
netic field tensor are

Fpu= 2(Pg+ [9~)n[plp]+ 242I[pmv]+242l[yM]+2$om[p+u]+24'Om[puu]+2(Py —Qi)m[p~] y (30)

where the square brackets denote antisymmetrization.
Equations (3)-(5), (11)-(13), and (24)-(30) are a complete set of equations for the electromagnetic field

tensor in Newman-Janis coordinates.
It is worthwhile to note that the "longitudinal" solution of Maxwell's equations (6)-(9) which corresponds

to the addition of charge to the source is obtained from Eq. (18}by setting 4, =constant, that is,
= constp', together with Q, = P, = 0."

In an analysis by one of the authors (JRI), which will be reported elsewhere, the fundamental equation
(24) is used to prove two theorems: (i} The solution 4, = const —which corresponds to passage from the
Kerr metric to the charged Kerr metric —is the only physically acceptable, time-independent solution to
Maxwell's equations in the Kerr geometry. (Hence a Kerr-metric black hole can have no electromagnetic
"hair, " except that obtained by adding charge in the standard "charged Kerr metric" manner. ) (ii) All
axisymmetric normal modes (physically acceptable perturbations with [a' real} of an electromagnetic
field in the Kerr geometry have ~'&0 and hence are oscillatory. No modes grow exponentially. Assum-
ing that these modes form a complete set, this guarantees that all axisymmetric, electromagnetic per-
turbations are stable.
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The lowest-order velocity-dominated solutions to the Einstein dust equations of Eardley,
Liang, and Sachs are quantized using the canonical methods of DeWitt and of Arnowitt,
Deser, and Misner. The quantum dynamics of these models is shown to be governed by the
Einstein-Klein-Gordon (EKG) equation. Exact solutions of the decoupled EKG equations in
the discrete limit are obtained, which have the striking feature that the state amplitude van-
ishes at the singularity for anisotropic models. The geometry of the manifold of the classi-
cal 3-metrics is studied and it turns out to be composed of conformally flat geodesic sub-
manifolds. Other difficulties related to the quantum theory such as factor ordering, diver-
gence, interpretation of the volume measure, etc. are also discussed.

I. INTRODUCTION

Recently, Eardley, Liang, and Sachs' introduced
the concept of "velocity-dominated" singularities
in irrotational dust cosmologies in general rela-
tivity and obtained the lowest-order solutions near
these singularities by explicit integration. In this
paper we are going to apply the methods of Dirac, '
Dewitt, ' and Arnowitt, Deser, and Misner' (ADM}
to canonically quantize special models correspond-
ing to these lowest-order velocity-dominated
(IOVD} solutions. The purpose of this exercise is
at least twofold: (a} to gain insight into the compli-
cated formalism of canonical quantization in gen-
eral relativity through the study of some simplified
field models; (b) to obtain some meaningful physi-
cal results concerning the quantum structure of
space-time singularities since the LOVD solutions
may be a good approximation to the early universe.
(It is at present still obscure whether or not the
mixmaster' or mixmaster -like models' ultimately
become velocity-dominated near the singularity. )

With irrotational dust as source, the dust flow
lines provide a natural and unique 3+1 decompo-
sition of space-time, which is necessary for the
canonical approach. The "velocity-dominated" as-
sumption then simply says that the spatial curva-
ture ('R etc.) of the t= const surfaces is small

compared to time-derivative terms in the Einstein
equations, and can be dropped near the singulari-
ties (where the matter-energy density becomes in-
finite}. This is true for a large class of exact so-
lutions. The reduced equations can then be explic-
itly integrated to give the lowest-order approxima-
tions near the singularity. Some of the integration
functions are restricted because of the constraint
equations and self-consistency requirements.
These solutions may, of course, also be exact
models whose spatial curvature is identically zero
(i.e., exact models with flat 8-spaces). The cru-
cial properties about these LOVD solutions are:

(a) They can be written in the form (8). (See Sec.
III. This form is originally introduced by Lifshitz
and Khalatnikov. ') In other words, they can be
diagonalized by time-independent frame fields.

(b) They are spatially pointwise decoupled since
all spatial derivatives are contained in the 'R
terms. The situation is a little similar to that of
ordinary quantum field theory when one ignores
the coupling between particles at t=~~ and quan-
tizes the free fields, except that here the individ-
ual "particles" are not particles but field variables
evaluated at different dust world lines. The LOVD
solutions obviously contain less degrees of free-
dom than a generic exact solution. For more de-
tails, the reader is referred to Ref. 1.


