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A U(6)-symmetric Regge-pole model with explicit quark spin is applied to meson and bar-
yon exchange in the mN system. Attention is focused on the general form of the polynomial
residues which result from including the required projection operators. Detailed calcula-
tions are exhibited for forward charge-exchange scattering within the context of a dual mod-

el with fixed cuts. For the case of baryon exchange a Regge residue appropriate to the sym-
metric-quark-model spectrum is presented and studied.

Recent work by several authors, of whom we

can refer to only a few, ' ' has stimulated a re-
newed interest in considering a U(6)-symmetric
quark picture of hadrons. For our purposes the
essential feature of this scheme is the utilization
of explicit quark-spin structure to generate the
desired particle spectrum. This leads to polyno-
mial Regge residues which exhibit many desirable
features. Several of these features are indepen-

dent of detailed assumptions about the parti. cle
spectrum, such as those made in Ref. 3, and we

shall present the results of the quark-spin calcu-
lation for meson-baryon scattering in a general
form so that these properties can be exhibited
without further assumptions. Then we shall dis-
cuss the results of assuming the detailed structure
appropriate to the dual model with fixed cuts pre-
sented in Ref. 1.' In particular we shall be con-
cerned with p exchange in forward mN charge-ex-
change scattering and 6 exchange in backward

m p scattering.
To define the desired particle spectrum we shall

assume that mesons are composed of a quark-anti-

quark pair and belong to a mass-degenerate
(6, 6; L) representation of the group U(6)xU(6)
xO(3), i.e. , the usual 36 multiplet. Similarly, bar-
yons are taken to be composites of three quarks
and to appear in the (56, 1;L) and (70, 1; L) repre-
sentations for the case of meson-baryon scatter-
ing. We shall also assume that all couplings oc-
cur via U(6)~ x0(2)~ -invariant vertices.

Once the quarks have been explicitly introduced
via the usual external U(6) wave functions, which
are given along with other details in the Appendix,
the desired quark-model spectrum can be obtained

by utilizing projection operators for the individual

quarks. ' The structure introduced by these pro-
jection operators is the essential feature to be
studied in the present work. These operators
serve to prevent the negative-parity components
(MacDowell twins) of the spin--,' quarks from con-
tributing to the resonances. In the case of the me-
sons the qq propagator must include a factor
(1+//M)(1 —jf/M) near the pole, k ' —= M', where
M is the resonance mass and the appropriate in-
dices are understood to be present. This will en-
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sure that only resonances which belong to the
(6, 6) representation will appear and that there
will be no contributions from (6, 6), (35, 1), (1, 35),
and (1, 1) which would otherwise appear. ' Assum-
ing that the internal excitations of the mesons are
described by the usual Veneziano amplitude, ' we
find that the Reggeized meson "propagator" for
the leading trajectory, in Sommerfeld-Watson-
transformation notation, has the form

(a) s, t

+ (P;6;—5;P', )1'(), f) —(@))t"„)Z(),f)J,
(1)

where l(t) = l, +1't is the linear trajectory describ-
ing the internal excitations. The integration con-
tour is defined to include the contribution from the
explicit pole at X=1 (f) (in a positive sense) and any
implicit singularities in the functions X, Y, and
Z, but not the poles in I"(-)).). The complex )(,

plane is essentially the complex angular momen-
tum plane for the meson channel. To ensure the
correct projection properties at the pole /=34'
these functions must have the property that when
~=i(f) =f, +&'m',

(b)

p E
(

A((
S

Although further properties of X, Z, and Z will
depend on the speeifie model used, we shall see
that just the assumption that they are nonsingular
at (=0 mill already lead to some interesting re-
sults. The important feature present in Eq. (1) is
that it will yield polynomials in the Regge residue.
That these polynomials appear implies some very
definite assumptions about couplings and about
how to continue away from the poles. For ex-
ample, the eouplings for vector mesons in this
picture contain both y„and gy„ terms which make
quite different contributions away from the pole. '

For the baryon propagator we need in general a
factor like

at the pole 0 =M with the indices appropriately
defined. However, the Reggeized propagator is
expected to be more complicated than in the meson
case because of the presence of two types of mul-
tiplets, both the (56, 1) and (VO, 1), with different
symmetry properties. The specific form one- ar-
rives at depends on the structure of the baryon
spectrum one assumes, e.g., whether one wants
56 even L and 70 odd L, or the more degenerate

FIG. l. Quark diagrams for meson-baryon scattering.
A, B, C, etc. are indices as they appear in Kq. (A3).

spectrum of the symmetric quark model. We
shall return to this question later.

MESON EXCHANGE

We proceed to calculate the contribution of me-
son exchange to forward meson-baryon scattering
by calculating the contribution of the appropriate
quark graphs exhibited in Fig. 1. The graphs
serve to tell us how to attach the indices of the
external wave functions to those of the propagator
defined in E(l. (1). For meson exchange we have
contributions from the s, t and u, t diagrams,
the sum of which exhibits the usual signature fac-
tor. The definitions of the external wave functions
and the actual expressions to be evaluated are
given in the Appendix. We note that the calcula-
tions yield the usual U(6)~ F/D values for the f-
channel amplitudes B and A', i.e., E/D ~~ = 3 and
F/D

~ „,= ~. For the case of wN charge-exchange
scattering we find the following structure for the
usual g -channel helicity-nonf lip and -flip ampli-
tudes, where trivial over-all numerical constants
have been absorbed into the coupling constant g'
and we have set l'= I:
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,( ) 6g s
m'p' 2(2wt)

( ) 20g' (4m'- t)
m'p, ' VY(2wt)

der(-X)s'
1~- t(t)

l

dll
I'(-A.)s 1x- t(t)

- ")f[X(y, t) + tz(X, t)] (4m@+ t)+ 4tl'(&, t)(m + V)],

+ e-*'")((m + t )[~(~, t)+ tZ(~, t)]+ &(&, t)(4m'+ t)] .

(3a)

(3b)

As mentioned above, the implied contour integra-
tion encloses both the Regge pole and any singu-
larities implicit in X, Y, and Z.

An essential feature of Eq. (3a) is that in the
helicity-nonflip amplitude both Y and Z are multi-
plied by a factor t. The reason for this coefficient
is easily understood from the form of the propa-
gator in Eq. (1). Both Y and Z appear multiplied
by g, and so the quark-spin calculation must lead
to a eoeffieient which vanishes at k, -0, i.e., the
coefficient must be a pow'er of t. This is not a
constraint for the helicity-Qip amplitude I3 since
it appears in do/dt multiplied by t for kinematic
reasons. One important result of the presence of
these g factors is that the continuation of the A. '

amplitude from the p pole (t= p2) to t=0, in order
to find do/dtI 0 in terms of the p coupling con-
stant, is independent of the values of Y and Zat
/=0 as long as they are not infinite. In particular
if we set X=—1 and assume Y and Zhave the val-
ues 1/p and 1/ij2 at t = p2, as required by Eq. (2),
and are regular at t=0, as required by the usual
analyticity constraints, we find

do O' I'
d& g=o

(2 2lo
)
1+e iwlo

~

(-16m2 ~2)
36g' l 1'(-,') I'

2(16w) m2p2

have appeared and which are peculiar to this quark
propagation picture. The same t factors mentioned
above cause the helicity-nonQip amplitude to van-
ish at small negative t whereas in the helicity-flip
amplitude, where X and Y are now adding, there
are no small-E zeros. The actual location of these
zeros in the real and imaginary parts is, of
course, dependent on the specific forms of X, Y,
and Z. For the case X= 1, F= 1/p, , Z= 1/p2, the
A' amplitude, both real and imaginary parts, van-
ishes at t= -0.2. In the dual-cut model discussed
below, the zero is at somewhat more negative t
but still in a reasonable location considering that
absorption has not yet been explicitly included.
Although the discussion of the t factors given ear-
lier does not constitute a proof, the general fea-
ture of having a small-t zero in the nonflip ampli-
tude seems to be rather basic to this quark propa-
gator picture, in qualitative agreement with na-
ture. Similar structure for the Qip and nonflip
amplitudes appears also for backward scattering.

The expressions in Eq. (3) have been evaluated
as functions of t to find do/dt utilizing the forms
of X, Y, and Z suggested by Ref. 1. %e have taken

X=1,
z(t(t) —~)

[(~- &,)/t ]'" '

1 gp
36' 1+ p, /2m

mb/GeV', (4)

where we have used p. =
& rn, jo = -0.5, and the usu-

al universality assumptions. This gives quite
good agreement for g '= 28 and s=25 GeV' when

the measured value of the differential cross sec-
tion is approximately 0.19 mb/GeV'. The result
is the same for any model which fulfills the two
constraints mentioned above, including the mod-
els of Refs. 1 and 3. It should be noted, however,
that the continuation to larger positive t will be
quite model-dependent. A model with Y and Z
constant, as in Ref. 3, will have a residue which

increases much faster than one where Y and Z
behave as 1/t and 1/v t near the resonances as in
Ref. 1. The data seem to favor the slower in-.

crease. '
The other very interesting feature of Eq. (3) is

the zero structure of the polynomials in t which

Note that Y and Z contain fixed singularities in the
g plane. e These singularities are necessary in
order for Y and Z to behave appropriately at all
resonances and still be regular at the origin. The
function E(») is the result of including the re-
quired neutralizex in the original dual-amplitude
integral. " Although it is not uniquely defined in
the dual model, it must have the general prop-
erties that E(0) = 1 and E(») vanishes faster than
any inverse power of ~»( as ~»~-, with» con-
strained to be outside of some as yet unspecified
region about the positive real axis, e.g., ~arg» )

It must, of course, be rather badly behaved
along the positive real axis in order to satisfy the
usual theorems about analytic functions. " Follow-
ing the suggestion of the usual Veneziano model
in which the wedge about the positive real axis,
where the amplitude has poor asymptotic behavior,
is treated as a cut, we take the attitude that the
function E also represents a cut. In the calcula-
tions discussed here we have used E(») = e '
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FIG. 2. Calculated differential cross section with no
neutralizer. PI is 5.9 GeV/c. Some data points are
shown for comparison.

which shows the cut explicitly. "
The result of calculating dg/dt for k = 0, no neu-

tralizer, is illustrated in Fig. 2. This is clearly
a catastrophe. The rapid growth results from the
fixed-cut and -pole terms which behave like s'o
times polynomials in I;. The results for 4=2.8 and
3.6 are illustrated in Figs. 3(a), 3(b). In all these
calculations the values p.

' =0.6 GeV' and m' =1.0
GeV' have been used. %e see that the general
structure of the individual amplitudes is reason-
able, at least in terms of the zeros present. How-
ever, the values for dg/dt shown in Fig. 3(b) can,
at best, only be considered as being in qualitative
agreement with the data. Another problem is po-
larization which turns out to be negative in the
present model in clear disagreement with the data.
This is primarily due to the fixed-cut structure
plus the fact that the neutralizer form used here
has little effect on the phase of Y and Z. One
could, in principle, try to find a member of the
general class of neutralizer functions which would
give a better description of the data. However,
without a more specific model in mind, this does
not seem very instructive.

BARYON EXCHANGE

Now let us briefly survey the situation for bar-
yon exchange" as calculated in the present pic-
ture. The major feature of the data which the
polynomial Regge residues appearing in such

) O. I

E

.8

0.0 I

.6

l

0.2
I I

0.4 0.6
(Gev ')

I

0.8
(b)

l

I.O

quark models hold some hope of explaining is the
rapidly varying residue of the b exchange. Such
variation does not appear in simple Regge or Ve-
neziano models.

Before proceeding it is useful to review again
why these polynomial residues arise. They re-
sult from making very specific assumptions about
how the amplitudes are defined in terms of exter-
nal U(6) wave functions, about which representa-
tions of U(6)xU(6)xO(3) should appear as reso-

FIG. 3. (a) Calculated imaginary parts of the individual
amplitudes with the neutralizer parameter k taking the
values shown and Pl =5.9 GeV/c. (1) Differential cross
section for the k values shown and Pl —-5.9 GeV/c.
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nances, and about how to continue away from the
poles. In the present work we shall go again to a
quark picture in order to decide which resonances
appear. In particular we shall assume that the
spectrum of the symmetric quark-harmonic- oscil-
lator model of baryons' is a reasonable approxi-
mation of nature. As suggested by Mandelstam"
the resonances on the leading baryon trajectory
will obey such a spectrum if we calculate the con-
tribution of the u, t quark diagram [see Fig. 1(b)]
using the usual Veneziano amplitude for the inter-
nal excitations but include an extra factor (-,')",
where n is the degree of excitation, in the s, u

contribution [Fig. 1(c)]. This extra factor ap-
pears in a straightforward fashion in the harmon-
ic-oscillator formalism for the Veneziano ampli-
tude" and can be interpreted as accounting for the
extra degree of freedom for the baryons (two in-
ternal sets of harmonic oscillators) as compared
with the mesons (one set of harmonic oscillators}.
Now we need only define quark projection opera-
tors for each participating quark line as we did

for the meson case, i.e., a (1+//M) factor for
each quark. This yields a form analogous to Eq.
(1}except for the absence of minus signs and the
presence of a W(X, i) term which behaves like
1/M'. The re(emits oF''Smiis(procedure will be given
explicitly below.

First it is important to note that, although the
symmetric-quark-model spectrum has pure 56 at
L=O and pure 70 at L= l, both 56 and 70 repre-
sentations are present at all higher L. This does
not correspond to the simple pair of exchange-
degenerate 36 trajectories which appear in the
meson case, for this baryon-spectrum signature
will no longer appear in the usual way.

We present here the amplitudes calculated as
described above" for the leading trajectories in
the I„=—,

' and I„=-,' channels. This is the quark
spin- ~ contribution which corresponds to the A~-

N& exchange in the usual Hegge theory. The two
amplitudes given correspond to the usual s-chan-
nel helicity amplitudes at large s (o=m+ p, , l'=1):

(A+mB)'~=' '=, , f(s) [(3m+ 5uz)(u+&&')+2ou(7Y+uW}]
2g' s dz r(-x)
m'p' 2wi ~ x —l(u)

+(--,'s) [(5X+11uZ)(u+o')+2ou(13Y+3Wu)]),

(B)"='i'=,g, . f(s)'[(3X+13uz)2o+ (u+ o')(5Y+ 3uw)]
-2g' s dx r(-x)
m'i(, ' 2vi ~ A, —l(u)

+ (-zs)~[(3'+ 13uZ)2o+ (u+o )(11Y+5Wu)]],
2

(A+mB)'~ '~'= » . ((s)~[(15X—lluZ)(u+o')+2ou(17Y- 13uW')]
m'p, ' 2))i X- l u)

+ (-—,'s) ~[(10X-14uZ)(u+ o') + 2ou(8Y- 12uW)] } I

2
(B)'" 'I'=, , f ((s)~[(13Z-172Z)22+( +2')(IIZ —15 17)]

+(-—,'s) [(12%-8uZ)2o+(u+(P)(14Y- 10uW)]] .

(6a)

(6b)

(7a)

(7b)

dv IA. +mBI' 2.5 (, ), , g~(m+ p. )
'

du „-o 64wsM~ M~ 10(2m+ p)

= 0.62s "mb/GeV2. (8)

This is in reasonable agreement with the data,
which show

Note that the usual signature factor is definitely
absent but that the new structrue does have zeros
in the appropriate places. Specifically the I= —,

' am-

plitude vanishes for A. =0, a ground-state 56, and
the I=-,' amplitude vanishes for X= 1, the pure 70
L= 1.

Looking at the I= —,
' term we may determine g'

in terms of the 6(1236}coupling constant and then
calculate backward z p scattering. We find that

do/du~„0-1. 9&& 10 ' mb/GeV2 at s=20 GeV'.

We note that again the continuation from the
first resonance (u =M~' in this case) to u =0 does
not depend on the specific form of 7, Z, and W as
long as they have the appropriate values at the
resonance and are regular at u=0. However, there
is some dependence on the signature structure of
the amplitude, i.e., the presence or absence of
ordinary signature and the choice of which repre-
sentations are present as discussed above. So to
some extent, the agreement of Eq. (8) with the
data is a confirmation of the symmetric quark
model, at least as represented here.

A more instructive test is the continuation from
the b,(1236) resonance to the F»(1950) resonance.
In order to make comparisons with previous work
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as outlined in Ref. 13 we study the baryon reduced
Regge residue defined as

where the y's are the residues at the pole in the ~
plane of Eq. (6) times the factors

where the last factor accounts for the absence of
signature in the present model. If we assume X,
F, Z, W to have the values 1, 1/WN, , 1/u, 1/u'~',
at the poles we find that X~ changes by a factor of
approximately —,

' in going from the 6 to the E», in
quite good agreement with the observed values.
If one assumed constant values for X, F, Z, and
8' and the usual signature factor, the ratio of the
residues at the two xesonances is of order 10 in
serious disagreement with the data.

CONCLUSION

We have seen that by using a model with explicit
quark spin to construct Regge amplitudes for mN

scattering, with projection operators included to
ensure the appropriate resonance structure on
the Regge trajectory, we are led to polynomial
Regge residues. Independent of specific assump-
tions about the structure of the resonance spec-
trum beyond the first resonance on the Regge txa-
jectory, we can already notice some encouraging
results. Continuations of the Regge residue from
the first pole down to t=0 or a=0 yield cross
sections which agree quite well with nature. The
polynomials also exhibit zero structure which is
very suggestive of what is observed. Calculations
utilizing assumptions and detailed structure ap-
propriate to-a specific dual-quark model yield re-
sults which are interesting but not conclusive due
to the ambiguity of the neutralizer function, an
essential feature of the model. A more specific
pl.cture is required 1n order to px'oceed.

In general the continuation of the Regge residues
away from the region between the first resonance
and t=0 or u=0 is quite model-dependent and de-
serves further study. The results discussed above
suggest that the form present in the dual model,
where the resonance structure of the symmetric
quark model appears at all levels of excitation on
the leading trajectory, agrees quite well with the
data. More detailed research including the study
of the nonleading terms, e.g. , the pion and nucleon
trajectox ies, should serve to illuminate the useful-
ness of the quark picture more fully.
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APPENDIX

The external pseudoscalar-meson states are
described by"

where p. is the 36 multiplet mass and P is the usu-
al pseudoscalar U(3) matrix. The external nucleon
is given by"

ABC4(p).",, =
~6 ([(1+8/m)r, C]., ~„e~u,(p)Bc

+ cyclic permutations], (A2)

where m is the 66 multiplet mass, g, (p) is a Dirac
spinor, and 8 is the baryon U(3) matrix. The ma-
trix C has the properties that

C =C =C =-C, C y~C=-(yp)

C 'y5C=y~, and C=C.

To within some over-all unknown coupling con-
stant the contribution to the scattering amplitude
of the s, f quark diagram [Fig. 1(a)] is found by
evaluating the expression

The calculation of the results given in the text
is straightforward but tedious. To obtain the
given normalization the constant factors in the ex-
ternal wave functions have been absorbed into the
over-all coupling constant. The calculation of the
u, t contribution to meson exchange is the same
as the 8, t contribution with the exchanges s--s,
I'—I', and q -q'. Baryon exchange is calculated
in an analogous fashion for the appropriate quark
diagrams using the baryon projection operator.
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A low-energy theorem relating y 3~ to 7t 2y is derived by using anomalous Ward iden-
tities and by using Schwinger's proper-time technique. We discuss the theoretical: signifi-
cance of this low-energy theorem. In particular, the theorem is meaningful only if the par-
tially conserved axial-vector current anomaly is in fact responsible for the decay 7t 2y.

I ~ INTRODUCTION

Recently Adler et al. ' discovered a low-energy
theorem relating y- 3& to & 2y. The theorem
states that

ebs r y Kf -2

where E'" and E"are "coupling constants, " to be
defined in Sec. II, describing y- 3& and &- 2y, re-
spectively. The theorem rests upon the following

assumptions:

(a} gauge invariance;
(b) Gell-Mann's current algebra and the hypoth-

esis of the partial conservation of the axial-vector.
current (PCAC); and

(c) that the electromagnetic cuzzegt commutes
with the neutral axial charge at equal times.

We should emphasize that Eq. (1.1) is independent
of the nature of chiral-symmetry breaking. It was


