2372 STEPHEN D. ELLIS 5

IR. Carlitz, S. Ellis, P. G. O. Freund, and Satoshi
Matsuda, Caltech Report No. CALT-68-260, 1970 (un-
published).

’R. P. Feynman, M. Kislinger , and F. Ravndal, Phys.
Rev. D 3, 2706 (1971).

3R. Delbourgo and P. Rotelli, Phys. Letters 35B, 65
971). _

4For more details of this dual model study see S. D.
Ellis, Caltech Ph.D. thesis, 1971 (unpublished). .

5S. Mandelstam, Phys. Rev. 183, 1374 (1969); K. Bar-
dakeci and M. B. Halpern, ibid. 183, 1456 (1969).

€G. Veneziano, Nuovo Cimento 5TA, 190 (1968).

"This explains why the present model gives different
results from that of R. Carlitz and M. Kislinger, Phys.
Rev. D 2, 336 (1970).

8E. L. Berger and G. C. Fox, Phys. Rev. 188, 2120
(1969).

’R. Carlitz and M. Kislinger, Phys. Rev. Letters 24,
186 (1970), and Phys. Rev. D 2, 336 (1970).

107he neutralizer function is an essential feature of the
model of Ref. 1. It is required in order to prevent the
¥, /m term in the quark propagator from contributing to
poles in any other channel except the ¢ channel. If al-
lowed to contribute, this term would not only break the
U(6)y symmetry but also lead to new poles displaced by
3 in the complex angular momentum plane.

ligee, for example, E. C. Titchmarsh, Theory of Func-
tions, 2nd ed. (Oxford Univ. Press, London, 1939),

p. 177.

12In the language of Ref. 1 this corresponds to

(*_dx__ expl—r%/4lln/x)1%}
q)(z)—.[, [In(1/x)12 x :

This function lends itself more easily to numerical cal-
culations than the example given in Ref. 1.

13A recent review of data and current theories is given
by E. Berger and G. Fox, Nucl. Phys. B26, 1 (1971).

3. Mandelstam, Phys. Rev. D 1, 1720 (1970); 1, 1734
(1970).

155G, Frye, C. W. Lee, and L. Susskind, Nuovo Cimento
69A, 497 (1970).

8Included in the constants is the fact that there are two
independent ways to construct the s, » diagram both of
which give the same contribution.

1TA program of study similar to the one discussed here,
but utilizing other dual models with spin, is currently
under way. For a review of the current situation in dual
models with spin and further references, see M. A.
Virasoro, talk at the International Conference on Duality
and Symmetry in Hadron Physics, Tel-Aviv, Israel,
1971 (unpublished).

187, Salam, R. Delbourgo, and I. Strathdee, Proc. Roy.
Soc. (London) A284, 146 (1965); B. Sakita and K. C. Wali,
Phys. Rev. 139, B1355 (1965).

19g, Delbourgo and M. A. Rashid, Proc. Roy. Soc.
(London) A286, 412 (1965).

PHYSICAL REVIEW D

VOLUME 5, NUMBER 9 1 MAY 1972

Low-Energy Theorem for y— 3w

Ruvi Aviv*
Department of Physics, University of California, Santa Barbava, California 93106

and

A. Zeef
The Institute for Advanced Study, Princeton, New Jevsey 08540
(Received 22 November 1971)

A low-energy theorem relating y— 3w to 70— 2v is derived by using anomalous Ward iden-
tities and by using Schwinger’s proper-time technique. We discuss the theoretical signifi-
cance of this low-energy theorem. In particular, the theorem is meaningful only if the par-
tially conserved axial-vector current anomaly is in fact responsible for the decay 0 2y,

1. INTRODUCTION

Recently Adler et al.! discovered a low-energy
theorem relating y— 37 to 7— 2y. The theorem
states that

eF3T =F"f, "2, 1.1)

where F3™ and F" are “coupling constants,” to be
defined in Sec. II, describing y— 37 and 7— 2y, re-
spectively. The theorem rests upon the following

assumptions:

(a) gauge invariance;

(b) Gell-Mann’s current algebra and the hypoth-
esis of the partial conservation of the axial-vector
current (PCAC); and

(c) that the electromagnetic current commutes
with the neutral axial ckarge at equal times.

We should emphasize that Eq. (1.1) is independent
of the nature of chiral-symmetry breaking. It was
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also shown! that the amplitudes for y +y- 37%and
for y+y- 7" 71"7° may be computed up to second
order in momenta in terms of one parameter, us-
ing only the assumptions (a), (b), and (c) enumer-
ated above. The value of this parameter will give
us valuable information on the nature of chiral-
symmetry breaking. In particular, its measure-
ment will shed light on the question of whether the
chiral-symmetry-breaking interaction belongs to
the representation (3, 3) of SU(2)® SU(2). These
points will be reviewed in detail in Sec. II.

As is well known, a naive application of (a), (b),
and (c¢) leads to the erroneous conclusion? that 7
-2y is suppressed to order m,. If this is indeed
the case, Eq. (1.1) would not make sense since the
PCAC error terms omitted in deriving (1.1) would
be of the same order in m, as the right-hand side.
Thus the verification of Eq. (1.1) may be construed
as evidence that 7° - 2y is not suppressed. In this
sense, Eq. (1.1) opens up the possibility of check-
ing whether 7— 2y proceeds through the anomaly3~®
mechanism, and to the extent the theory of anom-
alies correctly describes 7°—~ 2y to any® finite ov-
der in renormalized perturbation theory Eq. (1.1)
affords a unique opportunity to confront renormal-
ized perturbation theory with data.

In Sec. III we investigate the set of Ward identi-

ties relating (AAAV) to (ADA8AV) in a free
massive fermion field theory. It is shown that
some of these Ward identities are anomalous. An
interesting, albeit technical, point arises in re-
lating y— 37 to 7— 2y through Ward identities. The
Ward identities involved are in fact nof anomalous.
However, the “surface” term, which is normally
dropped in standard applications of current alge-
bra, cannot be dropped here, the reason being that
the surface term itself appears in an anomalous
Ward identity. Our results in this section are en-
tirely consistent with the general expression for
the divergence of the axial-vector current given
by Bardeen.”*®

In Sec. IV we generalize the powerful proper-
time technique developed by Schwinger® to a chiral
SU(3)® SU(3) theory. This technique enables us to
write down a formal expression containing the
most general coupling of any number of photons
to any number of mesons through a fermion loop.
Using this general expression we treat the case
of a single photon coupling to any number of me-
sons and the case of a single meson coupling to
any number of photons.

In Sec. V we discuss the experimental prospects
of measuring the amplitude for y- 3.

The Appendix contains a phase-space calculation.

II. CURRENT ALGEBRA, 72y, y=> 3w, AND 2y=>37

For the sake of completeness, we shall review in detail the argument of Adler ef al.! that the twin re-
quirement of current algebra and gauge invariance suffice to determine y— 7*7~7° in terms of 7°— 2y.
Let us write the general amplitudes (not necessarily on-shell), for 7°~ 2y and y— 7*7"7° as

MC(y(Ry)+y(k,)~ T°) =ile, €,k ky | F(R 2, k2, (R +R,)?),

2.1)

M(y(R)~7°(qo) + (g, )+ 17(q-)) = (=1) | €4.,4 40 | F*™(q. Gy, 9:9 -5 442 4.2, 5% (94 + -+ )%, (2.2)

where we have introduced the notation |abcd (=€, 53a"b” c°d™. Our result [Eq. (1.1)] relates F"=F"(0, 0, 0)
to F3"=F*"(0,0;0,0,0,0). That the approximation of the experimental quantities F"(0, 0, ,2) and

F3"(q. 4o 4,43 m o2 m %, m %, (g, +q_+4q,)) by F™ and F*" [for q.4q,, 4.9, (g, +q_+q,)? small] is a relative-
ly accurate one is the content of the standard PCAC assumption. The observed rate for 7°— 2y gives®

|F™|=(a/m)[(0.66 £0.08)m , ]~

To relate F3" to F" Adler ef al.' consider the processes y+y-37° and y+y- m*7"7° To begin with,

note that the amplitudes

A(y(k,) +v(ky) = T%(qo) + 7 %(gq) + 7(gg)) = A%
and

A(y(ky) +7 (k)= T°(go) +77(q, ) +77 (g ))= A*™°

must vanish when one lets g,—~ 0, keeping the other two pions on-mass-shell. The reason!® is that at
equal times the electromagnetic current commutes with the neutral axial charge. The next observation
is that the part of A°® and A*~° coming from diagrams with a pion pole occurring therein may be com-
puted exactly in terms of F" and F*". There are two classes of such diagrams: those involving external
photon insertions and those involving pion-pion scattering (see Fig. 1). This observation is a powerful
one in that these pion-pole diagrams by themselves neither maintain gauge invariance nor vanish in the
soft-neutral-pion limit described above, thus calling for chiral and gauge completions. By imposing the
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FIG. 1. (a) Pion pole diagram for 2y— 37", (b) Pion pole diagrams for 2y— r*7 7",

twin requirements of gauge invariance and of chirality the amplitudes A°® and A*~° may be determined up
to and including terms second order in momenta, as we shall see presently.

To compute the pion-pole diagrams of Fig. 1 we need the amplitude for pion-pion scatterlng Following
Weinberg!! we write the general off-shell amplitude up to second order in momenta as

M(T®+ 7~ 7° + %) =£57%6° [A + B(t +u) + Cs] +36%°6" [ A + B(u+s)+ Ct] +i5°%6* [A +B(s + 1)+ Cul , (2.3)

where s=(q,+4,), t=(q,—-4.)%, u=(q9,—4q,)° Note that by Bose symmetry the variables p,%, p,°, p.°, and
p42 can only occur in the combination p,?+p,2 + p.2 +p,®, and hence the above amplitude also holds off-shell.
Imposing the requirements of current algebra and the Adler consistency'® condition we obtain

M(m®+7° =~ 7° + 79 ) = 6926%¢ (f_12 (s=m 2)+B(s+t+u—3m ,2)) +permutations . (2.4)
m
We recover Weinberg’s original amplitude if we introduce the additional assumption that the o term is an

isoscalar and which fixes B=0. We are now able to write down the amplitudes A°° and A*° (the pions are
not necessarily on shell) to second order in momenta:

000 _ _jpns - (1+3/°B)(d0 + a5) + (g0 + 45 + (a5 + 45 -3m,’]
A% =—iF"f, |€1€2k1kz|< (q0+qo+quz P +Cy), (2.5)
o spmp = (g, +q_) = m 2+ f,?Bl(q, +q_ P+ (g, + ) + (go +4_F = 3m "]

At 0=—zFﬂf1r 2|€1€2k1k2!( = ) : (g, ;q_+q0)2_+ 20 = o +C,
2g, -k 29 :
+ieF3"| |€,(q, —ky)q- qol—ﬂ*-z——?)—z—!elm(q- 2)qo|————2( a- 2) 5 +(e €y, Ry k) + 1) .
(g, —Ry)?=m (- —R,)?—m, )
(2.6

Here £ is a function of €,, €,, and the available momenta. C, and C, are numerical constants. The re-
quirement that A°°- 0 as ¢,~0 with (g¢)* = (¢5)* = m ,” fixes C, to be —(1+3 f.2B). Similarly, C,=~-(1+ f,;?B).
Gauge invariance asserts that under the variation €,—¢, +Ak2,h ~h + | €,kq,(q,+q.)|. The unique solution
respecting Bose symmetry is & =|€,€,q,(k, - k,)|."* A% and A*~° are now determined up to second order in
momentum in terms of F™ and F3". These amplitudes for 2y- 37 have been presented and discussed by
Adler et al.*

In order to fix F3" in terms of F" we write down the most general expansion for the amplitude

Ay(y) +y(ky) = 14T +T°)
up to second order in momenta and respecting Bose symmetry and G parity:
AT = (55350 4 59355 + 6Y35% )t | €,€ k1R, |+t | €4, €5 oy = Ry 6°6(q, + G5) + 8°°8% (g +4.) + 87°6°(g, +q,) |-
(2.7)

Here a, and @, are arbitrary constants. (Note that gauge invariance may not be imposed.) Demanding
that Eqs (2.5) and (2.6) be consistent with Eq. (2.7) we obtain immediately the relation

eFS" =F"f, "2 (2.8)
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which is the desired result. A most remarkable feature of the relation in Eq. (2.8) is its independence of
the parameter B and hence of any assumption about the isospin of the 0 term. In contrast, the measure-
ment of 2y~ 37 would yield a value for B. The popular (3, 3) model of chiral-symmetry breaking predicts
that B=0. )

As mentioned in the Introduction, Eq. (2.8) depends on three assumptions referred to as (a), (b), and
(c). Assumption (c) represents the local generalization of the self-evident statement that the electromag-
netic charge commutes with the neutral axial charge. It appears to be not inconsistent with existing
photoproduction data.* On the other hand, it leads to two!® unhappy predictions: (1) that!® the decay
n- 37 is forbidden, and (2) that'” m g +% — myo%=m +> = M 10°. An independent confirmation or negation of
assumption (c) would thus be of considerable interest.

III. WARD IDENTITIES

In this section we employ the traditional techniques of Ward identities to discuss the process y- 37.

Before we proceed we define a collection of time-ordered products of currents.

€QT yyor(k, p, ) =i f déxd*ydz ® P90 T A5 (x) A} (y)AS (2)V(0)]0), (3.1)
€®°QT\(k, p, q) =i f déxdiydiz e ®* P29 (0| T3 A%(x)d A%(9)9 A°(2)V(0)|0), ‘ (3.2)
QS \(k, p, q)=i f dixdiydiz ¢ F+27+eD (0| T A%(x)0 A%(y)2 A%(2)V,(0)| 0) (3.3)
€ QP i (k, P, q) =i f dixdtydiz ' ®* P70 | T A% (x) Ab(¥)8 A°(2) VA (0) | 0), (3.4)
6QT (R, p) =i f d*xd*y e“""*"”><05| TV (x)A(y)V1(0)]0), (3.5)
0UQR (R, p) =i f déxdy ' ®*+2) (0| TVf,(x)aA”(ySVX(O) [0). (3.6)

We work in the free massive fermion field theory
and define the axial-vector current as A{(x)
E'z/]%r“ YuYs¥ and the electromagnetic current as
Vu(x)=PAqy,¥, where 7,=2, fora=1,2,3,

and @=Q ~ 3. We have in mind a theory with a
triplet of fermion fields having the same isospin
and hypercharge assignment as the SU(3) quark
model. In order to discuss 7°— 2y and y- 37 we
ought to work in a theory with pions and incorpo-
rating chirality, such as the o model of Gell-Mann
and Lévy.® However, it would become apparent
that the Feynman amplitudes-describing 7%~ 2y
and y- 37 in the 0 model are intimately related to
the time-ordered products R, and T, as evaluated
in the free fermion field theory. On the other hand,
- we were instructed by Ref. 1 that it does not suf-
fice to consider the free massive fermion field
theory in a discussion of 2y - 37.

Standard techniques and Gell-Mann’s current al-
gebra lead to the following naive Ward identities:

quuvo)\(k’ b, q) =iPuy)\(k: by q)
+ Tuu)\(P"'q, k) - Tuu)\(k +4q,p),
(3.7

PyPuu)\(k’ P, q) =Su x(k, p, q) +Ru )\(k +P, q)’ (38)
kpsu)\(k, by q)=_T)\(k9.b, q)’ (3.9)
pyT;wx(k, P)ziRux(k: P) (3-10)

Note that the o term does not play a role here.
The Ward identity in Eq. (3.10) is responsible for
the famous false statement? that 7°~ 2y is forbid-
den by PCAC and current algebra. Let us briefly
review the reasoning which led to the preceding
statement. Define

Ru )\(k, P) = ieuvo)\pykcf(kz, sz (k +P)2) .

The invariant amplitude describing 7°— 2y is pro-
portional to f(0,m .2, 0). PCAC assumes that
f(0,m .2, 0)~£(0,0,0). We now determine £(0, 0, 0)
as follows. In the limit &, p— 0 crossing symmetry
(and parity) imply that T, (k, p)~ A€,y 01 (2k +p)°
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for some constant A. Gauge invariance

[£*T ,,»(k, p) =0] demands that A vanishes. Equa-
tion (3.10) now states that f(0,0,0)=2A4 =0. This
conclusion is in fact false as is shown by an ele-
mentary calculation of £(0, 0, 0) in the free massive
fermion field theory.

Similarly, we now show that the Ward identities
(3.7, (3.8),.(3.9), and (3.10) imply that y— 37 is
forbidden. We put the Ward identities (3.7), (3.8),
(3.9), and (3.10) together to obtain

kED'G°T yyor(®, b, q)
=—iT\(k, P, q) +ik*R \(k + D, q)
+ip"Ry \(p+q, k) - ik*R \(k +q, p).
(8.11)

To lowest order in momentum we must have

T yoro(Rs P, @)~ B€ 5 as k, p, g~ 0 with B some
constant. Hence Eq. (3.11) implies that

=iT\(k, P, @)=~ B€,,52k"p"q°. But gauge invariance
requires that

(e +p+ @ T yor(ky b, 9)=0,
so that B=0. The amplitude for a virtual photon
to produce three pions,

F(m y*,m o*,m %, kp, kq, pq),
is defined by

T\ (%, p, @)= F (K%, 1%, ¢, kD, kq, pg)€ york P q° .

The low-energy theorem just derived states that
F(0,0,0,0,0,0)=0.

This conclusion is also false as is shown by an
elementary calculation of T, in the free massive
fermion field theory. One finds that

-
T)\(k, b, q)"’ ﬁEMonkﬂp"qo

as k, p,q—- 0. We now wish to go back to the Ward
identities in Eqgs. (3.7), (3.8), (3.9), and (3.10) and
to study their individual validity. We shall use
techniques that have been discussed extensively?
by Adler and others.

In the free massive fermion field theory quanti-
ties such as 7', ., are given by loop diagrams
(Fig. 2). Thus we may write down the Feynman
expression

dty
Tiyor= IW trS( +q)y, 7S +k +q)yy

X S('V - P)’}’u'}/ss(?’)?/u?’s
+ (five other terms by permutations),
(3.12a)

which is reputedly a valid representation of T, 4»-

5
%X %%
8A %%
% £ A
(a) (b)

FIG. 2. (a) The diagram which together with its per-
mutations describes T, ) in a free-fermion theory.
(b) The diagram which together with its permutations
describes T, in a free-fermion theory.

Note that Tﬂ,,cx is superficially only logarithmical-
ly divergent and so there can be zo question on how
the loop momentum is to be labeled. In fact,

Tﬁ,,o,\ is finite. To establish this fact we introduce
a regulator field of mass A and write the logarith-
mically divergent part of T}, as

i Te=
“'f,,.z am? [ G5 @) 0= m?F

Xtrys ¥va Pro ¥voty,  (3.12¢)
=0, (3.12d)

o 7y, Vs VYA 7Y — (m = A)
(3.12b)

The last equality holds because of the identities
f dty(r? -

Y“d?’p =_2d’
Y'd¥y,=4a-b,

2)~-5
m ) prvr)\rgocgungU

+8ur8vo+&uc8uns

and
VY éy, =26V,
Hence T}, is finite and we find that

1
Tpvux" 1672 €pvon

as k, p, g— 0, which means that T}, is not gauge-
invariant. A subtraction is necessary, and a good
representation of T, is provided by

1
Tﬁls/%l)\(kx P, q)ETﬁuo)\_ zepyc)\- (3-13)
167

(The letters CSGI denote a crossing-symmetric
and gauge-invariant amplitude.)

[Alternatively, one may compute (k+p+q) 5,0,
which is given by pairs of linearly divergent
Feynman integrals which would cancel pairwise
if one is allowed to shift the integration variable.
In fact these shifts are forbidden and one finds
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(k+p+q) Thyor(®, P, @)= (1/167%)€ 0 (k +p +q)*.]
Similarly, one finds that

1
Elslg;\](k P) T y)\(k P)+ 2€uvc)\(p0+2kc)
167
(3.14)
(but not

Tﬁy)\(k’ p) = _% f(_g;{z[trs(y +k)'y)\S(’V - p)’}’v')’ss(y))’p

+trS(r =k = p)v, SO = p)rysS@Inal),
(3.15)

provides a good representation of T,,. On the
other hand, one verifies that Pj,, Sh\, R}, and
T{ are good representations of Py, Syx By
and T,, respectively, which confirms one of
Bardeen’s conclusions.” Putting these facts to-
gether, we see that the Ward identities of Eqgs.
(3.8) and (3.9) are not modified while the Ward
identity of Eq. (3.10) is modified in the well-known
manner. We now discuss how the Ward identity

of Eq. (3.7) must be modified.

Let us next consider q"Tﬁwx which consists of
18 terms. Out of these there are four that may be
identified as (0| T(A,A,A,)|0) even though they
should not be there since the isoscalar part of the
electromagnetic current is supposed to commute
with the time component of the axial-vector cur-
rent Af, at equal time. They sum up to give a con-
tribution of (=1/327%)€ 0, (k+p)° to ¢°TH,0n. A
second source of anomaly arises because those
terms that may be identified as (0| T(V,A,V))|0)
and (0| T(V,A Vx)|0) differ from the crossing-
symmetric amphtude T,,,,x and T,,,,)\ as defined in
Eq. (3.15) by a shift in the loop momentum. In-
cluding these two sources of anomalous terms we
may write

_quﬁuc)\(k’ p, Q) = —iPﬁuX(k’ p’ Q) + TI;:U)\(k +4q, p)
1
- Tfu )\(P"' q, k) + Weuuo)\(k +p)c
€uvon(3p+3k +29)°.

(3.16)

For completeness we collect together the set of
correct Ward identities:

1
T 32m

°T 5ok, b, ) =iPTR (R, b, )+ TS (P +, k)

- TRk +q,p)+ o zauuox(k +p+q)°,
(3.7
P'PE]UR, b, ) =SECN (R, p, 4)+ REE (R + b, q),
(3.8)

kESSSCH (k, p, q) = =TSO, p, q), (3.9")

P'THN (R, p) =iRSE (&, p)—z—z ok’ (3.10)

This set of equations replaces Eqgs. (3.7), (3.8),
(3.9), and (3.10). (We have introduced the notation
Pﬁi&l =Pﬁu)\’ Su)\ _Sﬁ)\» RES)\G‘ _Ru)\, and TCSGI TF)
This set of Ward identities leads to the equation

kP QOT SN = =TS +ik*REC (& + p, q)

—ik* R (R + q, p) +ip" RSN (p + g, k)

47rzk“pq €uvons (3-11’)
which is to be contrasted with Eq. (3.11). The
Ward identity in Eq. (3.10’) tells us that RS is
second order in momentum in the small momen-
tum limit. Hence we obtain from Eq. (3.11)

TS (y £, 4)~ s Cuvork 00 (3.17)
in agreement with the result of direct calculation
and with the result of Sec. II. Needless to say, the
set of Ward identities in Egs. (3.7’), (3.8"), (3.9"),
and (3.10’) is entirely consistent with the expres-
sion for the divergence of the axial-vector current
given by Bardeen.”

It is instructive to view the question from a
slightly different viewpoint. Heuristically one
might have thought that by “contracting” the
charged axial-vector currents in
0|T(8A*8A~8A°V,)|0) one obtains an amplitude
proportional to (0| T(V,8A°V,)|0), thus relating
y=7"1"m° to 7%~ 2y without further ado. This
“contraction” may be expressed by combining the
Ward identities in Eqs. (3.8’) and (3.9’) to give

REPPES (b, b, 4)= =TS (k, b, q) + k*REC (k +p, q).
(3.18)

Note that the two Ward identities we used are both
free from anomalies. In standard applications of
current algebra the so-called “surface term”
EFp’POR! is usually dropped 1% thus relating T$5¢!,
the amplitude for y—7*7"7° to RGSC!, the amph-
tude for 7°~ 2y. Here, however, we must keep
terms to third order in momentum. Now, if we
used the naive Ward identity in Eq. (3.7) we would
have ascertained that P,,, is at least second order
in momentum and hence may be dropped in Eq.
(3.18). However, the appearance of an anomaly in
the correct Ward identity (3.7’) informs us that in
actuality

+7
PEE T~ Z.,?é'epvc)\(k +P+q)°
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as k, p, g— 0 and hence cannot be dropped from Eq.
(3.18) if we wish to determine T$5%! to third order
in momentum. Incidentally, the anomaly in the
Ward identity of Eq. (3.7’) does not vanish if any
one of the three pion momenta approaches zero.
This is quite different from the behavior of the
more familiar anomaly present in Eq. (3.10’).

We feel it worthwhile to emphasize again that
quantities such as Tﬁua)\ and 7% are in fact finite
even though they appear to diverge logarithmically.
This is because gauge invariance requires that the
photon field couples through the field tensor
FH’ ~eFRY — €’k*, Similar remarks apply to the
7%~ 2y discussion.

Why go through with this long discussion of Ward
identities in the free fermion theory when the ac-
tual computation of T, and R, in the low-energy
limit is (trivially) simple? The reason is that it
provides the framework within which one can de-
duce general statements about T, and R, in the
presence of interactions. Typical diagrams that

. contribute to 7', and R, are shown in Fig. 3.
Adler and Bardeen®:2! assert that to any finite
order in renormalized perturbation theory the am-
plitude for y— 37 and 7- 2y are given by the low-
est order diagram only (Fig. 2). This conclusion
is clearly essential if the PCAC anomaly is to have
physical significance. This is an extraordinary
assertion for it tells us that PCAC and gauge in-
variance imply the existence of a spectacular can-
cellation among the infinite?? collection of Feynman
diagrams, thus providing a unique opportunity to
decide whether field theory is in fact relevant to
hadron physics. In fact, decades ago people had
already computed the fermion loop diagrams for
T— 2y and y— 37 using the nucleons as the funda-
mental fermions.?® However, the justification for
calculating only one Feynman diagram in strong
interaction physics, provided nowadays by Suther-
land? and Adler and Bardeen,® was totally lacking
then. This point does not appear to be universally
appreciated.

1A Y
7s %
% %
N
(a) (b)

FIG. 3. (a) Typical diagram contributing to y— 3r in
a renormalizable theory. (b) Typical diagram contrib-
uting to m— 27y in a renormalizable theory. The wavy
lines represent vector gluons, photons, and possibly
other particles.
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1V. EFFECTIVE-LAGRANGIAN FORMULATION

We consider a theory of interacting “quarks,”
octet mesons, and photons, with the interaction
Lagrangian density

£ = -gg(x)o(x) + iy, (x)lq(x)
+eq(x)Qy,q(x)A" (x), (4.1)
where

1
¢= Ta
and (4.2)

1 8
== 2,0,A,.

We demand that SU,® SU, be realized nonlinearly,
so that o, are not independent fields, but are de-
termined by the matrix equation®*

o2+ ¢2%=f2, (4.3)

The generator of all quark loop diagrams is the
matrix element of the S operator between quark
vacuum states (i.e., no quarks, but an arbitrary
number of mesons and photons)

(S)= <T(exp[ +i f £’(y)d4y] )> . (4.4)

The response to arbitrary variation of the vector
potential A , is

o(s)=te [ (7(at9@r,.a

Mm

Palq

1
o

X exp[ +1 f.ﬁ’ (y)d‘*y] )> 0AH(x)d*x

e f trly, @S (x, )16 A (x)d%x, (4.5)

where S¥(x, x) is the Feynman propagator of the
quark field, in the presence of meson and electro-
magnetic fields:

§F(x, y)= ~KT@x)G)), (4.8)

where §(x) is in the Heisenberg picture. W

= -i(S) can be thought of as effective action for
the photon-mesons couplings. The derived elec-
tromagnetic current density is

eff
Jo(x)= ;AL,M = —ietrly, Q8" (x, x)]. @.7)

Our problem is, thus, to calculate the functional
dependence of the propagator function on the elec-
tromagnetic and the meson fieids. Mathematically,
the equation to be solved is of the Green’s function

type:
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{=vulis} +eQA* (x)] + glo(x) + iv3p (x)]} ST (x, y)
==6%x-y)1.

Here 1 is the unit matrix in SU,® SU, and Dirac-
algebra representation spaces. It is crucial, how-
ever, that the local current is calculated at the
singular point x=v. As is well known, improper
mathematical operations might lead to gauge-non-
invariant results. In order to avoid such pitfalls
we follow the suggestion of Schwinger.® Essential-
ly Schwinger separates the points x and y and
maintains gauge invariance for all the pairs, with
the result that the A, dependence (apart from ex-
plicit electromagnetic field strength dependence)
appears through a phase which vanishes in all phys-
ical, diagonal quantities, like J,(x).

For brevity, we regard all quantities below as
operators in Minkowski, Dirac and SU,® SU, rep-
resentation spaces. We have

(f+m®)SF = -1, (4.8)
where
T,==id, —eQA,, F=y'm,, (4.9)

(4.10)

In other words, we introduce state vectors |x) and
an operator S¥ such that (x|S%|y) =S¥ (x, y) and
(x|y) = 6%x ~y). Using the anticommutativity of
¥°, we have

m® =g (x0+iy®¢).

sF=i fwds expG{A?-g2f2+(@im ) +elQ,mO A W} + m )

or
Sinf ds e=i8%% g=ilksnD)s(f 4 1y ()
[

with the definitions
h=-12,
h'=h,+h,,
h,= —im(”')y“ ,

hy=-elQmD]A .

Im® e mOf=im Dy +e[@m V1A ¢ .
' (4.11)

Here we introduced the meson-field derivative
matrices:

m$ =g (£8,0+iy°8 ,¢)

1 3 ,
87 Eg (£3,0, +73Y°8 .0, )2, - (4.12)

Multiplying Eq. (4.8) by #+m ™ and using (4.3)

and (4.11) we have

{#2-g2f2+(im? +elQm1A WIS = =(f + m ).
(4.13)

The advantage of this form is that we have sepa-
rated the “perturbation” (im{ +e[@,mP]A )r*:
Eventually we shall consider the soft-meson limit
(with restricted number of derivatives), for pro-
cesses involving a small number of photons. Apart
from the explicit A, dependence, gauge invariance
will be maintained by dealing directly with the op-
erators 7,. We have

H2=m,m" +3eQ0,, FOP. (4.14)

Once the matrix elements of 7, are known, the op-
erator S¥ is given by

(4.15)

(4.16)

(4.17a)
(4.17b)
(4.17¢)
(4.17d)

In this formalism, the variable s plays the role of a “proper time” while the operators % and 2’ are highly
suggestive of the free and interaction Hamiltonian, respectively.

Using the general formula

1 1 1
eA+B = eA + f dur eA(l—ul)B eft 4 f “1‘1“1 f duz eA(l-—ul)B eAul(l—uz)B eftit2 4 ..
0 0 0

1 1 1
+ f u1"-ldu1 f uzn—zduz, .o f du,, eA(l_ul)B eA"l(l —ug)B, cegAutun Ly L ,
[ o 0

(4.18)

we can generate S” as a series in 2’. At this point we introduce Schwinger’s proper-time parameter
transformation: All operators and states are transformed into the “interacting picture”
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O- O”(s)zeihso e-ihs ,

[%)~ |x(s)=e*"*[x). (4.19)
(Internal indices are suppressed.) The “equation of motion” reads

do(s) A

ds = ~l0(s)h]. (4.20)

In particular, the Heisenberg commutation relations lead to

dzu(s) A

dﬂ—\: = _2";1(3))

dam A A . (4.21)

7;& =—2eQF,,T"(s)+ieQ0"F,, +3¢Q0 30 ,F*P,
and

18,(x(s) | ¥(0)) = (x(s) [ [ ¥(0)) ,

[i6, — eQA ,(x)x(s)| (0 = (x(s) | 7, (s) | y(O)), (4.22)

.0 ~
(#557 - e@4,0) (x(5) 500D = ()] 7, 50 .
This set of equations is supplemented by the boundary condition: (x(s)|y(0))~ &*x—y) as s— 0. These

equations exhibit the x, y separation mentioned above. The solution of these equations (for constant elec-
tromagnetic field strength) has been given by Schwinger®:

(x(s) | (0)) = l—g—;—z(p(x, y)e L@ s 2 exp{-ti(x — y)* eQF 4 plcoth(eQFs)]?Y (x - y), } exp(3ieQo ,, F*’s),  (4.23)

where

(p(x,y):exp(ieQ j;rdz“A“(z)> ,

L(s)=3tr 1n(ﬂ“—2%§§f—)) ) (4.24)
F=F,,.

The matrix elements of 7, are then found to be
(x(s) |, (s) | 9(0)) = —3€QF ,[coth(eQF's) — 1]° (x — v) ,(x(s) | »(0)), (4.25)
(x(s)[7,(0) [ 9(0)) = —3eQF ,,[coth(eQF s) + 117 (x = y) ,(x(s) | y(0)) . (4.26)

The propagator functional operator can be rewritten in the transformed language:

SF =4 fwds eing23<e-ihs+(-—is) f 1,dule-ih(1-ul)sh!e-ihuls
0 0
1 1
+(=is)? f uyduy f du, e HA-uDspl gmihu(-uds pl p-ihuguys | ...
0 0
1 1 1 ' )
+(=is) f uln-ldul f uzn—zduz. .. f du"e-ih(l-ul)shl eihulmu)spl oLl p=ihuysttuy ) (7f+m('))
V) [V] 0
=1 f ds et <1 +(=is) f du, ' ((uy = 1)s) +(=is) f w,du, f du h (g = 1)) ((uytty = 1)s)++ - +
o o R b

+(=is)" J;lul""dul j;luz""'zduz- .. j;ldu,,fi'((ul = 1)) (g = 1)s) + + » AF (g4 + 4y — 1)5) + » + )

xe s+ m(7). (4.27)
The matrix elements

S*(x, y)=(x|S*|y) = %}Sf(x, ), (4.28)
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where

© 1 1 ~ ~ ~
SF(x, y)=i f ds e~ (—is) f w," "y f a2 (x| BT (uy = 1)s)R ((uytty = 1)s) = = R (" + 4y — 1)) | 2)
) [ 0]
x(z(s)| A +m| y(0), (4.29)

are determined by Egs. (4.23), (4.24), (4.25), and (4.26).. Equation (4.29) enables us to calculate the gen-
eral coupling of any number of photons to any number of mesons through a single fermion loop. (As em-
phasized in Ref. 1, in order to obtain the correct amplitude for a given photon-meson process terms cor-
responding to pole diagrams must be added.) In practice, the calculation of the general coupling involving
any number of photons and mesons is a rather tedious task. In what follows we content ourselves with
treating two special cases: (A) single photon coupling to any number of mesons, and (B) single meson
coupling to any number of photons.

Case A: Single-Photon Couplings

In the case of a single photon coupling to any number of mesons it suffices to evaluate our equations

only to zeroth order in e, resulting in drastic simplifications. % and 2’ are approximated by [cf. Eq.
(4.17)]

h=ho=§%, h'=h =imPy*. (4.30)
The transformation function reads [cf. Eq. (4.23)]
_ =t 1 /as)e-n)?
(x(S)ly(O»o— 1672 52 e (4.31)

and the momentum matrix elements are [cf. Eq. (4.26)]

(x(s)|m, [y(O) = —-21;(x—y)u<x(8)ly(0)>o. (4.32)

The general term in Eq. (4.27) is a product of matrix elements of h* which have the following structure for
local 2%:

<y|ﬁ’(a)lz>o=ffd‘*zd‘*n(y!e“'o“l£><£|hlln><n|e-*hoa|z>

= [ @&(y(-a)| 5O (EXE@)] 20,
h,(£) is a c-number matrix function of the four-vector £,
h(B)= =i gm0, (4.33)

and should not be confused with the operator h! (@) which is a function of the parameter a. The dependence
of (y(—a)| £(0)) on the pair of points y, £ is given explicitly by (4.31), so that we may use the identity

Eo(¥(=a) [ £(0)) = (y + 208, )XXy(~a) | £(0)), (4.34)
to shift the £ dependence into an external-coordinate dependence
(¥(=a)| &N, (&) =k, [D () (¥ (=) | £(0)), (4.35)

with the four-vector differential operator
Dy(a)=y+2iad, (4.36)
as the argument of the %, function. The matrix element in question is thus
(2" (@) | 2) =k [D (@)]6%(y - 2). (4.37)
The appropriate product of » matrix elements is a straightforward generalization
([ (g = 1)) (g = 1)8) + =+ I (5 + + w4, = 1)5) | 3)
=k D, = D)$)]h,[D (s, =1)8)] - + + oy [D (1057 - + 1, = 1)5)]6%(x = )
(4.38)
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and therefore

w . 1 1
SF(x, y)=1 f ds e~ %s(—jg) f u," 'du,- -+ f -du,h,[D ((u, = 1)s)]x
0 0 . 0

hl[Dx((uluz' t U, = 1)3)](— élg(x - y)uyu + m(_)(y)> (x(s)ly(0)>o .

4.39
Having low-energy approximations in mind, we expand ( )
kD, ()] = -i[m("’) (x) + 2iam(“,,) 8 + 2iam “,}px % +L(2ia)2m! u,,pa Vol lyH, l (4.40)
where
m') =g[-8,8,0(x) +i7°8,8,0(x)],,, ’
m(,,',,)p sg[—a“a,,apo(x) + iysapavap¢(x)],=o (4.41)

are totally symmetric tensors. Keeping terms up to and including third-order derivatives of the meson
fields, we have for the propagator function

SF(x,y)=-——-—1; = f —%e"‘zﬂs(l—sf du[mD (x) + 2 (u, = 1)sm Lol ]y
s Jo S . °
1 1
+szf uldulf duz[m(o[)(x)+2i(u1-l)smtgaf]y [ms)(x)+21(ulu2—1)sm5 aTly®
0
1 .
-s ful dulf uzd“zf duym Dy m(5)7/6><—%(x—y),,)/"+m(')(y)>e‘(”“’s)("'”)2
1 “ds _igzs2 (=) (40t 4 2 \ ! (=) (Yo (=) (Y, B
:16772,[ Pk l—sf du,m'y (x)y*+s fuldulf du,m'y (x)y*m's’ (x)y
(4] 0 ] 1]
s 1 ! ! 2.6 1 v, (=)
=s fulzdulf uzduzf dusm Dy m G yPmy —55 ¥ =9V +m 7 (y)
0 (4] 0

1 1 1 .
+ <is f du,(u, - l)mg('%'y"‘ —is? f u,du, f du,[ (uu, - l)m(a')yémtgy“+ (%, - l)m%'%y"‘m(g)y's]>
0 0 0

1 -
<[ (=g =7 e mO) (=) 42 et w} . (4.42)
At this point we take the limit x=y. Divergences, if any, are left in the form of integrals. Performing
the u, integrations, we end up with
SF(x, %)= 161r2 f ‘sii e {1 —sm Py +L£2m Dy m ) ¢ = 25m Dy m S vBm ) v Im ) (x)
[\]
+il —2sm Gy + 1s2(mByP m Gy v+ m ) v m$y%)]P}. (4.43)

Finally we calculate the trace required in (4.7), and the s integration. The resulting induced electromag-
netic current (to the first order in ¢) is

J*(x) =ietr{Q[G(oto + pF ) + 81, S* PV + 8 € P 7]}, C (4.44)

where ¢*=8", and similarly for higher derivatives. The other quantities involved are

1
q’%?}o = _8,”—2f5(0'p0uo + ¢p¢uc+°p Oyt ¢po¢u)

4(0 0,050 +0,0,050 —0,0,050+0,0,¢50+P,0,05¢ = Dp0y D0+ P, P00+ P, 0,0, #),
(4.45)

241r2f

Q%Loz EZ;;I.T(_O/JUVOG(P +op0u ¢o° _Gp ¢),,0'00 _°p¢u¢o¢ + ¢p0vooo +¢‘p0u ¢o¢ - ¢p¢voc¢ + ¢p¢u¢’oc):
(4.46)

S”P”GEgﬂpgyo_g”vgpo+gﬂ°gpu, (4.47)
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and

_&% (Tds ipps _ 8% (TN iy 4.48
C=4m ) ¢ Ty ), X ¢ 49

is a dimensionless, logarithmically divergent, renormalization constant. We add the electromagnetic
current of the free meson fields, ietr[Q(c*c +¢*¢)], so that by renormalizing ¢, o, and f by (1+G)Y2 we
can write the total electromagnetic current as

J*(x)=ietr{Qlo*o +¢" ¢ + &Y, S*PV° + &%) e PV}, (4.49)

Here & and @ are given by (4.45) and (4.46) in terms of the renormalized quantities. The three meson
couplings are generated from the last term of 6‘33,0, i.e.,

ie p
JH(x) = Py tr(Qe, ¢, ¢ ,0)e" P77, (4.50)
Explicitly
H _____Z:e__ +or- + - ] 1 2 1z ’ 0770( 0 J_ ppvo
JH(x) = 127W3 F Y (momy + Ky K\ 78+ 75 Mot 3) M6 + KSK)(mg —V3 1) |e . (4.51)

The effective action function is Weff= f J#(x)A ,(x)d*x in this case.

Case B: Single-Meson Couplings
We need the matrix element

SP(x, )= fmsds eie%s fl Aud*z(x |h ((u, - 1)s) | 2)2(s) | (F + m )| ) . (4.52)
0 o
Since the meson matrix commutes (in this case) with @, we actually have
@) =e'*h et ph==ff2, p, = —-igiyio,v¥, (4.53)
so that
(x [R"((u, = 1)s) | 2) = f(x(—(ul = 1)s)| &0N A, (£XE(@)]2(0)d*g (4.54)

with (x(~(z, - 1)s)| £(0)) given by (4.23). We note, however, that in S¥(x, x) the phase factors ¢(x, y) cancel
out, so that the following identity holds,

(w(=0) | £ON A, (&) =h,[x -G ~(a)a Jx(-a) | £(O)) , (4.55)
where G “!(a) is the inverse of the symmetric matrix
G(a)y =3iF , ,(cotheQaF)*, (4.56)
so that in S¥(x, x) we can write
(xR ((u, = 1)) 2) =g V*r* ¢ u[x = G((u, = 1)5)8,]6%(x - 2). (4.57)
Therefore,
0 A 1
SF(x, x)=g f sds e~1¢*%s f du,y®y" ¢ ,[x = GH((u; = 1)s)0, [(x(s) | 7 + m 9O =y . (4.58)
0 0 :
To the first order in the mesons’ fields and their derivatives, we have
2 w
JH(x) =i f’g ﬂéf d?s e %% oL6) tr[Qe,y" Y5y explites Qo s F*P)] (4.59)
0

which contains the coupling of single mesons to an arbitrary number of photons. There is no term of the
first order in e, of course. The second-order term is

2,2
w €8S
7=~ |

£

e ig2f2s trQ2¢yi'y5y" y”o“ BFa 5

—-——ez'——e"‘ﬂ’”’F 1 Tr°+—l- +2 2\, (4.60)
—8772(‘/7]:) aB3 v \/gﬂu 3 M |- .
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Using

fe"‘ﬂ””aaA p0A ,(x)1)d*x =30 fe"‘ﬂ“"aaA pA T d,

we see that the induced effective Lagrangian is

Leff = e’ EaﬂuuF l ,”o+_1.n +2 _1/2
167,-2(2]:)1/2 aB3 v ‘/‘3“ v 3

and

W°“=f£°ff(x)d4x.

7715) A "

|on

(4.61)

(4.62)

(4.63)

From (4.51) and (4.62) we have for the matrix elements of our interest:

m(y(k,) +y(ky)~ 1) =iF Kl kPelel € pys
and

m(y(ky) =10+ 7 (p,) +77(p.)=iF* ke Pplple npys
with

eFtt 1
F™ (2 f)

agreeing with the result of Sec. IL

(4.64)

(4.65)

(4.66)

Recently, Wess and Zumino,® using elegant variational techniques and exploiting a judicious choice of
pion field, have also constructed an effective Lagrangian which leads to Bardeen’s” expression for PCAC

anomalies.

V. REMARKS AND DISCUSSION

In principle, the colliding-beam experiments
e*e” - y- 37 provide the cleanest determination of
F3", A detailed phase-space calculation is given
in the Appendix. Here we only give the approxi-
mate expression near threshold

~ 2 e (mlmgmg)a 1/2
O(W)_24TIIF , <(m1+m2+m3)9>

X(W =m = my—m,)?, (5.1)

where W= 2E is equal to twice the beam energy in
the e*e” center-of-mass frame. (We have written
the formula with three unequal meson masses as
we will mention e*e”— y— KK later.) The low-en-
ergy theorem Eq. (5.1) gives

e 1
4% m B

[using f, =~ (1/~2)0.96m , and |F"|= (3a/27)(1/m )].
This leads to the estimate

e

(5.2)

- 4
o(W)=~3.7x107 1% , 2 (W______?.m,,)

mq

giving for example o(W =4m )= 107% cm?. We
hope that this will be within reach of the colliding-
beam machines in the near future. The experi-
ment will be hard, but as we have indicated in

r

this paper the information is of considerable the-
oretical interest.

An indirect determination of F*" has been at-
tempted by Donnachie and Shaw®® (DS) who analyze
single-pion photoproduction data. The double-pi-
on exchange diagram is included in the calculation
with the parameter A =(m,%/e)F3". The analysis
gives AP$ =0.04+0.15. That does not contradict
the theoretical prediction®® of this paper

A= _2_ <m,,r3r(‘ll'°-—> 27)
a L

As is well known,® in order to bring the pre-
dicted rate for 7°— 2y into agreement with experi-
ment one has to set the charge matrix

(o)

which amounts to adding an extra component
(“charm” ‘current) to the Gell-Mann-Nishijima
construction so that J{"=V3+(1/V3)VE+ V. The
charm current V is usually taken to be an SU(3)
singlet and of the form %i’y“d) in the quark model
so that the assumption (c¢) of Sec. II remains valid,
although more perverse possibilities may be read-
ily envisioned.

Whether the electromagnetic current is purely
an SU(3) octet or a mixture of SU(3) octet and
singlet is clearly an important question, quite

1/2
) =~0,076. (5.3)
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apart from the context of this paper. The natural
way to decide this question is to look for thresh-
old production of K*K ~m°, K°K°n°, and K*K°7n~ via
single-photon annihilation in e*e~ collision. One
concludes that the matrix elements for e*e™~ y

- K*K~1° K°R°n°, and K*K°7~, respectively, stand
in the ratio

(3Q-1):-3(@-1):(3Q-2),

where @ is defined as in Sec. III by assigning the
charge (@, @ -1, Q- 1) to the fermion triplet.
[More generally, @ represents the parameter that
measures the relative strength of the SU(3)-singlet
and -octet components in J" .J We note that for
the case of 3 U is purely octet) the K*K%n~
mode is suppressed while for @ =1 (J;" has an
SU(3)-singlet component) the K°K°7° is suppressed.
Fortunately, the availability of three final states
allows us to test if SU(3)-symmetry-breaking ef-
fects are important by checking the @-independent
linear relation between the three production
modes. [One may also compare with e*e™ - y- 37
if one is willing to make additional assumptions
about SU(3) asymmetric phase spaces.] In any
case, one would not be misled by SU(3)-symmet-
ric-breaking effects. We mention that Okubo and
Sakita®” had also considered n— 7' 7"y as related
to y— 7"771° by SU(3). This is probably an unre-
liable way to determine y— 7" 7~7° as the SU(3) re-
lation between n— 2y and 7— 2y is known to be vio-
lated badly. Similar comments apply to attempts
to exploit SU(3) symmetry further by relating

y— 7" 7~7° to the contribution of the vector current
to K,, decay.?® It is clear that the Sutherland ar-
gument also applies to this vertex to the extent
that the strangeness-changing vector current is
conserved. However, K,, decay differs from
y—m*7-7° in one significant aspect: for the elec-
tromagnetic process one may change the predicted
rate by changing the charge assignment of the
underlying fermions or equivalently by adding an
extra piece to the electromagnetic current, while
for the weak process this freedom is lacking. In
other words, the SU(3) rotation relates the vector
part of the K;, to the contribution of the Gell-
Mann-Nishijima current to y— 37.

Note Added. After this work was completed, it
was brought to our attention that Terentiev (Ref. 1)
has independently discovered some of the material
in this paper.
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APPENDIX: e'¢™>3 MESONS NEAR THRESHOLD

For completeness we include here the detailed calculation of the cross section for

e () e (p)~ y =~ M,(ay) + My(a,) + My(as),

(A1)

where M; are three pseudoscalar mesons. We do nof assume that the mesons have equal mass. The ma-

trix element for the process is given by

. 1
M= zel-“”’—é—2 [19,9,45!, (A2)
where 1, =7(p’, s')y”u(p, s). The cross section is given by
1 .4 g, d%g;
(217)5 (oD )2 lef EI Zw 2(,0 2w, 5 0Q@-a-a-q), (A3)
where @=p"+p~. Hence
- 1 mez F:“r <xB
0‘(2105 [P ) _me4]1/2< ) Zl l T (A4)
where
gt d3q,d3q,d3q '
Ta6=f€avpaeﬁupo GapTsolyy Gap dsor 8:)1‘0:‘03 3 64Q~ gy ~ gy~ G5) - (A5)

Since
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Q" Tp5=Q%T,5=0,
we have
@, Qs
aB I(Q )(gas— 22 >: (A6)
with I(Q?)=35T%,. Also %, =0, so that
- 1 mez eF3"\? aB 2
T T o) (1 3 et 1@, &0
We now evaluate I(Q2). Define
o 01 3% 4%,
quefeuc,,yeao'pmq{’qé’q{’ af P, 2w, 0HQ-a,— 9~ 43) (A8)
so that
d3q
1Q9=4 [ 52 gl . (a9)
2w,

Jy, is a function of K=Q - ¢g; and K*J,, =K"J,, =0 so that J,, =J(K?)(K?g,, - K K,). The function J(K?) is
easily evaluated,

2 d®q, d%q,
J(Kz)_ Kz “u gk_zj[q],a‘hz'(q]_'qz)z] 2(4) 2(4) 54‘(1{ q, - qg)
== 12K4 ME?, m?, m?)"?, (A10)
where we used the two-body phase space formula
d’k, d3k2
4 = m.2)]1/2
S 5 0K = R = s M, m?, me)] 2, (A11)

with AMx, v, 2)=x2+ 92+ 2% — 2xy — 2x2 — 2yz. Then

diq,
1@ =4 [ GoRKoms = 4y KF1IG?)

d3q
1 2 3
3fdaf2w[

d3q, d®
-%fdazJ(az)jf g q[a2m3 -(g,9'P]6%(g:+4' - Q). (A12)

2w, 2w’

?— (¢, K)?]J(e*)0(a? - K?)

Here we introduced?® an auxiliary four-vector ¢’ with mass o? and w’ =[g¢’?+ o®]'/2. Once again, we have a
two-body phase space. Using (A10) we obtain

1<Q2)—§2szdw(a2)[x(@2 o2 i AV P - L (Q% —my? - a?)?]

2
B 281;3Q_2 f % Ma?, my?, m®PPNQP, of, m?)*/2. (A13)

Energy-momentum conservation fixes the integration limits to be
(my +my)? < 02 < (W—m,),

where W=v@Z%. With the change of variable

=5 [(W=my + my +m,)2 ]+ 5 [(W = m,)2 = (my +m, )] cose, (A14)
we obtain
I(W?)= 288W2F(W2)f d¢(T+_e'£Eﬁ§(1 - €' cosp)¥?(1+€” cos¢)’?, (A15)

where
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F(W?) =g [(W mg)? —
X[(W=my)?+(m, +m,)?] 2

(W my)f = (m, +m,)
(W my)l? + (my +my)?’

(W =m, ) = (m, +m,)?

1]

[W2+6Wmg+mg® — (m,+m,)]’
(W —m,)? - (m, +m,)?

[(W—m, ) = (m 2 +m,2 — 6mym,)]

€II =

This is our final expression for I(W?2).

(my +my P (W = m,)? = (m® + mp? — 6m,my) |32 (W2 + 6Wmg +mg? —
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(1m0, + my)?] %2
(A16)

(A1T7)
(A18)

(A19)

The integral in (A15) is amenable to numerical methods.

Near threshold, a remarkably good approximation is to set e=€’=¢” =0. Then

W) =2 3< (mymam,)®

(my +m,+m,)

1/2
> (W=m, —my —m,)*.

(A20)

Putting this into Eq. (A7) we obtain the cross section near threshold,

(m1m2m3)3 1/2

3ml2f - % =
7= 2411‘F I((7;'Ll+rnz+1n3)9

> (W=-m, —my—m,)*.

(A21)

N

To estimate the e*e™—y—7*7"7° cross section we use the experimental value of |F"|~ (a/7)(3/2u) in
Eq. (1) to obtain |F®"|=~ (3e/4n2)(1/u%). Setting m,=m,=m,=pu =pion mass, we get

4 _ 4
o=s.mx100 L (B3N (g xgomseomey( M2 Y
m

m
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