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Relativistic kinetic theory is used in conjunction with the theory of relativistic surface
layers in order to study relativistic disks of matter. After a brief general discussion, atten-
tion is restricted to the case of counter-rotating disks. The general surface stress-energy
tensors of such disks are exhibited and a distribution function which generates these stress-
energy tensors is deduced. This is followed by a discussion of stability, and a criteria for
the stability of particle orbits is derived. Finally, the question of central red shift is con-
sidered. It is shown that all counter-rotating disks without singularities at the rim will
have a finite central red shift, but the question of the existence of a maximum central red
shift remains open.

INTRODUCTION

At present, the only well-understood gravitation-
al fields are those possessing spherical symmetry.
This is unfortunate, for such a high degree of sym-
metry automatically excludes such interesting ef-
fects of relativistic gravitation as gravitational
waves and magnetic-type fields, as well as placing
strong restrictions on the kinds of sources which

may be studied. The purpose of this paper is to
provide a foundation for the study of those axially
symmetric gravitational fields which may be re-
garded as having disks of matter as their source.

The interest in disks is motivated by the presence
in nature of many disklike configurations and by
recent suggestions that disks of stars may be used
as models for supermassive objects in which rela-
tivistic effects would be of importance.

In the present paper, static disks of collisionless
dust will be considered with the prime emphasis
being on counter-rotating disks, i.e. , those with
zero net angular momentum and circular particle
orbits. In subsequent papers, slowly rotating disks
and nonstatic perturbations will be considered.

SURFACE LAYERS IN GENERAL RELATIVITY

The theory of surface layers in curved space-
time has been developed by Israel' and by Papa-
petrou and Hemoui. '

Let M' and M be two manifolds having a common
TL boundary Z and let K'„be, respectively, the
second fundamental form of Z in M' and M . De-
note the full space-time M'uZuM by M. In a
Gaussian normal coordinate system based on Z
such that z =0 defines Z,

~gab
ab

Z

The hypersurface Z is called a surface layer if
K.', &K b The following argument suggested by
Ehlers' gives a criterion for the existence of a
surface layer:

Consider a one-parameter family of hypersur-
faces Z, such that Z =Z„and for every value e
construct Gaussian normal coordinates x'(e) based
on Z such that g,', ~z =g,, ~z. In such coordinates,
the geodesic equations are'

r~x'x' ~, =0,

x +r~x'x =0.

In the chosen coordinates,

(3)

lim +I'&, =Ke (4)

so that the first equation of (3) means that K~P8x.
=0, where K is some weighted average of K8,
and K8,. Since this must hold for all timelike x
and Ke is independent of x ~, this means K=0.
Thus, if a surface layer is to exist, Ks, and K
must have opposite sign. In the case of a disk,
the space-time must possess a discrete symmetry.
If the disk is represented by Z, then, upon reflec-
ticm, K~ =-Ke,.

The second equation of (3) is the geodesic equa-
tion with respect to the induced metric on Z. Thus,
free particles in a surface layer follow geodesics
of that surface layer; and, without loss of general-
ity, all calculations and results may be given in
terms of the hypersurface Z on which the matter

X~+ r~ xbx'=0
bc

Assume initial conditions such that all particles
remain between the hypersurfaces Z, and Z, and
that the limits as e-0 of x'(s; e), x'(s; e), X'(s; e),
and g„(x'(s; e); e) exist. Then in this limit, the
geodesic equations become
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resides.
If K s

——~z(K'z —K z), the three-dimensional
surface stress-energy tensor is'

Snz z(K„&- —,g~sK),
obeying the conservation law S ~&

=0 in which

represents covariant differentiation within Z.
As expected, no normal stress is present.

(6)

THE EXTERIOR FIELD: WEYL SOLUTIONS

DDy+ —(DpD+DpDy) = (S,' —S )5(q),
2p 2p

2DvDp=D'p+2p(Dy) +e " & S& sin (5(q).
For the purposes of this paper, a simpler set of

equations will be used. Off Z the functions p, v, y
must satisfy the vacuum-field equations

DDp =0,

by =0,

2DpDv =D p+2p(Dy)

(8)

in which by is the Laplacian in a flat space having
coordinates ri, E Solution. s of (8) are easy to ob-
tain, and Eq. (5) then determines the surface
stress-energy tensor. It will be shown that this
procedure generates precisely the set of all coun-

The obvious candidates for the external gravita-
tional field of disks are the Weyl solutions, those
solutions of the Einstein equations which are static
and axially symmetric.

The canonical form for such metrics is

ds =e~~" &~(dq +d$ ) y p e &dy —e &di, (6)

with p, v, and y functions only of q and E. Coordi-
nates have been chosen so that the timelike and
spacelike Killing vectors are, respectively, $ =S/Si
and f =s/sy If D. =s/ay+is/s) and the surface
layer Z is defined by q =0, the field equations are'

DDp=e" "S& sin'(5(q),

ter-rotating disks.
The metric (6) and field equations (8) are form-

invariant under any transformation

@+i'=f(u+iv),

v(u, v) =v(q, ])+In~f' ~,

in which f is an analytic function. In particular, if
z is a conjugate function to p (which must be har-
monic from the field equations), then @+it' = p+iz
leads to the canonical cylindrical coordinates of
Weyl. With this definition of (p, z) choose (q, t') as
the canonical spheroidal coordinates defined by

p+iz =R, cosh(q+ig) . (10)

In these coordinates, the surface q =0 is a disk of
coordinate radius R,. Equations (1), (5), and (6)
immediately give the nonzero components of the
surface stress-energy tensor:

(„y) BpS((= —e" "—
p BO q=p

2 (U+y)
BO n=p

7

$ e-(I -3y) + 2
Bv 1Bp By t

sq p sq sg ~~=o

The field equations (8) and Eq. (10) give

=0Bp

BO q=p

Bv By By= -2 —— cot).
Bg I) p B$ Bff p

(12)

The Lapace equation is separable in spheroidal
coordinates, leading to a solution for y in terms of
Legendre functions of the first and second kind,

y =g 0 Qz„(i sinhq)Pz„(sin)) . (13)
p 2tl

This enables an explicit expression to be written
for the surface stress-energy tensor of a disk
generating the metric of Eq. (6):

Since S&~=0, there is no radial stress. Hence,
the particles must follow circular orbits; and,
since there is no net angular momentum, there
must be equal numbers of particles moving to left
and right. Allowing N to take all values in the
range (1,~) will give all possible such disks. The
statement that the procedure used would generate
all counter-rotating disks and none others is thus is satisfied. This means that if N=0 such a sin-

fK

(14)
N n ~t'0

m=p
I

verified.
There are two points remaining. Examination of

(14) reveals that the stress-energy tensor will be
singular at the edge of the disk unless the condition

pa„'" P,„(0)=0 (16)
-Q 2f
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gularity is unavoidable. It is also easy to verify
that in this case s v/sri ~„,=0, so that the only non-
zero component of the stress-energy tensor is
S«. The physical picture associated with this is
a disk of motionless dust supported against col-
lapse by a singular ring at the rim. This config-
uration must be eliminated on physical grounds.

Secondly, in order to finish specification of the
solutions given, it is necessary to know v(q, $).
This is given by integration of the third equation
of (8) —however for N& 1, no closed form is known

for these integrals. This difficulty is overcome
by observing that once y is given, the field equa-
tions determine s v/8 q and 8 v/8 $; and, since v is
to be analytic everywhere off the disk and contin-
uous across the disk, a Taylor expansion of v(q, $)
about v(0, s-,'s) is possible, v(0, 2m) being known

from elementary flatness.

RELATIVISTIC KINETIC THEORY OF

SURFACE LAYERS

Complete reviews of relativistic kinetic theory
have been given by Ehlers and by Ehlers and
Sachs. ' Hence, only a brief outline of useful re-
sults will be given here.

Only a single species of particles is assumed,
having unit rest mass. The equations of motion

which all matter is contained within a spatially
compact region, the results of Bichteler are
sufficient to guarantee the existence and unique-
ness of the distribution for all finite times.

In terms of the distribution function, the stress-
energy tensor is

p'p'F(x, p) w . (19)

For collision-free dust, F(x,p) must be constant
along phase orbits. This leads to the Einstein-
Liouville equations of stellar dynamics:

L(F) =0,
7"' = p'p'F(x, p)w.

s (~)

(2o)

Any solution of these equations will be a solution
of the self-consistent-field problem for a colli-
sion-free self-gravitating system.

The explicit form of the distribution function is
specified to the extent of the following:

Theorem: Let M be a space-time possessing
three or more commuting and linearly independent
Killing vectors g '. Then if Q '=$( ~

P the
general solution of L(F) =0 having the same sym-
metries as M is

F(x, p) =F(q'"'),

~~a
ds

dx'
ds

(16)

in which F is an arbitrary C' function.
Proof: Let X~"~ be the lifts of the $~"' onto X.

Then F(x, p) must satisfy

L(F) =X~ (F) =0.
define a unique vector field, the Liouville field on
the one-particle relativistic phase space

Written explicitly, the second of these equations
is

X=((x,p}:xCM, pCT«(M)&

p' =-1, p future pointing).

aF . &F
+ —C&s@(&) 8@t6) (22)

The orbits of the Liouville field define the phase
flow. In component notation, this field is given by

(17}

If m is the Lorentz-invariant measure on the
mass shell P (x), the natural measure on X is 0
=d'xr m,

' and the natural measure for fluxes across
hypersurfaces of X is cu=L ~ Q. Now, by analogy
with classical kinetic theory, a scalar distribution
function F(x, p) is defined on X such that if Z is
some hypersurface of X, the ensemble average
number of occupied orbits of L, intersecting Z is

(18)

Conditions for the existence of such a distribu-
tion function have been given by Ehlers' and
Bichteler. ' For the cases to be considered in

p', + @,„, (g ")=0. (23)

However, by definition the Q are first integrals
of the geodesic equations and hence solutions of
the Liouville equation. Thus, since by assump-
tion C'8 =0, Eqs. (21) become

aF , aF&('e' &e' (24)

and locally (Q„~j or {p& &, p ) will always form a
tetrad. Therefore sF/sx' =0.

If the matter distribution is to be confined to a
surface layer Z, the theorem remains valid so
long as M contains two independent commuting

where the C'z are the structure constants of the
group generated by the $i"'. Let (e~ ') be a tetrad
adapted to the $'"'. Then F(x, p) = F(x, Q "') with
the Liouville equation becoming
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Killing vectors tangent to Z.
At this point the general procedure would be to

attempt to obtain the solution of the Einstein-
Liouville equations. However, for the case of a
counter-rotating disk, it is possible to obtain a
distribution function without ever solving the
Liouville equation.

Since the particle orbits are circular, any func-
tion of E will be constant along the phase orbits.
Taking $,P'=E, it is now ensured that any function
F =F(),E)6(p ) is a solution of the Liouville equa-
tion. In particular, F($, E) may be taken to be
separable,

F((,E) =g(&)f(E). (25)

Use of this in combination with (11) and (19)
leads to a distribution function for the set of coun-
ter-rotating disks:

&0By

Bg„, (29)

If the disk is to be stable in any sense, Eq. (29)
must certainly be satisfied almost everywhere,
but it is equally clear that this is not a sufficient
criterion for stability.

Another simple indicator for the discussion of
stability is the binding energy. In those cases
which have been analyzed" ", the binding energy
increases with density until some maximum value
is reached, after which futher increases in den-
sity lead to a decrease in binding energy. In ex-
treme cases, the binding energy may even be-
come negative.

For a disk of mass M, rest mass M„ the bind-
ing energy is B=M, -M. Let v be the surface en-
ergy density and dA the element of surface area
on the disk. Then

F($, E) = —2e ' "
Bq Bg

fE71 fE (26)

0
M = — (S,' —Sq+)dA,

m'/2

0

Mo =2 vP, ('e &dA
f)'/2

(30)

where f(E) is an arbitrary C' function, subject
only to the condition that f Q(E)v be finite and
nonzero.

The quantities p and v are obtained by writing
S 8 as the sum of two counter-rotating dust flows:

STABLE PARTICLE ORBITS: BINDING ENERGY

If J and E are, respectively, g,p' and E,p', the
perturbed geodesic equations for a counter-rotat-
ing disk are'

, „, ,„,a'(6~), „ay a(at)
Bt 8$ Bt

1 ap ay a(ay)+EJe '" ———— =0,
p 8$ 8$ Bt

(27)
a'(aq) Ze'& 1 ap ay a(ag)

p2+ p 8$ 8$

S"=o(P"P'+t5 P'}

with

p =(o, p', p')

and

p =(0 -p' p)
Using this,

v=-,'Tr(S a),
pr =(S"/2.)'"
pf (St t/2o)1/2

The binding energy is now

(31)

(32)

( $), 2(])6]
Bt

gang .8
'

85 g=p

(28}

From (28) it is immediately apparent that the
necessary and sufficient condition for the stability
of individual particle orbits is

a'(«) ay a(at. )
Bt 8( Bt

where the replacement of d/ds by ta/at is correct
to first order. The second and third equations of
(27) may be integrated once and the results sub-
stituted into the first equation to obtain

&0, 1+2 —cot( &0,
By 87
8 g g p 8$ Q=0

(34)

imposed since ay/aq(„, is proportional to the
surface density of matter and the surface energy
density is

o =-, 1+2 —cot~—8+
8$ Bg „ 0

fr /2 1/2
B=4m pe & 1 — 1+2 —cot(

o

x 1+—cot) — dg.
1/2

Bf, I) =0

(33)
This must be considered in terms of the require-
ments
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Equations (29) and (34) give the result that re-
gions in which particle orbits are unstable make
negative contributions to the binding energy while
regions in which the orbits are stable make posi-
tive contributions. Hence the requirement B&0
is weaker than the stable-orbit requirement.

The strongest stability criterion involving bind-
ing energy is that B be a local maximum subject
to the constraint that the rest mass remain con-
stant. This is expressed symbolically by requir-
ing

BM

Ba„
(35)

It Eq. (33) is perturbed and the condition that the
perturbation 5B be maximal subject to 5Mo =0 is
imposed, it becomes necessary that

sy s(5y)
Bq B$

(36)

(with 5y the perturbation of y). Since sy/st} must
be positive, this means that particle orbits will
tend towards stability under such perturbations.
Since unstable orbits will become depopulated, this
suggests the breakup of the disk into rings, a
form of instability known to be endemic in New-
tonian disks.

Further questions of stability as well as those
of perturbations in the background metric will be
discussed in detail in a subsequent paper.

STRONG FIELDS AND LARGE RED SHIFTS

In 1939 Einstein" showed that spherical shells of
dust having arbitrarily large red shift cannot be
constructed because particle orbital velocities ap-
proached the speed of light for a finite value of the
red shift (on the order of 0.6). Recently, Morgan
and Morgan" have demonstrated similar results
for a subfamily of counter-rotating disks, raising a
question as to whether any physically reasonable
distribution of matter can give rise to gravitational
red shifts greater than the order of unity.

Based on the results presented in earlier sec-
tions, it can be shown that the central red shift of
any counter-rotating disk must be finite, although,
due to computational difficulties, this limit mill be
given only for the simplest cases.

A slight digressionis in order, however, since
it is, in principle, incorrect to impose as an extra
condition the requirement that particle velocities
be less than light velocity. By the very nature of
general relativity, this will always occur; and,

hence, its inclusion should not be necessary. The
orbital velocity of a particle in a counter-rotating
disk is

v2 S tt/S t

This means that if the weak energy condition

Tr($8)

(37)

(38)

is imposed, then all particle velocities will auto-
matically be less than that of light. As seen in a
previous section, however, Eq. (38) can be re-
placed by the pair of equations (34). Thus, from
(15) and (34) the requisite equations are

2'"(2n —1)!!(n!)'
0 1-Q(- )

[(2 ) I2 nr
ff- 2

2~+ t(n t)4

),), a„P„(sin]) 0,
n=O

I+4+ na„P,„(sin)) — '" ! &0.P,„ t(sin&)
sin)

(39)

The central red shift z, is obtained from
N

ln(z + 1)=P a„, (4o)
n=O

and from Eq. (39) it is possible to show that the
central red shifts of counter-rotating disks will be
bounded for all finite values of N. This follows
bhcause from (40) the only way that z, could be-
come arbitrarily large would be if at least one of
the a; did so, and for N &0 this cannot occur if all
of (39) are to be satisfied. If the first equation of
(39) is not imposed, however (i.e. , if a singularity
is allowed at the edge of the disk), then arbitrary
central red shifts may be obtained. "

Computer calculations have been made for the
maximum central red shift for the cases ¹ 5.
The greatest red shift is obtained for N =5 and is
z, (max) =1.56+0.05. This is of interest only in
that it is slightly greater than the maximum pos-
sible central red shift obtained by Morgan and
Morgan for a subset of the set of counter-rotating
disks. Unfortunately, computational difficulties
have not yet allowed an analysis as extensive as
that of Morgan and Morgan and the question as to
whether the series z,(N) of central red shifts con-
verges or not remains unanswered.

THE CASE N=1

As an example, those disks obtained by choosing
N=1 will be briefly studied. For N=1, y and v

are explicitly given by
I

y = -5{cot '(sinht!) + —,'[(1+3sinh't}) cot '&sinht!) -3 sinht!](3 sin'( -I)),
1 9' cos $ 1 slIQ~l

v =lnRO+ —,ln(cosh t! —cos $) + — —. ——cot (sinhq) cos'$ -(1+sin'$)[sinht! cot '(sinht!) -1p4 4 1+sinhg
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sinhq—sinhq cos'i( 'nhq coi-'(s'nhq)-i) . q —coi '(s'nhq))1+sinhq
(41)

and

=35 sin $,
8+

q=0

ture of the space-time geometry (i.e. , in the gen-
eral relativistic case R0 is the coordinant radius
of the disk —not the physical radius).

= --,p5 sinE, cos$.Bp
'dk g=0

(42)

The nonzero components of the stress-energy
tensor are

S~~ =avR, 'f)'e "'«'~„,sin'] cos't',

S« = &De ' '«' ~„,(2 ——,vt) cos'$) sin'g,
(42)

which agree in the Newtonian limit with the model
obtained by Hunter using a Newtonian potential y.

From (42) all particle orbits are stable, and if
the second equation of (28) is expanded in powers
of 5, then

(d'($) =, [1—28(1+sin'() +. ~ ]. (44)
0

Comparison with the Newtonian limit indicates
that v=+(-,'vt))'" is the particle orbital velocity.
The second-order term of (44) contains the
special relativistic corrections and corrections
which may be attributed to the non-Euclidean na-

DISCUSSION

A large class of background models for static
disks have been given. Although onl, y the counter-
rotating models have been studied in detail, the
only obstacle to the study of other types of disks
is the computational difficulties which arise in
attempts to solve Eq. (7).

The primary question remaining for counter-
rotating models is that of the central red shift.
Other problems of a more general nature which
remain to be resolved involve slowly rotating
disks and nonstationary perturbations. In parti-
cular, those perturbations involving absorption
and emission of gravitational radiation will be of
special interest.
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