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A low-energy theorem relating y 3~ to 7t 2y is derived by using anomalous Ward iden-
tities and by using Schwinger's proper-time technique. We discuss the theoretical: signifi-
cance of this low-energy theorem. In particular, the theorem is meaningful only if the par-
tially conserved axial-vector current anomaly is in fact responsible for the decay 7t 2y.

I ~ INTRODUCTION

Recently Adler et al. ' discovered a low-energy
theorem relating y- 3& to & 2y. The theorem
states that

ebs r y Kf -2

where E'" and E"are "coupling constants, " to be
defined in Sec. II, describing y- 3& and &- 2y, re-
spectively. The theorem rests upon the following

assumptions:

(a} gauge invariance;
(b) Gell-Mann's current algebra and the hypoth-

esis of the partial conservation of the axial-vector.
current (PCAC); and

(c) that the electromagnetic cuzzegt commutes
with the neutral axial charge at equal times.

We should emphasize that Eq. (1.1) is independent
of the nature of chiral-symmetry breaking. It was
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also shown' that the amplitudes for y+y- 3w'and
for y+ y- &'»' may be computed up to second
order in momenta in terms of one parameter, us-
ing only the assumptions (a), (b), and (c) enumer-
ated above. The value of this parameter will give
us valuable information on the nature of chiral-
symmetry breaking. In particular, its measure-
ment will shed light on the question of whether the
chiral-symmetry-breaking interaction belongs to
the representation (—„2)of SU(2)I8 SU(2}. These
points wilI be reviewed in detail in Sec. .II.

As is well known, a naive application of (a), (b),
and (c) leads to the erroneous conclusion' that v
-2y is suppressed to order m„. If this is indeed
the case, Eq. (1.1) would not make sense since the
PCAC error terms omitted in deriving (1.1) would .

be of the same order in m, as the right-hand side.
Thus the verification of Eq. (1.1}may be construed
as evidence that m'- 2y is not suppressed. In this
sense, Eq. (1.1) opens up the possibility of check-
ing whether 7t'- 2y proceeds through the anomaly' '
mechanism, and to the extent the theory of anom-
alies correctly describes &'- 2r io any' finite ox
der in renormalized perturbation theory Eq. (1.1)
affords a unique opportunity to confront renormal-
ized perturbation theory with data.

In Sec. III we investigate the set of Ward identi-

ties relating (AAAV) to (&A&ASAP) in a free
massive fermion field theory. It is shown that
some of these Ward identities are anomalous. An

interesting, albeit technical, point arises in re-
lating y- 3& to &- 2y through Ward identities. The
Ward identities involved are in fact not anomalous.
However, the "surface" term, which is normally
dropped in standard applications of current alge-
bra, cannot be dropped here, the reason being that
the surface term itself appears in an anomalous
Ward identity. Our results in this section are en-
tirely consistent with the general expression for
the divergence of the axial-vector current given
by Bardeen. "

In Sec. IV we generalize the powerful proper-
time technique developed by Schwinger' to a chiral
SU(3) SU(3) theory. This technique enables us to
write down a formal expression containing the
most general coupling of any number of photons
to any number of mesons through a fermion loop.
Using this general expression we treat the case
of a single photon coupling to any number of me-
sons and the case of a single meson coupling to
any number of photons.

In Sec. V we discuss the experimental prospects
of measuring the amplitude for y- 3&.

The Appendix contains a phase-space calculation.

II. CURRENT ALGEBRA, m~2y, y~3w, AND 2y~3m

For the sake of completeness, we shall review in detail the argument of Adler et al. ' that the twin re-
quirement of current algebra and gauge invariance suffice to determine y- &'»' in terms of &'- 2y.

Let us write the general amplitudes (not necessarily on-shell), for &'- 2r and r- &'»' as

M(r(k, )+ r(k2)- & ) =i~@,@2k,k2 ~E"(k, , k2, (k, +km) ), (2.1)

A(r(k, )+ r(k2)- v'(qo)+ ~'(qo}+v'(q,"))= A'"

and

A(r(k, )+r(k.)-&'(q.)+&'(q, )+& (q ))-=A' '
must vanish when one -lets q, —0, keeping the other two pions on-mass-shell. The reason" is that at
equal times the electromagnetic current commutes with the neutral axial charge. The next observation
is that the part of A"' and A' ' coming from diagrams with a pion pole occurring therein may be com-
puted exactly in terms of I' and I'". There are two classes of such diagrams: those involving external
photon insertions and those involving pion-pion scattering (see Fig. 1). This observation is a powerful
one in that these pion-pole diagrams by themselves neither maintain gauge invariance nor vanish in the
soft-neutral-pion limit described above, thus calling for chiral and gauge completions. By imposing. the

M(r(k)-v'(q, )+w'(q, )+v (q ))=( i)~eq, q q, ~F-"(q,q„q,q;q, ', q ', q, ', (q, +q +q, )'), (2.2)

where we have introduced the notation ~abed ~—= e„„,„a"k'c'd". Our result [Eq. (1.1)] relates E' F'(0, 0-=, 0)
to E'"—=F'"(0, 0; 0, 0, 0, 0). That the approximation of the experimental quantities F"(0, 0, m „') and
E"(q,q„q,q; m „',m, ', m, ', (q, + q + q, )') by E" and E" [for q, q„q,q, (q, + q + q, )' small] is a relative-
ly accurate one is the content of the standard PCAC assumption. The observed rate for &'- 2y gives'

~

E'
~

= (n/v) [(0.66+ 0.08)m, ]-'.
To relate I"to I' Adler pt al. ' consider the processes y+y- 3&' and y+y- &'»'. To begin with,

note that the amplitudes
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FIG. 1. (a) Pion pole diagram for 2y 3mo. (b) Pion pole diagrams for 2y g+g go.

twin requirements of gauge invariance and of chirality the amplitudes A'" and A' ' may be determined up
to and including terms second order in momenta, as we shall see presently.

To compute the pion-pole diagrams of Fig. 1 we need the amplitude for pion-pion scattering. Following
Weinberg" we write the general off-shell amplitude up to second order in momenta as

M(v'+v'- s'+ +) =&6"Y'[a+a(t+u)+ Cs]+ ~6"6M [&+a(M+ s)+ Ct]+ i6"6"[a +a(s+ t)+CM], (2.S)

where s=(q, +q, )', t=(q, —q, )', u=(q, -q~)'. Note that by Bose symmetry the variables P,', P~', P,', and
p„' can only occur in the combination P,'+p~'+p, '+P„', and hence the above amplitude also holds off-shell.
Imposing the requirements of current algebra and the Adler consistency" condition we obtain

1M(v'+ &' &'+&')=i5"5'', (s —m, ') B+(s t++u —3m, ') +permutations. (2 4)

We recover Weinberg's original amplitude if we introduce the additional assumption that the 0 term is an
isoscalar and which fixes 8 =0. We are now able to write down the amplitudes A'" and A' ' (the pions are
not necessarily on shell) to second order in momenta:

~000 ~. —.( k k (
(&+~f'&)[(qo+qo)'+(qo+q.")'+(q.'+q.")'—&~.']

(qo+ qo+qo ) —7R „

k k, (q, +q )' —m, '+ f„'B[(q,+q )'+(q, +q, )'+(q, +q )'-Sm, ']

+zeE'" Ia, (q, —.a, )q q, i
'; ', -~i~,q, (q -k, )q, l

'
&

-, ', +(e,-e„a,-a, )+a)'e, (2q, -k, ) e,(2q -k, )

(2.6}

Here h is a function of e„e„and the available momenta. C, and C, are numerical constants. The re-
quirement thatA"'-0 as q, -0 with (qo)'=(qo'}'= m„' fixes C, to be -(i+Sf,'B). Similarly, C, =-(l+ f„'8).
Gauge invariance asserts that under the variation e,-e, + Xk„k -k + ) e,k,q, (q,+ q ) ~. The unique solution

respecting Bose symmetry is k =
~ e,e,q, (k, —k,}j." Boo' and A' ' are now determined up to second order in

momentum in terms of E" and E". These amplitudes for 2y- 3& have been presented and discussed by

Adler et aE.'
In order to fix E'" in terms of E" we write down the most general expansion for the amplitude

A'"(y(k, ) + y(k, }-&'+ &'+ v')

up to second order in momenta and respecting Bose symmetry and C parity:

&'"= (6"6"+ 6"6"+ 6"6")~,
I ~,~PP. I+o,.I ~„~»k, —k» 6"6"(q.+ q~) + 6"6"(q~+ q.)+ 6"6"(q. + q.) I.

(2.7}

Here e, and a, are arbitrary constants. (Note that gauge invariance may riot be imposed. ) Demanding

that Egs. (2.5}and {2.6}be consistent with Eg. (2.V} we obtain immediately the relation

spsw y wf 2 (2.8)
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which is the desired result. A most remarkable feature of the relation in Eq. (2.8) is its independence of
the parameter B and hence of any assumption about the isospin of the o term. In contrast, the measure-
ment of 2y- 3& would yield a value for B T. he popular (—,', —,') model of chiral-symmetry breaking predicts
that B=0.

As mentioned in the Introduction, Eq. (2.8}depends on three assumptions referred to as (a), (b), and
(c}. Assumption (c) represents the local generalization of the self-evident statement that the electromag-
netic charge commutes with the neutral axial charge. It appears to be not inconsistent with existing
photoproduction data. " On the other hand, it leads to two" unhappy predictions: (1) that" the decay
q- 3v is forbidden, and (2) that" mz+' —mzo' = m, +' —m „O'. An independent confirmation or negation of
assumption (c) would thus be of considerable interest.

III. %PARD IDENTITIES

In this section we employ the traditional techniques of Ward identities to discuss the process y- 3r.
Before we proceed we define a collection of time-ordered products of currents.

e'o'QT„„q(k, p, q}=i Jtd~xd ydoz e ~ "+~~+"~(0
~
TA &(x)A„(y)A~ (z) V)„(0) j 0),

e'~'QTq(k, p, q) =i ~~d'xd4yd'z e'~'*'~"" (0~ T&A'(x)&A'(y)sA'(z)V), (0) ~0),

(3.1)

(3 2)

"'
zezO()Oo, O, e)=z Jd' dz', dz' ez'"'"'"'((l)TA'e(z)zz('(y)zA'(z)zz„(O)(O), (3.3)

e"(Oz'z. ,(o, o, e) = z f 'oz'Oz' oez" " '('o*) o'"z'z-( )z(!(zz')zzw (z))z(o)') o), (3.4)

(3.5)

O'"QR „„(k,p) = i ]l d'xd4y e' "'~" (0
~
T V'„(x)8 A '(y) V„(0)

~
0) . (3 8)

We work in the free massive fermion field theory
and define the axial-vector current as A'„(x)

,'r'y„y,-g and the electromagnetic current as
V„(x)—= gAcy„g, where r, = A., for a = 1, 2, 3,

Standard techniques and Gell-Mann's current al-
gebra lead to the following naive Ward identities:

T)() x(k P q) =iP))) x(k P q)

+Tv) )(P+q. k) —T) x(k+q P))o
(3.7)

and Q—= Q —2. We have in mind a theory with a
triplet of fermion fields having the same isospin
and hypercharge assignment as the SU(3) quark
model. In order to discuss &'- 2y and y- 3& we
ought to work in a theory with pions and incorpo-
rating chirality, such as the o model of Gell-Mann
and Levy. " However, it would become apparent
that the Feynman amplitudes describing ~' 2y
and y- 3& in the o model are intimately related to
the time-ordered products B» and T& as evaluated
in the free fermion field theory. On the other hand,
we were instructed by Ref. 1 that it does not suf-
fice to consider the free massive fermion field
theory in a discussion of 2y 3&.

p'p, .i(k, p, q)=S, (k, p, q)+R„,(k+p, q), (3.8)

k"S„),(k, P, q) = T),(k, P, q), - (3.9)

P'T„„„(k,P}=iR„~(k, p). (3.10}

Note that the a term does not play a role here.
The Ward identity in Eq. (3.10) is responsible for
the famous false statement' that &'- 2y is forbid-
den by PCAC and current algebra. Let us briefly
review the reasoning which led to the preceding
statement. Define

R„)(k,P) =i&„„,),p"k'f(k', P', (k+p)').

The invariant amplitude describing & - 2y is pro-
portional to f(0, m, ', 0). PCAC assumes that
f(0, m„', 0)=f(0, 0, 0). We now determine f(0, 0, 0)
as follows. In the limit k, p- 0 crossing symmetry
(and parity) imply that T»~(k, p)- Ae», „(2k+p)'
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for some constant A. Gauge invariance
Ik"T„„~(k,p) =0] demands that A vanishes. Equa-
tion (3.10) now states that f(0, 0, 0) =2A =0. This
conclusion is in fact false as is shown by an ele-
mentary calculation of f(0, 0, 0) in the free massive
fermion field theory.

Similarly, we now show that the Ward identities
(3.7), (3.8}, (3.9), and (3.10) imply that r- 3& is
forbidden. We put the Ward identities (3.7), (3.8),
(3.9), and (3.10) together to obtain

k "P"q'T„„~(k,P, q)

= -iT) (k, p, q}+ik "R„q(k+p, q)

+iP'R, „(P+q, k) —ik"R„z(k+ q, P) .

(3.11)

To lowest order in momentum we must have

T„„q,(k, p, q)-Be„„~as k, p, q-0 with B some
constant. Hence Eq. (3.11) implies that

iT„(k, p-, q) Be„„„k"p"q But. gauge invariance
requires that

(k+p+q) T„„,~(k, p, q}=0,

so that B= 0. The amplitude for a virtual photon
to produce three pions,

F(m „',m, ', m, ', kp, kq, pq),

is defined by

T~(k, p, q)
-=F(k', p', q', kp, kq, pq)e „„„k"p"q'.

Xp, )5

Xp X5 Yg X5

(a) (b)

FIG. 2. (a) The diagram which together with its per-
mutations describes T»~& in a free-fermion theory.
(b) The diagram which together with its permutations
describes T»& in a free-fermion theory.

Note that T~~„,& is superficially only logarithmical-
ly divergent and so there can be no question on how
the loop momentum is to be labeled. In fact,
T», & is finite. To establish this fact we introduce
a regulator field of mass A and write the logarith-
mically divergent part of T„„zas

f d'r 1 tr r„r, r~ r. r —m-~
(3.12b)

m' '~ ~ ~~~ ~X:g~Vg

J 2 3 2r x —ns

xtrr, y'r„gr„y'r, y'r& (3.12c)

(3.12d)

The last equality holds because of the identities

The low-energy theorem just derived states that
F(0, 0, 0, 0, 0, 0) = 0.

This conclusion is also false as is shown by an
elementary calculation of T z in the free massive
fermion field theory. One finds that

r"kr„= -2(~,

r"APr„= 4 sk,

+p X gV D gIf fy gV)l„p

Tg(k& p, q) 26'„~qk"p"q

as k, P, q- 0. We now wish to go back to the Ward
identities in Eqs. (3.7), (3.8), (3.9), and (3.10) and
to study their individual validity. We shall use
techniques that have been discussed extensively'
by Adler and others.

In the free massive fermion field theory quanti-
ties such as T„„qare given by loop diagrams
(Fig. 2). Thus we may write down the Feynman
expression

T&„z——~ t 4 trS(r+q)r&rsS(r+k+q)r~

x S(r p)r„rsS(r)—r.r,
+ (five other terms by permutations),

(3.12a)

which is reputedly a valid representation of T„„&.

Hence. T„„&is finite and we find that

F 1
TPvoX 16&2 ~Pvax

as k, P, q-0, which means that T„, & is not gauge-
invariant. A subtraction is necessary, and a good
representation of T„„&is provided by

1
Tpv~ghky Py q) —Tpv0)E 2 6 pvcJX. ~

CSGI /

jr
(3.13)

(The letters CSGI denote a crossing-symmetric
and gauge-invariant amplitude. )

[Alternatively, one may compute (k+ p+q) T"„„,q,
which is given by pairs of linearly divergent
Feynman integrals which would cancel pairwise
if one is allowed to shift the integration variable.
In fact these shifts are forbidden and one finds
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(k+p+q) TF„„,I(k, p, q) =(I/16II')s„„„(k+p+q) .]
Similarly, one finds that

kI'S '(k, p, q) = T—„'(k,p, q), (3.9')

Tcso~'(k, p)
-=TF„„I,(k, p)+, e„„„(p'+2k')1

(3.14)

(but not

d4
T„„(k,p) = --,' Jt, [trS(r+k)y„S(r p—)y,y,S(r)y„

+ trS(r —k P)—y&S(r P)—y,y,S(r)yI, ]),
(3.15)

provides a good representation of T„„&. On the
other hand, one verifies that P„,I, SF~, R„„, and
T z are good representations of P„,&, 8», R„&,
and T&, respectively, which confirms one of
Bardeen's conclusions. ' Putting these facts to-
gether, we see that the Ward identities of Eqs.
(3.8) and (3.9) are not modified while the Ward
identity of Eq. (3.10) is modified in the well-known
manner. We now discuss how the Ward identity
of Eq. (3.7) must be modified.

Let us next consider q T» & which consists of
18 terms. Out of these there are four that may be
identified as (0~T(A„A,A&) ~0) even though they
should not be there since the isoscalar part of the
electromagnetic current is supposed to commute
with the time component of the axial-vector cur-
rent A'„at equal time. They sum up to give a con-
tribution of (-1/32II')e„„„(k+p)' to q'TF„„I, A
second source of anomaly arises because those
terms that may be identified as (0~ T(V„A„VI,) ~

0)
and (0~T(V,A„V&) ~0) differ from the crossing-
symmetric amplitude T„„&and T„» as defined in
Eq. (3.15) by a shift in the loop momentum. In-
cluding these two sources of anomalous terms we
may write

q'T„„I,(k, p-, q) =-iP„,i(k, p, q)+ T„,I,(k+q, p)

—T,"„ (pI+q, k)+, e„„I,(k+ p)

1 , e „„ I, (3P+ 3k+ 2q)'.

(3.16)

For completeness we collect together the set of
correct Ward identities:

—T (CkSG~Iq, P+)+,e„„„(k+P+q)',
(3.7')

puPCSGI (k, p, q) SCSGI(k p q) +RCSGI (k +p q)

(3 8')

(3.10')

p v ak P Q EPvaXt (3.11')

which is to be contrasted with Eq. (3.11). The
Ward identity in Eq. (3.10') tells us that RcsIGI is
second order in momentum in the small momen-
tum limit. Hence we obtain from Eq. (3.11}

TI. (kq P& q) s f gooier P2r (3.17)

in agreement with the result of direct calculation
and with the result of Sec. II. Needless to say, the
set of Ward identities in Eqs. (3.7'), (3.8'), (3.9'),
and (3.10') is entirely consistent with the expres-
sion for the divergence of the axial-vector current
given by Bardeen. '

It is instructive to view the question from a
slightly different viewpoint. Heuristically one
might have thought that by "contracting" the
charged axial-vector currents in
(0

~
T (SA' SA AS'V~)

~
0) one obtains an amplitude

proportional to (0
~
T(V„BAoV„)~0), thus relating

y- &'»' to &'- 2y without further ado. This
"contraction" may be expressed by combining the
Ward identities in Eqs. (3.8'} and (3.9') to give

k"p'P, „'(k,p, q)= Ts '(k, p, q-)+k"R ~'(k+p, q).

(3.18)

Note that the two Ward identities we used are both
free from anomalies. In standard applications of
current algebra the so-called "surface term"
k pp Pew~i is usually. dropped. thus relating Tc~s

the amplitude for y- II'II II', to Rp~', the ampli-
tude for &'- 2y. Here, however, we must keep
terms to third order in momentum. Now, if we
used the naive Ward identity in Eq. (3.7) we would
have ascertained that P„„&is at least second order
in momentum and hence may be dropped in Eq.
(3.18). However, the appearance of an anomaly in
the correct Ward identity (3.7') informs us that in
actuality

PjP.- 4~s ~ puoI(k+P+ q)

This set of equations replaces Eqs. (3.7), (3.8),
(3.9), and (3.10). (We have introduced the notation
PcsGI PF ScsGI SF RcsGI RF and TcsGI TF )@vs p, vX.~ p ~ p X~ p X p X~

This set of Ward identities leads to the equation

k ppvqoT CSGI iTCSGI + ikPRCSGI(k +p q)

—ik "R '(k+ q, p)+ ip "R ' '(p+ q, k)
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as k, P, q-0 and hence cannot be dropped from Eq.
(3.18}if we wish to determine TPo' to third order
in momentum. Incidentally, the anomaly in the
Ward identity of E(l. (3.7') does not vanish if any
one of the three pion momenta approaches zero.
This is quite different from the behavior of the
more familiar anomaly present in E(l. (3.10').

We feel it worthwhile to emphasize again that
quantities such as T„„,z and T~& are i'n fact finite
even though they appear to diverge logarithmically.
This is because gauge invariance requires that the
photon field couples through the field tensor
F"'-e"k" —c"k". Similar remarks apply to the
&'- 2y discussion.

Why go through with this long discujsion of Ward
identities in the free fermion theory when the ac-
tual computation of T z and R„z in the low-energy
limit is (trivially) simple? The reason is that it
provides the framework within which one can de-
duce general statements about T& and R» in the
presence of interactions. Typical diagrams that
contribute to T& and R» are shown in Fig. 3.
Adler and Bardeen" "assert that to any finite
olde~ in renormalized perturbation theory the am-
plitude for y 3& and w- 2y are given by the low-
est order diagram only (Fig. 2). This conclusion
is clearly essential if the PCAC anomaly is to have
physical significance. This is an extraordinary
assertion for it tells us that PCAC and gauge in-
variance imply the existence of a spectacular can-
cellation among the infinite" collection of Feynman
diagrams, thus providing a unique opportunity to
decide whether field theory is in fact relevant to
hadron physics. In fact, decades ago people had
already computed the fermion loop diagrams for

2y and y- 3& using the nucleons as the funda-
mental fermions. " However, the justification for
calculating only one Feynman diagram in strong
interaction physics, provided nowadays by Suther-
land' and Adler and Bardeen, ' was totally lacking
then. This point does not appear to be universally
appreciated.

IV. EFFECTIVE- LAGRANGIAN FORMULATION

We consider a theory of interacting "quarks, "
octet mesons, and photons, with the interaction
Lagrangian density

&' = -gq(x)[o(x)+ ir, A(x)lq(x)

+ eq(x)Qy„q(x)A "(x),

where

(4.1)

] 8
o= Q&x. X. .

a=I

(4.2)

We demand that SU, SU, be realized nonlinearly,
so that cr,, are not independent fields, but are de-
termined by the matrix equation'4

o2+ P2 f2 (4.3)

The generator of all quark loop diagrams is the
matrix element of the S operator between quark
vacuum states (i.e., no quarks, but an arbitrary
number of mesons and photons}

(s) = (p(exp x( Jl t'(x)q'x )). (4.4)

The response to arbitrary variation of the vector
potential A „ is

e(S) =(e J(T(q(x) (y)„q(x)

x exp +i (I g (y)d~y
~

6A "(x)d x
)

= e jt tr[y„QS (x, x)j6A "(x)d'x, (4 6).

where S~(x, x) is the Feynman propagator of the
quark field, in the presence of meson and electro-
magnetic fields:

S (x y) —= -i(~(()(x)0(y))), (4.6)

Y5 Y5

where g(x) is in the Heisenberg picture. W'ff

i(S) can be th-ought of as effective action for
the photon-mesons couplings. The derived elec-
tromagnetic current density is

(a) (b)
5g e

J„(x}= „( )
= ietr[y„QS-(x, x)]. (4 7)

FIG. 3. (a) Typical diagram contributing to y 371 in
a renormalizable theory. (b) Typical diagram contrib-
uting to n 2y in a renormalizable theory. The wavy
lines represent vector gluons, photons, and possibly
other particles.

Our problem is, thus, to calculate the functional
dependence of the propagator function on the elec-
tromagnetic and the meson fields. Mathematically,
the equation to be solved is of the Green's function
type:
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(-y„[»„"+eQA"(x)]+g[o(x)+iy'p(x)]jS'(x, y)

= -5'(x —y)1.

P'm ' +m g=im„y" +e[Q, m~ ]A„y".
(4.11)

is„—-eQA„, f=y"m„,

m~') =g(+o+iy'P).

(4.9)

(4.10)

ln other words, we introduce state vectors ~x) and
an opere, tor S such that (x~s ~y) =S (x, y) and

(x~y) = 5~(x —y). Using the anticommutativity of
y', we have

Here 1 is the unit matrix in SU, SU, and Dirac-
algebra representation spaces. It is crucial, how-
ever, that the local current is calculated at the
singular point x=y. As is well known, improper
mathematical operations might lead to gauge-non-
invariant results. In order to avoid such pitfalls
we follow the suggestion of Schwinger. ' Essential-
ly Schwinger separates the points x and y and
maintains gauge invariance for all the pairs, with

the result that .the A„dependence (apart from ex-
plicit electromagnetic field strength dependence)
appears through a phase which vanishes in all phys-
ical, diagonal quantities, like J„(x).

For brevity, we regard all quantities below as
operators in Minkowski, Dirac and SU, SU3 rep-
resentation spaces. We have

(4.8)

where

Here we introduced the meson-field derivative
matrices:

m~„') =g(+5„(r+iy'S„(f))
8

=g Q (+s„o,+ iy's„q, }x,.
2 g 0

(4.12)

Multiplying Eq. (4.8}by 1t+ m~ ) and using (4.3)
and (4.11}we have

p& ~ qeQg 8
F~t) (4.14)

Once the matrix elements of &.„are known, the op-
erator S is given by

( 1|'-g'f' +(im~„) +e[ Q,
m~ )]A„)y")S =-(/+m~ )).

(4.13)

The advantage of this form is that we have sepa-
rated the perturbation'l (im „)+ e[Q, m )]A„)y":
Eventually we shall consider the soft-meson limit
(with restricted number of derivatives), for pro
cesses involving a small number of photons. Apart
from the explicit A „dependence, gauge invariance
will be maintained by dealing directly with the op-
erators &„. We have

S =i t dsexp(i(P"- g'f' +(im„+e[Q, m ]A„)y)']s}(g+m )
0

(4.15)

or

ds e fEaf2s e I(h-+h~)s(g+ m'(-)
)

0

with the definitions

(4.16)

=h, +h2,

-im(„)y",

h, =-e[Q, m'-)]A„y~.

(4.17a)

(4.17b)

(4.17c)

(4.17d)

In this formalism, the variable s plays the role of a "proper time" while the operators h and h' are highly
suggestive of the free and interaction Hamiltonian, respectively.

Using the general formula

1 1 1
A+B ~A+ dQ eA(1-ul)Q ~Aul+ ~ dg d~ eA(1 ul)g ~Aul(1-u2)~ ~Aulu2+ . ~ .

1 1 1 2
0 0 0

1 1 1

+ + n-ld+ ~i n-2d+ . . . d+ eA(l-ul)Q eAul(1-u2)Q. . .eAul ~ ~ ~ un + ~ ~ ~
1 1 ™2 2

0 0 0

we can generate S as a series in h'. At this point we introduce Schwinger's proper-time parameter
transformation: All operators and states are transformed into the "interacting picture"

(4.18)
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0 0($) —eihso e-ihs

x- xs =e' ' x.
(Internal indices are suppressed. ) The "equation of motion" reads

(4.19)

(4.20)

In particular, the Heisenberg commutation relations lead to

dx (s)
2 ()cfs

A,

2eQ-F„,(('(s)+ieQe'F„, + 2eQo 88„P"ds

(4.21)

and

i().&x(s) I y(O)& = &x(s) II I y(O)&,

I is „—eQA &(x)]&x(s) I y(0)) = &x(s) I )()((s) I y(0)& 1

I
i „—eQA)h(y) (x(s)Iy(0)) =(x(s)Iv„(0)Iy(0)& .

(4.22)

This set of equations is supplemented by the boundary condition: &x(s) I y(0)) - 6'(x —y) as s- 0. These
equations exhibit the x, y separation mentioned above. The solution of these equations (for constant elec-
tromagnetic field strength) has been given by Schwingeru:

&x(s) I y(0)) =
2 (t)(x, y) e (') s ' exp(-si(x —y) eQF ()[coth(eQFs)] 2 f(x —y)z) exp(2ieQ(f&, F"'s), (4.23)

where

S(s, e)=exp(ieQ J( ds"d„(s)),

( ), )

lie( sQhs))Ss
eQFS

F Fpp s

The matrix elements of &„are then found to be

&x(s) Iw„(s) Iy(O)&= zeQF), ukot-h(eQFs) 1] (x —y)—2&x(s) Iy(O)&,

&x(s)I1(„(0)Iy(0))= 2'eQF„,[coth-(e-QFs)+1)"Q(x —y)~&x(s)Iy(0)).

The propagator functional operator can be rewritten in the transformed language:
oo

$E i ds eis f s e-ihs+( is) du ieh(1- l ui)lsei-ihuls
1

0 0

1 1

+ ( 2S)2 u du du e ih(1-ul) sill -ihel(l-u) IuhIse-1i2 uluhs +. . .
1J 2

(4.24)

(4.25)

(4.26)

1 1 1

+(-is)") u 'du u' 'du', du e ' ' "''h'e '"" ' " 'h h e '"" "'"
+ )(i+su )1 1 2 2 I n

0 0 d0

00 1 tss 1 1

dse 's f" 1+(-is) du, k ((u, —1)s)+(-is)2 I u,du, duhh ((u, —1)s)k ((u,u2 —1)s)+ ~ ~ ~

0 0 ~0 0

1 1 1

+(-ls)" l," 'du, u," 'd, du„h'((, —1)s)h'((, , —1)s) h'((us „—1)s)+ )
X -ihsy+ ~(-) ) (4.27)

The matrix elements

s'(x, y)=-&xls"ly& = Zs„'(x, y), (4.28)
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where

S„(x,y)=i t dse '~~ '(-is)" I u," 'du, ~ ~

0 0

1

d'z&xl h'((u, —1)s)h ((u,u, —1)s) ~ ~ ~ h ((u, ~ ~ u„—1)s) Iz&

x &z(s) I /+ m&-)
I y(0)&, (4.29)

are determined by Eqs. (4.23), (4.24), (4.25), and (4.26). Equation (4.29) enables us to calculate the gen-
eral coupling of any number of photons to any number of mesons through a single fermion loop. (As em-
phasized in Ref. 1, in order to obtain the correct amplitude for a given photon-meson process terms cor-
responding to pole diagrams must be added. } In practice, the calculation of the general coupling involving
any number of photons and mesons is a rather tedious task. In what follows we content ourselves with
treating two special cases: (A} single photon coupling to any number of mesons, and (B}single meson
coupling to any number of photons.

Case A: Single-Photon Couplings

In the case of a single photon coupling to any number of mesons it suffices to evaluate our equations
only to zeroth order in e, resulting in drastic simplifications. h and h are approximated by [cf. Eq.
(4.17)]

h—= h =g', h =h, =im~„~y".0

The transformation function reads [cf. Eq. (4.23)]
4

( ( )ly(o)) =0= 16&' s2

and the momentum matrix elements are [cf. Eq. (4.26)]

(4.30)

(4.31)

&x(s) I v„ I y(o)& = —
2

(x —y) „(x(s)I y(0)&, . (4.32)

The general term in Eq. (4.27) is a product of matrix elements of h which have the following structure for
local h:

J"d'&d'n&yle'""I&&&&lh, ln&&ale ""lz&

=
Jt d'h&y(- )15(o)&.h, (5)&(( ) I (o))..

h, ($) is a c-number matrix function of the four-vector (,

(4.33)

(4.34)

and should not be confused with the operator h'(c.) which is a function of the parameter a. The dependence
of &y(-n) I t'(0)& on the pair of points y, $ is given explicitly by (4.31), so that we may use the identity

g.&y(-o') I g(0)&, = (y+2ic s,)&y(-o.) I ~(0)&,

to shift the $ dependence into an external-coordinate dependence

&y(- ) I 5(o)&.h, (5) =h, [D,( )l&y(- ) I ((o)&.

with the four-vector differential operator

D,(c.) —= y+ 2io. s„

as the argument of the h, function. The matrix element in question is thus

&y Ih'(o)
I z&. =h, [D,(o')]6'(y —z) .

(4.35)

(4.36)

(4.37)

The appropriate product of n matrix elements is a straightforward generalization

&x Ih~((u, —1)s)h'((u, u, —1)s) ..h ((u,u, ~ ~ u„—1)s) I y)

=h, [D„((u, —1)s)]h,[D,((u,u -1)s)] ~ ~ ~ h, [D„((u,u ~ ~ u„—1)s)]5 (x —y)

(4.38)
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and therefore

S.'(x, X) =i
40

1 1

dse "~'(-is)" u," 'du, du„h, [D„((u,—1)s}]x
0 0

x)s,]V,((u, u, u„—1)s)](——(s —y)„ys m~ ~(y)) (u(s)]y(())), .I
s

(4.39)
Having low-energy approximations in mind, we expand

h, [D„(o)]= -z[m(p ] (x)+ 2iom(p] s„"+2ic(m(p ]px'xp + 2(2io)'m ~„,~ s,'e p)y p,

where

m(p„] =g[-B„s„o(x)+iy'e„s„p(x)]„„
m'„-,'p -=g[-e„e,s po(x)+iy'a„]]„e,y(x)]„,

(4.40)

(4.41)

are totally symmetric tensors. Keeping terms up to and including third-order derivatives of the meson
fields, we have for the propagator function

CO 1

S (x, y)= 2
—2e 'v ' 1 —s du, [mo (x)+2i(u, —1)sm ae„]y

0 0

1 p1
+ s ' udu, I du [m(„](x)+ 2i(u, —1)sm( I]s 8]y"[m~(; ](x)+2i(u, u, —1)sm~(;,] 8„']y

0 0

1 1
—s'

] u, 'du,
] udu, I dum'„'y'm's y ms y ——(s —y), y" sm (y))s

—; e-'""' 1-s du, m'„-'(x)y" +s' u,du, du, m'-'(x)y"m' (x}y'
0 0 0 0

1 1
—s'. ,'du, ud, du, m~, ~y"m~s~ysm~s'y ——(s —y), 'y"sm (y))

1 1 1

+ is du, u, —1 m By —is' u,du, du, u,u, —1 mq y m„ay + u, —1 ~ qy ~g y
0 o ~o

'-'b)) ( -y)"y' -"'""*-"I.1 (4.42)
2s

At this point we take the limit x=y. Divergences, if any, are left in the form of integrals. Performing
the u, integrations, we end up with

S (x, x&}=, —,e ' "([1—sma y" +-'s'mo y",m]) ys —~as'm„y m & ysmz y ]m (x)
0

+i[ —'smog)y-" + -'s (mq y moI] y + m„sy"m(; y }]y]. (4.43}

Finally we calculate the trace required in (4.7), and the s integration. The resulting induced electromag-
netic current (to the first order in e} is

J"( }=xietr(Q[G(v" +of tP) (4+p„S" "+4p„, eP "]},
where 0"—= 8&o, and similarly for higher derivatives. The other quantities involved are

1
4'pva= —6„2fa(o'pavo+4 fp' va+pea()+vapo(II)u)(1)

1
24m 2 4 (opeur a+ + c

p eve' a 0 o
p duo at' + o

p 4'v 4' ac + 0p cue a 0 4' p cut' ac + 0p 4'uo ac + 0p 4vA a 4') y

(4.44)

(4.45)

@pva 24&2 4( +pcvoo4+op&4 Aao cp4voac op4v4aA+ 4'pouoao+ 4pov 4'aA Apg'voa(t) + 4 p4'u4oo) y

(4.46)

Sp pva g p

papua

g pug p a +g p ag pu (4.47)
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4& gp s 4&'
p A,

(4.48)

is a dimensionless, logarithmically divergent, renormalization constant. We add the electromagnetic
current of the free meson fields, ietr[Q(o"o+ P"P)], so that by renormalizing P, o, and f by (1+6)"'we
can write the total electromagnetic current as

(4.49)j"(x) =ietr(Q[o "o+Q"Q+4i' S"i'" +C~~„,e"i" ]].

Here 4'" and C"' are given by (4.45) and (4.46) in terms of the renormalized iluantities. The three meson
couplings are generated from the last term of 4~,~, i.e.,

8"(x}=, , tr(QPpg„&P &r)e"i'". {4.50)

Explicitly
1/2

The effective action function is W'"= fJ "(x)A„(x)d'x in this case.

(4.51}

We need the matrix element

Case 8: Single-Meson Couplings

OO 1

S, (x, x)= sdss ' ' " du, d'x&xlI ((u, —1)s)l~&&2(s)I(/+~ ')ly&.
p 0

Since the meson matrix commutes (in this case) with Q, we actually have

(4.52)

gI(&) cilia@ e i@a h $2

so that

1'i, = -igi y'Pqy", {4.53)

&x IP{(u,—1)s) I z& = J| &x (-(u, —1)s) I P(0)& Ii,( g)& t(o) I z(0)&d'( (4.54)

with &x(-(u, —1)s) I $(0)& given by (4.23). We note, however, that in S, (x, x) the phase factors P(x, y) cancel
out, so that the following identity holds,

( {- )it(0)&h, (5)=@,[ -G '( )s.]& (- )I((0)&,

where G '(o.) is the inverse of the symmetric matrix

G(ix)„,= 2iF „p{cothegnF-) i'„

so that in S~(x, x) we can write

&xlh'((u, —1)s) lz& = g'yyy„[ x—G '{(u, —1)s)s„]6'(x—z).
Therefore,

OO
~

I
S, (x, x)=g ' sdse '""

~

d , u' ypy„[x —G '((u, —1)s)s,]&x(s)lg+m~ 'ly(0)& I, „.
dp Pp

To the first order in the mesons' fields and their derivatives, we have

(4.55)

(4.56)

(4.57)

(4.58)

p
(4.59)

which contains the coupling of single mesons to an arbitrary number of photons. There is no term of the
first order in e, of course. The second-order term is

2 2

P"(x)=- g e "'~"trQ'Q iy'yj'y"o 8F
32m' U 0|,8

8s2(W2f}' "3 "v3 """ 3 (4.60)
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t& ~""8 As5A„(x)l(od'x= ,'5 -jt e"~""8„AsA„w',d'x,

we see that the induced effective Lagrangian i:s

ff e aBPfI ~ 0
16II'(2f)'" "83 '

W3
" 3

(4.61)

(4.62)

W'8 = ]I Z"(x)d4x.

Fx'oII1 (4.51) Rlld (4.62) we llRve fox' tile II1Rtx'Xx elelllellts of our IIltel'est:

m(y(k, )+ y(k, )- I(') = iE'}t",k2~eXIe, e„&,(;

(4.63)

(4.64)

m(y(k, )- II+ v(P, ) + II(P ))= IF"Ix,"e
~Pf P "e„((x(;

with

(4.65)

g+3% ]
(~&f)' (4.66)

agreeing with the result of See. II.
Recently, Wess and Zumino, using elegant variational techniques and exploiting a judicious choice of

pion field, have also constructed an effective Lagrangian which leads to Bardeen's' expression for PCS
anomalies.

V. REMARKS AND DISCUSSION

In principle, the colliding-beam experiments
e'e - y- 3& provide the cleanest determination of
I'3 . A detailed phase-space calculation is given
in the Appendix. Here we only give the approxi. -
mate expression near threshold

(~}
(I

(
+3 (2

(III 1 IIX 2 III )
24& (m, +m, +m, )'

this paper the information is of considerable the-
oretical interest.

A ind'rect determination of S"has been at-
tempted by Donnachie and Shaw" (DS) who analyze
single-pion photoproduetion data. The double-pi-
on. exchange diagram is included in the calculation
with the parameter A =—(m,'/e)E". The analysis
gives AD = 0.04 +0.15. That does not contradict
the theoretical prediction" of this paper

x(W —m, —In 2
—m~), (5.1) I m, 'r(w'-2y))"'

~fr
(5.3)

where R'=-2E is equal to twice the beam energy in
the e'e center-of-mass frame. (We have written
the formula with three unequal meson masses as
we will mention e'e - y-KX& later. ) The low-en-
ergy theorem E(l. (5.1) gives

As is well known, ' in order to bring the pre-
dicted rate for &- 2y into agreement with experi-
ment one has to set the charge matrix

.(&=3.7x(0-"~„-'(~ '
")

mw
(5.2)

giving for example o(W = 4m „)= 10 "cm'. We

hope that this will be within reach of the colliding-
beam machines in the near future. The experi-
ment will be hard, but as we have indicated in

l~-I= '
4~' m, '

(u»ng f.= (18&)0.96~. Rnd
I
&'l = (3~/»)(1/III. )1.

This leads to the estimate

which amounts to adding an extra component
("charm" current) to the Gell-Mann-Nishijima
construction so that ZP = V&+ (1/WS) V„'+ V„'. The
charm current V„' is usually taken to be an SU(3)
singlet and of the form -', (j(y„p in the (luark model
so 'thRt 'tile Rssulllptloll (c).of Sec. 11 I'enlRlns VRlld

although more perverse possibilities may be read-
ily envisioned.

Whether the electromagnetic current is purely.
an SU(3) octet or a mixture of SU(3) octet and
singlet is clearly an important question, quite
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apart from the context of this paper. The natural
way to decide this question is to look for thresh-
old product&on of K'K &,K'K'&', and K'K'& via
single-photon annihilation in e'e collision. One
concludes that the matrix elements for e'e - y

K'K &', K'K'&', and K'K'&, respectively, stand
in the ratio

(3Q —I):—3(Q —I):(3Q —3),
where Q is defined as in Sec. III by assigning the
charge (Q, Q —I, Q —I) to the fermion triplet.
[More generally, Q represents the parameter that
measures the relative strength of the SU(3)-singlet
and -octet components in S'„.1 We note that for
the case of Q =-, (J'„ is purely octet) the K'K's
mode is suppressed while for Q = I (Z~™has an
SU(3)-singlet component) the K'K &' is suppressed
Fortunately, the availability of three final states
allows us to test if SU(3)-symmetry-breaking ef-
fects are important by checking the Q-independent
linear relation between the three production
modes. [One may also compare with e'e - y- 3m

if one is willing to make additional assumptions
about SU(3) asymmetric phase spaces. ] In any
case, one would not be misled by SU(3)-symmet-
ric-breaking effects. We mention that Okubo and
Sakita" had also considered q- &'r y as related
to y- w'11 v' by SU(3). This is probably an unre-
liable way to determine y- v'1t 2' as the SU(3) re-
lation between q- 2y and &- 2y is known to be vio-
lated badly. Similar comments apply to attempts
to exploit SU(3) symmetry further by relating

y-- m'& m' to the contribution of the vector current
to Ki& decay 2s It is clear that the Sutherland ar-
gument also applies to this vertex to the extent
that the strangeness-changing vector current is
conserved. However, K«decay-differs from
y- &'»' in one significant aspect: for the elec-
tromagnetic process one may change the predicted
rate by changing the charge assignment of the
underlying fermions or equivalently by adding an
extra piece to the electroma, gnetic current, while
for the weak process this freedom is lacking. In
other words, the SU(3) rotation relates the vector
part of the K,~ to the contribution of the Gell-
Mann-Nishijima current to y- 3&.

Note Added. After this work was completed, it
was brought to our attention that Terentiev (Ref. I)
has independently discovered some of the material
in this paper.
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APPENDIX." e'e ~3 MESONS NEAR THRESHOLD

For comyleteness we include here the detailed calculation of the cross section for

e'(p')+e (p )-y-M, (q, )+M2(q2)+M5(q5), (Al)
where Ag, are three pseudoscalar mesons. We do not assume that the mesons have equal mass. The ma-
trix element for the process is given by

II=i'"—,
( tq, q, q, ~,

where I „=-v(p', s')y„u(p, s). The cross section is g'iven by

1
4

S,, S

wher-e Q=p'+p .. Hence

Nl~

(3+)5 [(P+P-)2 12 4]1/2 Q2 4 ~ a 8
8

S5$

(A3)

(A4)

d3N d3N d3Dn8 aPpa 8P p 07 =
g

& E q1~q2pq5~q1yiq2piq r.25 (Q —q1 —q2 —q5) .
8COj 6024)3
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Q" T„8 QB——T„8=0,
we have

2'
a = &(Q*),(g.s—

with I(Q'}=-', T" . Also Q"l„=0, so that

j. Slg eI' 2 j.
(2w)' [(P'P P —m']'" Q* 4+ "8+ ) ~

1

We now evaluate f(Q'). Define

(A7)

C p fyI p1
app aa'p'v%&2&x '4 2 2

—6 6 —~3
(d~ (d2

(A8)

~
rd'

~1(Q')=3 '

2
'q,"q,"J„.

QP3
(A9)

J'„, is a function of K~ Q —q, and K"J„„=K"J„„=Oso that J„„=J(K')(K'g„„—K„K,). The function J'(K') is
easily evaluated„

d3 d3

4 A.(K, m~, m2 ) (A10)

where we used the two-body phase space formula

~ d k'~ d3k2

with A,(x, y, z) -=x'+ya+z' —2xy —2xz —2yz. Then

f(Q') = —.
' ' [K'm '- (q, K)2]J(K')

2(d3

"d'q,
' dn' '[n'm ' —(q K)']J(o.')5(a''-K')

2 4)3

(A12)g"d~'J(n') ', [cPm,' —(q,q')'] 5'(q, + q' —Q) .
, 2QPS 24)

Here we introduced29 an auxiliary four-vector q' with mass u and ro' = [q"+ n'] '". Once again, we have a
two-body phase space. Using (A10}we obtain

I(Q') =—,' dn'J(a')[A(Q', cP,m, ')]'"[n'm, ' —g (Q'-m, ' —a')']

(A13)

Energy-momentum conservation fixes the integration limits to be

(m, +m, )'& n'&(W-m, )',
where W—= ~Q'. With the change of variable

a' =-,' [(W-m, )2+ (m, +m, )']+-,' [(W- m, )'- (m, +m, )']cosy,

we obtain

g2 4

j(li ) = 2+(Pf ) ~~~ dP
(

2 (1 —g'cosP) (1 y g" cosg)

(A14)
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E(W') -=—,', [(W —m, )' —{m,+ m, )'] '[(W —m, )' —(m, '+ m, ' —6m, m, )]'"[W'+ 6 Wm, + m, ' —(m, + m, )'] '"
(A16)

x[(W -m, )2+ (m, +m, )'] -2,

(W- m, )' —{m,+m, )'
(W —m, )'+(m„+m, )' '

(W —m, )' —(m, + m, )'
[W'+6Wm, +m, ' -(m, +m, )']*

(W —m, )' —(m, +m, )'
[(W —m, )' —(m, '+ m, ' —6m, m, )]

'

T»»s our &i»1 expression for 1(W'). The integral in (A15) is amenable to numerical methods.
Near threshold, R remarkably good approximation is to Set e =a'=e" =0. Then

(m, m, m, )'
I(W') = 3

m' (W -m, - m, -m, )'.
{m,+m, +m, )

(A16)

(A19)

(A20)

Putting this into Eq. (AV) we obtain the cross section near threshold,

(m,m, m, )'
~Z"~', (W-m, -m, -m, )'. (A2124~ (m, +m, +m, )'

To estimate the e'e -y- w'm m' cross section we use the experimental value of
I
&'I = (&/~)(3/2p, )

Eq. (1) to obtain
~

&"
~

= (3e/4w')(1/p, '). Setting m, =m, = m, = p, =pion mass, we get

0' = 3.7 x /0 — = 0 Q x $0 (;m
p, P, p.
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