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In a previous paper we showed that a static (nonrotating) black hole cannot be endowed with
exterior scalar-meson or massive vector-meson fields. Here we show that the same is true
for massive spin-2 meson fields. We also extend the above results to the case of a rotating
stationary black hole. We conclude from our results that a black hole in its final (static or
stationary) state cannot interact with the exterior world via the strong interactions which are
mediated by meson fields such as the ~ (scalar), p (vector), and f (spin-2). A direct conse-
quence of this is the impossibility of determining the baryon number of the black hole by
means of exterior measurements alone. This results in the transcendence of the law of
baryon-number conservation as originally predicted by Wheeler. All the above conclusions
hold both in general relativity and in the Brans-Dicke theory. We also show that the result
of Hawking, that stationary black holes are identical in general relativity and in Brans-Dicke
theory, holds even when the effects of the strong interactions (of the stellar material out of
which the black hole was formed) are taken into account. Our final conclusion is that in both
theories the Israel-Carter conjecture that "all stationary single-black-hole exteriors are of
the Kerr-Newman type" holds even when the strong interactions are "turned on. "

I. INTRODUCTION

A rather well-established result in black-hole
physics is the Israel-Carter conjecture': The
exterior of a single black hole in a stationary
state is always completely described by one of
the Kerr-Newman solutions of Einstein's equa-
tions, with mass, charge, and angular momentum
as the only parameters. ' Support for the con-
jecture comes from theorems of Israel, ' Carter, '
Hawking, ' and Kaid. ' These theorems are mainly
concerned with the effects of gravitation and
electromagnetism. The effects of a massless
scalar fieM on the problem were examined by
Chase, ' Price, ' and Fackerell and Ipser. ' Their
conclusion was that a nonsingular stationary field,
other than a constant, cannot exist in Schwarz-
schild (Price), general static (Chase), or Kerr
(Fackerell and Ipser) backgrounds which extend
down to their respective event horizons. This

conclusion is consistent with the conjecture.
The effects of the weak interactions in black-

hole physics have been considered by Hartle"
and by Teitelboim. " Hartle concludes that Kerr
black holes cannot interact with the exterior
world through weak-interaction forces. Teitel-
boim has shown, for the special case of spherical
symmetry, that the lepton number of a black hole
cannot be measured from the exterior by means
of the weak interactions. Both of these results
are in agreement with the conjecture.

The possible effects of the strong interactions
in black-hole physics were considered by the
author in a previous paper" which will be referred
to as I from now on. It was shown there that a
generic static black hole cannot be endowed with
exterior massive scalar-meson or massive vec-
tor-meson fields, regardless of whether the fields
are charged or neutral. The proof given was of a
classical nature, but a simple argument suggesting
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that similar results are to be expected from a full
quantum treatment was also given. Since then,
Teitelboim" has considered the problem of a point
source (baryon) of scalar- and vector-meson fields
which is being lowered into a Schwarzschild black
hole. He finds, in agreement with our results,
that the effects of the meson fields in the exterior
vanish as the'source nears the horizon.

The significance of the above results is twofold.
First, the author's results in I, when combined
with Israel's theorems, ' show that a static black-
hole exterior is necessarily of the Schwarzschild
or Reissner-Nordstrom types, even if one allows
for the effects of the strong interactions (of the
material out of which the black hole wa, s formed)
by a P»0» allowing exterior scalar- and vector-
meson fields such as the m and p." On the other
hand, both Teitelboim's and the author's results
support the prediction of Wheeler that the law of
baryon-number conservation ought to be tran-
scended in black-hole physics. " For suppose that
a baryon is dropped, or lowered into a Schwarz-
schild black hole. When the exterior of the black
hole has become static again, "there cannot be
left in it any of the meson fields characteristically
associated with baryons. It is thus impossible to
establish, from measurements made exclusively
in the exterior, that the black hole's baryon num-
ber has increased by one in the process. It is in
this sense that the law of baryon-number conserva-
tion is transcended. One can also say that the
black hole has no well-defined baryon number. "

Our purpose in this paper is to extend the re-
sults of I in three directions. In Sec. II we extend
the conclusions of I to the case of massive (neu-
tral) spin-2 meson fields. With this generaliza-
tion all the meson fields known at present (scalar,
vector, and spin-2) are excluded from a static
black-hole exterior. In Secs. III-VI we show that
all the mentioned meson fields (neutral) are also
excluded from the exteriors of stationary (rotat-
ing) black holes. Our work is considerably sim-
plified by the theorem of Hawking which states
that rotating stationary black holes are always
axisymmetric. ' We conclude in Sec. VII that a
black hole in its final state does not have a well-
defined baryon number. All the previous conclu-
sions are equally valid in general relativity and
in the Brans-Dicke theory.

Hawking, "and independently the author, "have
shown that the exterior of a stationary black hole
is identical in general relativity and in the Brans-
Dicke theory, a result first conjectured by Pen-
rose." We show in Sec. VIII that the identity of
stationary black holes in both theories holds even
when the effects of the weak and strong interac-
tions are taken into account. From the exclusion

where

(2)

(3)

In (2) dS„ is the element of hypersurface (the hori-
zon, spatial infinity, and past and future timelike
infinity) which bounds the black-hole exterior.

The event horizon is (by definition) a closed,
null, and nonsingular hypersurface. Its normal
n„satisfies n„n" =0. Consider dS„at the horizon,
and recall the definition of dS„ in terms of the de-
terminant (Det) of three coordinate intervals span-
ning the surface element":

dS„=—', (-g)'/'e„„8 Det(dx„dxa, dx&'),

where e„8& is the totally antisymmetric symbol
with values + I, 0. In regular (Kruskal-like) co-
ordinates, which must exist by the requirement
that the event horizon be nonsingular, the dS„are
clearly nonsingular. Let us write dS„=don„where
da is an invariant. This can always be done.
Since the dS„are nonsingular, the do must also
be nonsingular. From the invariant character of
da it follows that

of exterior meson fields, and from the results of
other workers previously mentioned, ' "we draw
the conclusion that the exterior of a single black
hole in its final state is necessarily of the Kerr-
Newman type (Israel-Carter conjecture), even
when the strong and weak interactions are "turned
on." Finally, in Sec. IX we show that all our con-
clusions retain their validity when the assumption
of minimal gravitational coupling for meson fields
is relaxed, and certain direct couplings to the
curvature are allowed.

In this paper Greek indices run from 0 to 3,
Latin ones from 1 to 3; our signature convention
is (-+++). Commas will denote partial deriva-
tives, semicolons covariant derivatives. We col-
lect here some results from I which we shall re-
quire. We describe a meson field with components
C» (k takes on one value for a scalar field, four
for a, vector field, etc. ) by a. Lagrangian density
2(C„C„„)which satisfies the Euler-Lagrange
equations arising from the variational principle
~ f Z(-g)'"d4x=o:

(
)-1/2 ( )1/2 0 (1)ae„„„aC„=

By multiplication of (1) by 4», summation over /2,

integration over the entire black-hole exterior,
and use of Gauss's theorem we arrive at
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dS„dS" = do'n„n" =0 on horizon (4)

in all coordinate systems. In particular, we shall
work with asymptotically flat coordinates. Since
we shall confine our attention to stationary situa-
tions, we choose the metric so that g„, ,=0.

II. EXCLUSION OF SPIN-2 MESON FIELDS
IN STATIC CASE

Here m ' is the Compton wavelength of the field.
We shall only consider the case mw0, In curved
space we shall replace (5}by

The spin-2 field, first studied by Fierz and

Pauli, "is described by a symmetric tensor field

h„, which in flat space obeys the field equation

(5)

and the supplementary conditions

(6)

and

Using this we proceed to show that the boundary
integral over timelike infinity in (2) vanishes.
Because g"= (g») '( 0 in the exterior, the bound-

ary at timelike infinity may be chosen to have

n,. =0 and dS, = 0; the normal n„ is then timelike as
required. Then b" dS, =b'dS0=0 by (12), and the
boundary integral over timelike infinity vanishes.

It is also simple to show that the boundary term
in (2) receives no contributions from spacelike
infinity either. The static solution of (8}which is
bounded asymptotically has the behavior (recall
that asymptotically the metric becomes flat) h„„
-x 'e "where ~ has the familiar meaning. Thus
for mc0 the b' fall off exponentially, and the
boundary at spatial infinity contributes nothing to
(2)

The boundary term over the horizon also van-
ishes. The horizon is static; thus n, =0 and d$, =0
on it. Using (12) we have"

(b" dS )'=(g, ,b'dS')'

(g, ,I 'I )(g„ds'dS')
= 5"b„dS'dS„(13}

(8)

which is derivable from the Lagrangian density

g = -~(h . h""' + m'h h"') (9)

[In Sec. IX we shall consider the possibility of
modifying (8) and (9) by the addition of extra terms
involving the curvature tensor. ] We take over the
condition (6) unchanged; but the straightforward
generalization of (7) to curved space is inconsis-
tent with (8) because of the noncommutativity of
covariant derivatives. Since we do not require
the correct condition for our proof, we shall not
try to discover it.

We consider the field in a static black-hole ex-
terior. The metric can always be chosen as

ds' =g„(dx ')'+ g, ,dx'dx' . (10)

Clearly from what we have just said

b =0. (12)

In I we showed that, in the black-hole exterior,
and on the horizon, g« ~ 0 and the g;,- is a positive
definite metric. We have not only g„„,=0, but also
h„,=0. After all, the field equation (8) has no
gauge invariance; the h„are in this sense physi-
cal quantities. They appear directly in the stress-
energy tensor, etc. Therefore, they cannot de-
pend on x' in a static situation and in static co-
ordinates.

According to (3) we have

where we have used Schwarz's inequality (applied
to the positive definite metric g;, ) in the second
step. " If we substitute (4} into (13) we see that
b" dS„=O on the horizon provided b"b„ is bounded
there. But b" is constructed out of h„, and h„„.
both physical quantities in the sense that they are
not subject to any gauge transformations, and as
a result appear explicitly in the stress-energy
tensor for the field. Thus b" b„ is a physical
scalar, and as discussed in I, a physical scalar
must be bounded on a (nonsingular) horizon.
Therefore, b4dS„vanishes on the horizon. We
have thus shown that the boundary term in (2)
vanishes. The remaining integral in (2) is just

A', „„., =0 and h„., =0. (15)

Remembering this let us consider the scalar
h„„h""appearing in (14). Since it is a scalar, we
can evaluate it in any coordinates. Thus we make
a transformation of the space coordinates x' only
which has the property of bringing g, „ to its diag-
onal form A, 5',. at a given Point P. We denote the

We proceed to show that the integrand above is
positive definite. First, we note that in the static
case h„must vanish identically. One way to see
this is to realize that under time reversal (x'
—-x') h„.—-hag just by the transformation proper-
ties of tensors. But since h„ is physical, it can-
not change under time reversal in a static situa-
tion; hence, h„=0. It follows from this that
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quantities in the new coordinates by bars. Thus
we have, according to the rules for transforming
tensors, that @00 Apo gpp gop ko' A'0& 0 and

g« =g„=O. We now recall that because g, , is a
positive-definite metric in the black-hole ex-
terior, its eigenvalues at P, the A, , mustbe
positive. Thus

h~ hu (gazoo) + QA. ,~,(h")') 0 (16)

HI. SOME PROPERTIES OF ROTATING

STATIONARY BLACK HOLES

From now on we confine our attention to rotating
stationary black holes. Fortunately, we need not
consider situations with arbitrary symmetry. A
theorem of Hawking' assures us that a rotating
stationary black hole is necessarily axisymmetric,
and in addition, its event horizon must have the
topology of a sphere. The basic conditions for
this theorem to hold are that ~y fields present in
the exterior obey well behaved (with respect to
the Cauchy problem) hyperbolic equations, and
that the fields satisfy the (weak) positive-energy
condition. Both of the above requirements hold
for the fields we consider in this paper, so from
now on we restrict our attention to black holes
with topologically spherical horizons, and axisym-
metric exteriors.

Such a black-hole exterior may be covered by a
coordinate system for which the line element
takes the form4

A very similar argument, taking (15}into account,
leads to

h . ht"":~&0.
jfv; (x

The point I' was perfectly arbitrary; thus, (16)
and (17) must hold everywhere in the exterior.
Therefore, the integrand of (14) is positive definite
everywhere, and the integral can vanish only if all
the A„„=O identically. We thus conclude that a
massive spin 2field, -for example, the f-meson
field, must vanish identically in a static black
hole exterior

The proof we have given breaks down in the case
m =0 because then (8) is gauge-invariant under

h„„-h„,+ eg„, where e is a constant. Thus h„„ is
no longer physical (like the A „of electromag-
netism} and we cannot argue that b" b„ is a physi-
cal scalar, and is therefore bounded on the hori-
zon; the proof fails. Therefore, we cannot ex-
clude a massless spin-2 field of the type (8) from
a static black-hole exterior. However, no such
field is known in nature, so we need not worry
about this possibility. (Gravitation is a self-
coupled, nonlinear, spin-2 field; it clearly does
not belong to the class of fields discussed above. )

ds'= g„dt +2g, ~dtdy

+g«dye+ W(dp' +dz'), (18)

gag gpss
—(kp) ~ 0. (20)

We assume here that causality holds everywhere
in the black-hole exterior. We therefore must
have

(21)

W &0. (22)

For suppose that g«were negative or zero at
some point (and, by the axial symmetry, also on
a circle) The.n the curve of constant t, p, and
z at that point, and with y running from 0 to 2m,

would be a closed timelike or null curve. This
would imply a violation of causality. Hence (21)
must hold everywhere in the exterior. Similarly,
if W were negative some~here, then a closed
curve with fixed t and y, and with p and z con-
fined to the region in which W &0, would be a
closed timelike curve. And if W were zero on
more than just an isolated circle (running in the
p direction), one could likewise construct a
closed null curve. Therefore, (22} must hold
everywhere in the exterior, except possibly on
isolated circles. Conditions (20)-(22) all hold in
the exteriors of Kerr-Newman black holes. '

Later on (in Secs. V and Vl) we shall find it use-
ful to refer components of tensors to orthonormal
frames. Therefore, we shall define here such a
system of frames. We represent the frames by
the orthonormal one-forms

(28)

&u = (g~~) (dip+ g, ~dt/g~~),

where ds'=g„„~"co', and q„„ is the Lorentz
metric. These one-forms are, according to
(20), (21), and (22), well defined everywhere
in the exterior, except possibly on isolated cir-
cles (sets of measure zero).

where t is the time, y the axial acicular variable,
and g„, , =g„„~=0. We may arrange it so that the
asymptotic form of (18) is

ds = -dt +p dy + dp'+ dz
y

the familiar one for flat space in cylindrical co-
ordinates.

The determinant of the metric of (18) must be
nonpositive. Thus
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IV. EXCLUSION OF SCALAR-MESON FIELDS
IN ROTATING STATIONARY CASE

As in I we describe a neutral spinless meson
field by a scalar field g whose Lagrangian den-
sity is

g = -z($ &g ™g'). (24)

Here again m ' is the Compton wavelength of the
field. From (24) follows the Klein-Gordon equa-
tion for $ in curved space:

q „.~ —m'q=o. (25)

We consider this scalar field in the exterior of a
rotating stationary black hole. According to the
discussion of Sec. III we take the metric to be that
of (18). In equilibrium the field must share the
symmetries of the geometry, so that

(26}

According to the definition of b", Eq. (3}, we
have

(27)

(b~dS )'= W'(b'dS'+b'dS'}'

- ~'[(b' }'+(b')'][(ds')'+ (ds'}']

= b" b„dS"dS„(30}

where we have used Schwarz's inequality in the
second step. It follows from (30) and (4) that
b"dS„=O on the horizon provided b"b„ is bounded
there. In I we showed that b" b„=Pg „g ~ can be
expressed entirely in terms of the contractions of
the stress-energy tensor, T"„and T„,T"", which
are physical scalars. Thus b"b„ is a physical
scalar, and must be bounded on a (nonsingular)
horizon. The preceding discussion is strictly
true only for m wp. But for m =0 one must also
assume that g is bounded at the horizon (a reason-
able boundary condition) in order to establish that
b"b„ is bounded. " We thus see that, both when
m x0 and when m = 0, b"dS„vanishes on the hori-
zon. We have thus established that the boundary
integral in (2) vanishes for all non-negative m.

In view of the above the volume integral in (2)
reduces to

It follows from this and (26} that

b'=b~ =0 (28)

We now proceed to show that the boundary integral
in (2}vanishes. As in the static case, the boundary
at timelike infinity may be chosen so that on it
n, =0 and dS,. =0. The reason is that according
to (20}and (21),

=Z~„[gag g~~ -(gg~)'] ' « (29)

so that the normal n„= (n„0, 0, 0) is timelike as
required. We then have that b" dS„=b'dS, =0 by
(28); thus, the boundary integral over timelike
infinity vanishes.

The asymptotically bounded solution of the field
equation (25}, which has the symmetries (26), has
the asymptotic behavior [recall the asymptotic
form of the metric (19)] g-r 'e "", where r = (p'
+s')' '. Therefore, for mx0, b~ and b' vanish
exponentially. For m =0 the solution of (25) is
determined only up to an additive constant (be-
sides the familiar multiplicative constant}. We
work with the solution which vanishes asymptotical-
ly. Then (25) shows that g- r ' so that b' and b'
vanish as r '. Thus for both m wp and m =0 the
boundary integral in (2) receives no contributions
from spacelike infinity.

We now show that the contribution to (2) of the
boundary at the horizon also vanishes. The hori-
zon must be stationary and axisymmetric; thus on
it n, =n~=p, and so dS, =dS~=O. If we now take
(28) into account, we have"

gr y P2+ q
~ 2 +m2q2 g ~2d4x 0 3]

We recall that W is non-negative. For m0 the
integral above, having a positive definite inte-
grand, can vanish only if g vanishes identically.
For m = 0 (31}only implies that all the derivatives
of g vanish identically so that g is a constant. But
we chose g to be asymptotically vanishing; hence
g vanishes identically in this case also.

We conclude that a massive real scalar field,
the s meson f-ield, for example, must vanish
everywhere in the exterior of a rotating stationary
black hole. On the other hand, a massless real
scalar field must be a constant everywhere in the
exterior (this is the additive constant mentioned
earlier). A special case of this last result (with
the Kerr geometry as background) was proven by
Fackerell and Ipser. '

V. EXCLUSION OF MASSIVE VECTOR-MESON

FIELDS IN ROTATING STATIONARY CASE

The field equations are derived from the Lagran-
gian density

8 =-(F„„ff""+2m'B~Bu)/16 (33)

We now consider a neutral, massive spin-1
meson field. As in I we describe such a field by
a 4-vector field B„, and an antisymmetric tensor
field H„„defined by

(32)
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They are

H"' ~, + m2Bu 0
t

(34)

This follows by analogy with the electromagnetic
case, or from the requirement that the components
T, and T„of the stress-energy tensor derived
from (33) vanish (they represent energy fluxes not
consistent with the symmetries of the problem}.

From (3) we have

b" = -EP"B„/4v,

and from (35) it follows that

b'=b~ =0

(36)

(3 7)

These conditions are formally identical to those
for the scalar field, (28). Therefore, the proof
that the contribution from timelike infinity to the
boundary integral in (2}vanishes is identical to
that given in Sec. IV. The asymptotically bounded
solutions of (34) fall off exponentially, so the
contribution from the boundary at spatial infinity
also vanishes. Finally, the proof that the bound-
ary integral over the horizon vanishes is again
identical to that given for the scalar field. The
necessary boundedness of b" b„on the horizon is
established by noting that this quantity is con-
structed entirely from H"' and B„, so that it is a
physical scalar, and must therefore be bounded
on a (nonsingular) horizon. Thus the boundary
integral in (2) vanishes.

The remaining integral (multiplied by 4w)

H~„H""+2m B B" -g d x=0

does not, unfortunately, have a positive definite
integrand. Thus we shall have to proceed in a
different way than in our earlier proofs. We no~
find it more useful to work, not with the com-
ponents of the fields in the coordinate system (18),
but with components in the orthonormal frames
defined by (23). In obvious notation (38) takes the
form (lengths measured in units of m ')

the familiar Proca equations in a form appropriate
to curved space. Here again m ' is the Compton
wavelength of the field; we consider the case m c0
only. The H"" is entirely analogous to the electro-
magnetic I'"". But unlike the electromagnetic A„,
B„ is not subject to gauge changes. B„ is a physi-
cal field; in fact, it is uniquely determined by (34)
if H"' is known.

We consider the vector field in the exterior of a
rotating stationary black hole; the metric is (18).
In equilibrium the field must share the symmetries
of the geometry; thus B„and H"' are independent
of t and y. Furthermore,

(35)

0 0& 3 3& Ol 01&

H» -Hs„H02 -H02, H32 -— (4o)

while all other components are zero. If we think
of time reversal as an active transformation (in
contrast with a coordinate transformation) then it
is clear that a changes sign under time reversal.
Thus B Hpz and Hp2 are even in a whi 1e B„H»,
and H» are odd. Similarly g« is odd in u, but
the rest of the g„, are even; consequently the de-
terminant g is even in a.

We now assume that the field components in the
orthonormal frames, and (-g)' ~', are analytic in
n. A little thought shows that this is equivalent to
assuming analyticity for the field components in
the coordinate system (18) and for g„„. This as-
sumption is not as restrictive as it sounds. If it
is not satisfied for a given choice of n, it may be
satisfied for another choice, for example, any
odd function of the original n. Even the assump-

2+ H 2+ B 2 g 1/2d4+

H +H +B -g' dx

(39)

Both of the integrands above are positive definite,
but this by itself is no great help in our search
for a proof that all field components vanish. But
if we make the assumption that the f-;elds and the
metric are analytic in a certain parameter n,
which we shall specify presently, then it becomes
possible to show that the fields vanish identically.
The parameter n is to be a measure of the degree
and sense of the rotation of the black hole. The
value n =0 will correspond to a static black hole.
Two black holes for which n has opposite signs
will differ in that they will be rotating in opposite
senses about the same axis. An example of a
suitable u is the angular momentum of the black
hole along its symmetry axis.

The dependence of the fields and metric on n
can be learned in part from time-reversal argu-
ments. We know that under time reversal (t- -t)
the g„„in (18}are unchanged with the sole ex-
ception of g«which simply changes sign. The
time-reversal invariance of the field equation (34)
requires that B„H„, and H„remain unchanged
while B~, H~~, and H~, change sign under time
reversal. [Actually the opposite scheme is also
consistent with the invariance of the sourceless
Eq. (34}, but would not work if sources were pres-
ent; in any case the argument that follows can be
modified to suit the opposite scheme. ] For the
field components in the orthonormal frames we
find that
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tion of analyticity is not strictly required. The
proof to be given will also work if the fields are
analytic functions of n multiplied by a common
factor, a nonanalytic function of n and any other
parameters of the black-hole solution (but not
coordinates). This common factor can be can-
celed out from (39) and is of no consequence in
the proof that follows.

Imagine now that the fields and (-g)'~' are ex-
panded in e. The expansions for Bo Hpy and H02

as well as that for (-g)' ~' contain only even pow-
ers of n; those for B„H», and H» only odd
powers. We substitute the expansions in (39)
and collect terms with the same power of a. The
terms independent of n all appear in the left-
hand side of (39). The corresponding vanishing
integral has an integrand which is a sum of
squares of field quantities times the part of (-g)'~'
which is independent of n. Clearly this last
quantity is just the (-g)'~' for the static case,
that is, a positive quantity. Thus the terms of
the fields which are independent of cy must vanish
identically. Next, the terms in n' appear only in
the right-hand side of (39) in the form of a vanish-
ing integral whose integrand is again a sum of
squares of the field quantities linear in n, all
multiplied by the same part of (-g)'~' as above.
Thus the terms linear in z of the expansions of
the fields must vanish identically. This procedure
can be iterated; at each step the result will be
similar because the lower powers of n vanish.
We conclude that all terms in the expansions for
the fields vanish. By transforming back to the
original coordinates we see that the B„and H"'

all vanish everywhere in the black-hole exterior.
The proof given above breaks down in the case

m = 0 because then the field equation (34}is in-
variant under B„-B„+A „so that B„ is no longer
physical, and neither is b" in (36). Thus b" b„
need not be bounded on the horizon, and the proof
fails. We conclude that a rotating stationary black
hole cannot be endoued zoith an exterior massive
vector field, such as the p mes-on field for ex-
ample, but it can be endowed soith a massless
vector field. The only example known of such a
massless field is the electromagnetic field, and
black holes with such an exterior field are pos-
sible, for example, the Kerr-Newman ones. '

VI. EXCLUSION OF MASSIVE SPIN-2 FIELDS
IN ROTATING STATIONARY CASE

b'= b =0. (41)

From here on the proof that the boundary integral
in (2}vanishes is so similar to those given before
that we omit it. The remaining integral in (2) is
simplified by the fact that h„, , =h„„.~ =0 as a re-
sult of the symmetries. In terms of components
in the orthonormal frames (23) the integral takes
the form (lengths measured in units of m ')

Here we take up again the spin-2 field introduced
in Sec. II, but now in the exterior of a rotating
stationary black hole. The metric is again that of
(18). The symmetries of the geometry must be
mirrored by the fields in the equilibrium state,
so that b„, , =h„„„=0. It then follows from (11}
that

J g (boo. ~)2+ (h, 3.~} + Q(h, , ~} + (b,o)'+ (b33)'+ Q(h~~} (-g)'~2d4x =2 Q(boa. „}+ (bos)' (-g)'~'d4x,

(42}

where k and j run over 1 and 2 only. All the com-
ponents not appearing explicitly in (42) vanish be-
cause of the symmetries.

We can repeat the procedure given in the case
of the vector field. We find in like manner that
h'03 and h„., change sign under time reversal so
that their expansions will contain only odd powers
of n. All the other h„„and their covariant deriva-
tives are unchanged under time reversal so that
".heir expansions will only contain even powers of

The proof then goes through exactly as before.
The conclusion is that a rotating stationary black
hole cannot be endo&red smith exterior massive
spin-2 fields, for example, the f-meson field.
As discussed in Sec. II, the massless case is very
different, and the massless field cannot be ruled
out by our proof.

VII. CONCLUSIONS: NO BARYON NUMBER
FOR BLACK HOLES

We summarize the results of I and of the pres-
ent paper as follows: A black hole in i ts final'
(static or stationary) state cannot be endowed zvith

exterior scalar, vector, or spin-2 massive meson
fields. Examples of the fields excluded are the
s, K, p, &u, f, and other meson fields. In addition
a massless scalar field other than a constant is
also ruled out. Most proofs given assumed that
the fields were real and thus electrically neutral,
but we showed in I how the proofs may be extended
to charged fields (which may even interact with
the black hole's electromagnetic field). In view of
this we see that all known meson fields (scalar,
vector, spin-2) are excluded.
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Our proofs were classical in nature. What con-
clusions are to be expected from a full quantum
treatment of the problem? Such a treatment could
be based on a decomposition of the fields into
transverse and longitudinal components, such as
is accomplished by the ADM procedure in the case
of the electromagnetic field." The transverse
components are the dynamical ones, and are the
only ones that should be quantized. The longitudi-
nal components can still be described classically. "
The statement that the black-hole exterior is in its
final state (or ground state) means that there are
no excitations of the meson fields (no waves in
classical language; no real rnesons in quantum
language). This means that the transverse com-
ponents are zero, except for the inevitable random
vacuum fluctuations. Our classical proofs then
show that the longitudinal components (analogous
to the Coulomb field) vanish identically in the
black-hole exterior.

By virtue of the preceding argument we expect,
in advance of a fuQ quantum treatment, that a
stationary black hole cannot interact saith the ex-
terior zoorld by means of the strong interactions.
This is because it cannot be endowed with the
longitudinal (Yukawa-like) meson fields that would
be required for such an interaction to take place.
Measurements carried out in the exterior of the
black hole cannot yield any information about the-
presence or absence of strongly interacting ma-
terial in the interior. This fact leads to the
transcendence of the law of baryon number con-
servation first predicted by Wheeler. '4

Suppose that a baryon is dropped into a station-
ary black hole. As it approaches the horizon, it
"disappears" from view because of the redshift
effect. Furthermore, the baryon leaves no "foot-
prints" -once the exterior returns to a stationary
state, no meson fields may be left in it. An ex-
terior observer sees the baryon disappear, and is
unable to verify its continued existence by observ-
ing the meson fields characteristically associated
with a baryon. Thus the law of conservation of
baryon number is transcended. Furthermore,
the exterior observer cannot measure the baryon
number of the black hole by means of the strong
interactions. Thus from his point of view, the
black hole's baryon number is not well defined.
Of course, the baryon number is defined on a
complete spacelike hypersurface, but the observer
cannot determine it.

VIII. CONCLUSIONS: GRAVITATIONAL FIELD
NOT INFLUENCED SY STRONG INTERACTIONS

In our proofs we made no explicit use of Ein-
stein's equations. Hawking's theorem, on whose

strength we restricted our attention to axisym-
metric rotating black holes, does not depend on
them either. Thus, all our conclusions are valid
both in general relativity (GR) and in the Brans-
Dicke theory (BDT). One can say even more
than this. It was conjectured by Penrose, "and
established by Hawking, "and independently by
the author, "that the exterior of a stationary
black hole is identical in both theories. Here we
wish to show that this identity still holds when
the strong interactions are "turned on."

We recall the Brans -Dicke equations'4

G„„=8w4 ~Tq„+(y4 2(4 q4 „—~gq„4 „4 )

+4 '(4 &.„-g&„4 „.™) (43)

4 ."=8w(2(v+3) 'T (44)

where we use units for which c =1. The (d is the
Brans-Dicke coupling constant, and 4 is a scalar
field whose interpretation is (roughly) that of the
reciprocal of the local gravitational constant.
The T„„is the stress-energy tensor for matter
and nongravitational fields, and G„„is the Ein-
stein tensor.

Consider a stationary black-hole exterior in GR.
The geometry obeys Einstein's equations G„„
= 8wGT„, . It will also obey the Brans-Dicke
equations if 4 is a constant, G ', and if T =0
in the black-hole exterior. In a stationary ex-
terior there may exist no rnatter, but there could
be electromagnetic fields, neutrino fields (mani-
festation of weak interactions) and, a priori, me-
son fields (manifestation of strong interactions).
It is well known that for electromagnetic and neu-
trino fields T =0 is an identity. But this is not
true for meson fields. However, we have shown
that all meson fields must vanish identically in
the exterior. Thus T =0, and we see that even
in the presence of electromagnetic, weak, and
strong interactions, a stationary black-hole ex-
terior in GR is also allowed in BDT.

We now prove the converse. Consider a station-
ary black-hole exterior in BDT. As we have just
pointed out, T =0 even in the presence of all in-
teractions. Therefore,

(45)

which is the familiar massless scalar equation.
The results we obtained in I and in Sec. IV of the
present paper are applicable to it, but the proofs
require two changes. We recall that the proofs
apply, not directly to 4, but to /=4-4, where 4,
is the asymptotic limit of 4. We cannot establish
that k"5„=P4 „4 " is bounded at the horizon in
the usual way. Instead we note that g must be
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bounded, for otherwise the local gravitational
constant would vanish, a very singular occurrence
which is not compatible with the nonsingular
character of the horizon. The boundedness of
4 „C " follows from the boundedness of R"„and
T"„(nonsingular geometry and nonsingular
physics) if we take the trace of (43) and simplify
it with (44}. Thus b"b„ is bounded.

The second change has to do with the fact that
we cannot extend the volume integral in (2} all the

way to spatial infinity without doing violence to
the philosophy of the BDT which envisages the
main contribution to 4 as coming from the distant
matter in the universe (Mach's principle). There-
fore, instead of taking part of the boundary of the
domain of integration at spatial infinity, we take
it to be a large sphere in the almost flat region
far from the black hole, but not at cosmological
distances. In this manner none of the distant mat-
ter is present in the domain of integration, and
(45) holds everywhere in it. The boundary term
thus introduced is easily shown" to have the same
sign as the volume integral in (2). Thus the proofs
go through with little change, and the result is that
4 can only be a constant in a stationary black-hole
exterior.

Since 4 must be a constant we see that the
Brans-Dicke equations (43}reduce to Einstein's
equations. We thus have shown that, even in the
presence of the electromagnetic, weak, and
strong interactions, a stationary black-hole ex-
terior suhich is a solution of BDT is also a solu
tion of GR and vice versa.

What are the allowed stationary black-hole ex-
teriors? We have shown that the strong interac-
tions can make no contributions to the stress-
energy T„„ in the black-hole exterior (no meson
fields). The results of Hartle" and of Teitelboim"
suggest that the weak interactions do not contrib-
ute either (no neutrino fields}. Thus the T„, is
purely electromagnetic in nature. The uniqueness
theorems mentioned earl. ier' ' apply in this case,
and state (with some technical qualifications) that
the stationary black-hole exterior is necessarily
of the Kerr-Newman type. (We exclude multiple
black-hole solutions from consideration. ) Thus
even when the strong (and, possibly, the weak)
interactions are turned on, " a stationary black-
hole exterior is parametrized only by mass,
charge, and angular momentum. Not even from
its gravitational field may one determine the bar-
yon number of a black hole.

IX. NONMINIMAL GRAVITATIONAL COUPLING

All the Lagrangian densities which we have con-
sidered were obtained from the corresponding

(48)

Here the subscripted Latin letters stand for di
mensionless coupling constants, R»„ is the
Riemann curvature tensor, and R"" and R its con-
tractions. We have by no means tried to be ex-
haustive in the above lists of possible terms; we
merely wish to illustrate the possibilities.

We can carry out our usual procedure for the
modified Lagrangian densities. The proofs that
the boundary term in (2) vanishes are always
similar to the ones given before; they make use
of the symmetries of the problem, and of the fact
that a physical scalar (now involving the curva-
ture) must be bounded on a nonsingular horizon.
The remaining integral in (2} is just (because the
Lagrangian density is quadratic in the fields)

2 2+ 2' -g ~2d4x= 0. (49)

In the integrand the normal terms and the terms
involving curvature are scalars separately.

Let us consider the two types of terms in local
inertial frames. In the black-hole exterior the
components of R», will attain their maximum
values near the horizon, and these mama will
be of the order L ' where L, is a characteristic
dimension of the black hole, the Schwarzschild
radius for example. The various components of
the fields and their derivatives are physical (they
explicitly appear in T~,), and therefore bounded
in the local inertial frames. For each term in 2'

ones for flat space by the use of the minimal cou-
pling rule: the replacement of ordinary by covari-
ant derivatives. How much do the conclusions of
this paper depend on this choice of coupling'P We
shall show that all our conclusions with regard to
meson fields remain valid even if we allow a wide
range of direct couplings to the curvature (non-
minimal couplings) in the meson Lagrangian densi-
ties.

We confine our attention to couplings for which
the Lagrangian densities are still quadratic in
the meson fields. Thus to the Lagrangian density
for the scalar field, Eq. (24}, we may add

2' = a, fhtt + b, m 'RQ„g" + c,m 'R" 'g „g „, (46)

to that for the vector field, Eq. (33), we may add

2'= a, RB„B"+b,R""B„B,+c,m RH„„H""

+d m 2R&"& If ~ +e m 2R~s&"&
jib & 2 n8 Pit &

(4S}

and to that for the spin-2 field, Eq. (9), we may

add
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involving the curvature there is a similar one in
Z which does not. It is easy to see that the nor-
mal terms will dominate in magnitude the terms
with curvatures everywhere in the exterior
provided the Compton wavelength m ' times the
square root of the appropriate coupling constant
is much smaller than L. If this condition is sat-
isfied for all the coupling constants, the inte-
grands 2+4' will have the sign of 8 regardless of
what the sign of 2' is. Our usual arguments will
then show that the fields must vanish identically in
the exterior. (The above argument is valid only
for massive fields. )

As an example consider a black hole of solar
mass (I =10' cm}. The w meson field (m '=10 "
cm} will be excluded from its exterior when the
coupling constants ay 5g and c, have magnitudes
ranging from zero to 10"-10".

Note added in Proof The m. etric (18) may be

derived from the requirement that g„„be invari-
ant under the simultaneous inversion of t and q
together with a coordinate transformation involv-
ing only p and ~. The above discrete symmetry is
guaranteed in the stationary and axisymmetric
case by a theorem of B. Carter [J. Math. Phys.
10, 70 (1989)] which holds even in the nonvacuum
case provided the T„„is invariant under the in-
version of t and y. This condition is satisfied for
all the fields considered here. The author thanks
Robert Wald for pointing out the need for a justi-
fication of the use of metric (18) in the nonvacuum
case.
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