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of which are charged, for which the contribution of an
co pole does not enter.

9This is expected to be a reasonable approximation in
the energy range of interest. More exact numerical
estimates could be made using exact phase space;
however, the approximations made in our matrix
element are of similar order to those made in estimat-
ing phase space. We are working only to lowest order
in T/4m~ here; o.(e+e 7l+7i+m m ) will contain correc-
tions of the form I —T/3m ~ + 0 ((T/4m„) 2) .

We have not considered the amplitude for production
of an odd number of pions by two photons, which is
anomalous in the framework of the current algebra and
requires the use of additiona1 dynamica1 assumptions.

These processes are discussed by R. Aviv, N. D. Hari
Dass, and R. F. Sawyer, Phys. Rev. Letters 26, 591
(1971); 26, 1290(E) (1971); S. Adler, B. W. Lee, S. B.
Treiman, and A. Zee, Phys. &ev. D 4, 3497 (1971), and
other authors.

2~For a large summary of data and many other refer-
ences see Proceedings of a Conference on mn and Ez
Interactions at Argonne National Laboratory, &96'9,
edited by F. Loeffler and E. Malamud (Argonne National
Laboratory, Argonne, Ill. , 1969).

H. Brody et al. , Phys. Rev. Letters 24, 948 (1970).
3M. J. Creutz and M. Einhorn, Phys. Rev. Letters

24, 341 (1970), and Phys. Rev. D 1, 2537 (1970); A. Q.
Sarker, Phys. Rev. Letters 25, 1527 (1970).

PHYSICAL REVIEW D VOLUME 5, NUMBER 9 1 MAY 1972

Fixed Pole and Shielding Cut in frN Charge Exchange*

Roger Zaouit
Cente~ for Theoretica/ Physics, Department of Physics and Astronomy,

University of Maryland, College Park, Maryland 20742
(Received 24 March 1971; revised manuscript received 21 January 1972)

A model for the relationship of a fixed pole to a shielding cut is constructed. In order to
remove the constraints imposed by unitarity we required the following to hold in the limit
l lp,' (1) The branch point of the shielding cut coincides with the elastic threshold. (2) The
discontinuity of the amplitude on the elastic cut is singular and finite at the end point l =n (g)
of the cut in the angular momentum plane. (3) This discontinuity contains the fixed pole.
We find that the fixed pole does not contribute to the asymptotic behavior in the crossed
channel as it has been asserted, but the shielding cut gives a negative nonvanishing contri-
bution at a wrong-signature point. We discuss phenomenological implications in connection
with dip-bump structure in the differential cross section, and the dependence of the polari-
zation upon both energy and momentum transfer in 7' charge exchange. We find that our
results agree with recent experimental results.

I. INTRODUCTION

Previously, the assumption of Regge-pole domi-
nance was motivated by the observed peripheral
character of scattering angular distributions and

by the practical consideration of simplicity. In

fact, pole models have been remarkably success-
ful in describing many two-body processes and in
correlating scattering data with the discrete par-
ticle spectrum. In particular, dips observed in
the momentum-transfer distribution of several re-
actions have been rather unambiguously correlated
with the zeros of Regge-pole terms at points where
the trajectory passes through an integer of the
wrong signature in the "nonsense" region. None-
theless, serious embarrassments for single-pole
model have cropped up such as the experimental
polarization in wN charge exchange.

On the other hand, we know that there are fixed
poles at nonsense-wrong-signature points. Such

poles in the amplitude are themselves in conflict
with the analytically continued unitarity condition.
The residues of these poles are related to mo-
ments of the third double-spectral function, and
for a small third double-spectral function the res-
idue of the fixed pole is weak. Such a fixed pole
induces a singularity in the Regge-pole residue,
which causes a slight displacement of the dip.

In this paper we assume that the effects of the
third double-spectral function are important, and

therefore in order to preserve unitarity we assume
that the fixed poles are shielded by moving branch
points in the angular momentum plane. We discuss
the properties of Regge cuts and fixed poles and
their phenomenological implications in mN charge
exchange. The plan of the paper is as follows: In
Sec. II we first review the properties of fixed poles
and shielding cuts and we construct a model for the
fixed-pole-shielding-cut relationship. In Sec. III
we discuss the phenomenological implications of
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the model.

II. FIXED POLES AND SHIELDING CUTS

Let us consider for example m-m scattering. The
Froissart-Qribov representation for the partial-
wave amplitude which is free of kinematical singu-
larities at the threshold is given by

where g, is the cosine of the scattering angle in
the c.m. of the t channel. This integral represen-
tation defines a holomorphic domain in the / plane
for Re/&N, where N is given by the asymptotic be-
havior of the amplitude. However, we cannot de-
fine an analytic continuation to negative integer
values of / where the Legendre function has poles.
Therefore we consider instead of (1) its left-hand
cut discontinuity in the t plane which consists es-
sentially of two terms; one of them is holomorphic
in / and the other one is given by a finite integral

1
Im B,(t)=

~ ao)

which occurs only in relativistic theory. This in-
tegration contour is taken along a line in the region
where the third double-spectral function p, „ is
nonzero and positive. This expression has a mean-
ing for any complex value of /, since it is deter-
mined by integrals over a finite region of an ana-
lytic function, so that we can perform an analytic
continuation of this expression over the whole an-
gular momentum plane. The two terms within the
bracket of the above expression add when / is
wrong-signature and cancel when / is right-signa-
ture. For small values of I;, the third spectral
function is known exactly and the above integral
does not vanish. In (1) there is no cancellation
between the poles on the left-hand cut and those
on the right-hand cut, because this cancellation
would imply a very strong constraint on the inte-
grals of the three spectral functions. We can
therefore conclude that the whole scattering am-
plitude will have these poles. These poles subsist
even if there are moving cuts in the / plane. We
cannot restate here why we need cuts; this was
done before Mandelstam, "who proved that cuts
are the result of inelastic contributions to the uni-
tarity relation and are particular to the relativistic
problem. These cuts arise from complicated dia-
grams (Fig. 1). The essential features of these
graphs are right- and left-hand portions (i.e., the
crosses) which, when considered by themselves,
exhibit a third double-spectral function. Therefore

the diagram of Fig. 1 will have a Qribov-Pomer-
anchuk singularity at /=cr —1, where /is the angu-
lar momentum in the I; channel and o is the spin of
the bound state which is lying on the Regge trajec-
tory. Mandelstam was then able to show by a
number of ingenious tricks that the singularity can
be made to disappear by moving the cut past the
point /=o —1, and that the discontinuity across the
cut can obviously not cancel. In the angular mo-
mentum plane the Sommerfeld-Watson transforma-
tion for the amplitude will have, in addition of the
usual Regge singularities (poles and cuts), poles
at n(M, ') =0, 1, 2, where M; are the masses of the
physical bound states or resonances lying on the
Regge trajectories. The Sommerfeld-Watson con-
tour will be pinched between the moving branch
point and the above-mentioned poles when I;,-

=(m+M;) . This gives the position of the singu-
larities in t of A(s, t) which arise from bound states
and resonances lying on the Regge trajectory.
They are in fact the two-body normal threshold
branch points, and for /= -1, t, will coincide with
the elastic threshold. We have seen that for
Re/ &N the Froissart-Qribov representation de-
fines an holomorphic domain for the partial-wave
amplitude. In the t plane, this means that the
branch point t, (l) must be located on an unphysical
sheet reached by continuing through a physical
sheet cut. (See Fig. 2.) As I decreases, the mov-

ing branch points will emerge from the inelastic
threshold. In particular, when -1& /&0 the branch
point t, (l) moves into the physical sheet between
the threshold t = 4'' and the first inelastic thresh-
old, so as / approaches -1 the elastic unitarity cut
becomes completely blanketed and the unitarity
equation in the form ImB= p(t)~B~' cannot there-
fore be used. On the other hand, when / is re-
duced from large real values, Eq. (2) is still valid;
therefore we can now continue analytically in / and

ImB,' will continue to be given by (2) which is an
analytic function of /. We see that the moving cut
does not overlap the left-hand cut as / is varied
from a large real value, so that the amplitude has
the fixed pole. Now we have shown that for nega-

FIG. 1. The Mandelstam diagram with the third double-
spectral function.



2360 ROGER ZAOUI

t PLANE

t,(- I ) t, (4,)

Note that in the zeroth-order expression the fixed
pole effect is not involved. In the first order, on
the other hand, the most singular term is

FIG. 2. Moving branch point in the energy plane.

tive value of t the imaginary part of the amplitude
will have a fixed pole (among the others) associated
with angular momentum of wrong signature; it
cannot be cancelled by a fixed pole which can occur
for positive value of t, or overlapped by moving
cuts.

Let us consider now the trouble with the analyt-
ically continued unitarity relation. ' Let us assume
that the partial wave has a fixed pole on the first
sheet; we can easily find its value at the corre-
sponding point on the second sheet by unitarity.
Then we have an amplitude which is bounded by the
phase-space factor on the second sheet and which
is singular on the other; hence the pole would be
lost as we continue B(l, t) through the elastic cut
into the second sheet. Such a disappearance of an
isolated singularity is not compatible with the con-
tinuity theorem. ' In order to reconcile the Gribov-
Pomeranchuk singularity with the unitarity rela-
tion, we consider small effects of the third double-
spectral function. We take only account of the
first-order effect of p, „and ignore the cuts which
come from the second order. By expanding in
terms of the strength of p,„, the partial-wave am-
plitude, in the t channel, may be expressed as

B'(t„ I) = Bo(t„ I) + B,'(t„ I),

B'(t, I) = B'(t, I) + B,'(t, I)

The t-channel unitarity relation can also be re-
written in zeroth order as

B,'(t„ I) —B,'(t, I) = 2ip(t)BO(t„ l)Bo(t, l)

and in the first order as

Bg(t+i I) —B|(t i l)

= 2ip(t)[B,'(t„ l)B,'(t, I) + B,'(t„ l)B,'(t, I)] .
In order to exhibit the relevant poles in B,'(t„ l),
B,(t„ I) we write

P'( )tB,(t„ I) =
( ),

B,'(t, I) = C'(t),

We can now draw the following conclusions:
(1) In the first order of the third double-spec-

tral function, the fixed pole is present both above
and under the unitarity cut, consequently there is
no difficulty with the continuity theorem, and we
do not need any shielding branch points in this ap-
proximation.

(2) There is however a nonsense-wrong-signa-
ture pole at E= I, in the Regge residue. The phe-
nomenological implications of this treatment have
been considered by Chiu and Matsuda. ' These
authors, in particular, can explain only the dip in
mN charge-exchange scattering, but not the polar-
ization effect which has been observed experimen-
tally. "

In this paper we suppose that the contribution of
the third double-spectral function is large. In this
case the contribution of the cut will be very large,
in agreement with phenomenological consider-
ations, ' so we cannot use the previous arguments
in order to reconcile fixed pole and unitarity. On
the other hand, the existence of a moving cut with
the trajectory given by I= n, (t) and having the
properties that n, (t, ) = I„where t, is the elastic-
channel threshold and where I, is the wrong-signa-
ture fixed pole, is not enough to reconcile a fixed
pole and unitarity. If we deform the cut in the l

plane to cross the fixed pole, the discontinuity
across the cut can obviously not cancel. The
Qribov-Pomeranchuk singularity loses its char-
acter of an essential singularity, so that the fixed
pole is all that remains of the Gribov-Pomeran-
chuk essential singularity when the deformed cut
is present. "

Let us now give some consequences which re-
move the contradiction of a fixed pole with the
unitarity relation. In the limit I-I, (I, integer):

(1) The branch point of the moving cut t, (l)
coincides with the elastic threshold.

(2) The unitarity cut is completely overlapped
by the shielding cut and consequently the latter
must have the same singularity character as the
unitarity cut.

(3) The fixed pole is in the partial-wave ampli-
tude, on the unphysical sheet, when the moving
cut is present.

(4) The discontinuity of the shielding cut con-
tains the fixed pole.

Now, we deduce from the above requirements
the structure of the discontinuity in I of B,'(l, t)
We find that B,'(I, t) with the discontinuity



FIXED POLE AND SHIELDING C UT. . . 2361

[t g. (I)]I 0+ 1/2

disc[B,'(I, t)] = P,'(t)
0

0
IO

satisfies all the conditions. However, we have to
assume that P,'(t) is a real analytic function of t in
the physical region of the s channel (t &0, s-~).

A similar amplitude, with such a discontinuity,
which removes the constraints imposed by the uni-
tarity relation has been obtained by Bronzan and
Jones." The latter consider a positive-signature
amplitude with a wrong-signature negative integer
angular momentum l= -1 in the spinless case.
They construct a Regge-cut amplitude which masks
the elastic unitarity cut at l= -1 and removes the
Gribov-Pomeranchuk essential singularity and sat-
isfies the unitarity relation. They obtain a discon-
tinuity in l, which also contains the fixed pole in
the angular momentum plane. They also show that
the residue of the discontinuity which contains the
fixed pole has a logarithmic branch point at the
elastic threshold. At this point (which is in the
unphysical region) the residue of the discontinuity
may vanish.

In this paper, we assume that a wrong-signature
fixed pole is present in the B (z, t) spin-flip ampli-
tude of the m-N charge-exchange scattering. This
fixed pole is at a wrong-signature nonsense-sense
point l=0. This singularity does appear like a
pole of the Legendre function Q,'. (z, t) which is
present in the Froissart-Gribov spin-flip amp1. i-
tude analytically continued in the angular momen-
tum plane. At the same time the fixed pole at l=0
has been observed in the spin-flip amplitude by
using finite-energy sum rules. " This pole is in
conflict with the analytically continued unitarity
relation, which is written down for the spin-flip
amplitude. We assume a singularity structure
where w-m is a relevant threshold '; therefore the
fixed pole at l=0 in mm-NN requires a moving
shielding cut connected with the m. -m threshold with
the condition n, (4p') =0. In accordance with our
previous conclusions, we find that a Regge cut with
a discontinuity of the form

at l, =0, in the spin-flip amplitude, overlaps per-
fectly the unitarity cut and removes the trouble
with unitarity relation. We note that the point I=0
is a sense-sense point for the non-spin-flip ampli-
tude. Furthermore it does not correspond to a
pole of the Legendre function of the Froissart-
Gribov for the non-spin-flip amplitude; therefore
we do not need any shielding cut for this amplitude.
Our purpose is to investigate, in the following part,
the phenomenological implications of our assump-
tions.

IO

IO

C4

IO
O

IO

b~ -2
10

IO

-4
IO

IO I

-0.5 -I.O
(GeVtc)

FIG. 3. Differential cross section for mN charge
exchange; data from Ref. 24.

III. PHENOMENOLOGICAL IMPLICATIONS

The high-energy mN charge-exchange differential
cross section near the forward direction has been
explained" (Fig. 2) in terms of the t-channel
(mm-NN) p trajectory exchange. In this case the
phase of the helicity-flip and -nonf lip amplitudes
should be about the same and therefore the charge-
exchange polarization, which occurs when the
phases of the helicity flip and nonf lip differ, should
be zero. Polarization" has been observed in
m p-w'n [Figs. 4(a) and 4(b)]. The main features
of these experimental results are:

(1) The polarization decreases with increasing
energy.

(2) In a large momentum-transfer interval the
polarization is positive and exhibits a large posi-
tive spike near the point where the p trajectory
crosses the zero.

Various possibilities within the Regge model
have been proposed: complex Regge poles, ' ab-
sorption Regge cuts, "interference between the p
trajectory and another trajectory, ' or direct-
channel resonances" or cuts. "

The essential feature of our model is that it ex-
plains the polarization in mN charge-exchange
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and the polarization of the recoiling nucleon is
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E is the energy in the laboratory frame. Ne have
to include in the helicity flip amplitude, in addi-
tion to the usual Regge trajectory, the shielding
cut contribution. Taking the high-energy part of
(Sa) and (Sb) we have for Ben & ——,'

4

(68V~c)'
)

(t —4M')'~'(-2M cos 8)

8,'(s, t)
o.(~)r,"(~)E'p(&, ~)+ P:(t)[1„(E/E)';,/2]3&2

(6a)

-0.5—

0.5

W

—t (GeV/c}
I

2.0

r:(t)fo{ ) ~ 4M2)zg2 P(4-- (~ —4M

It ' s, i) = lye ' "p s-u p

F(Ap+ 1) sln7f&p 28O

z:(,~) = (im", -+i) ',
~
('z, ")

"'

(6b)

(a) & p charge-exchange polarization at (i)
11 GeV/e (crossed lines); (ii) 5.9 GeV/c (closed circles).
(b) n p charge-exchange polarization at 5 QeV/g. Data
from Refs. 7 and 8.

fo{s,t) =(t-4M') '~2[(4M' —t)A'{s, t)

+M(s —u)B'(s, t)]

and the spin-flip amplitude

f;(»~)=2(ltl)'"P &(, 4 2).gm
&'(»t)

(Sa)

where p and k are the momenta of w and N in the
center-of-mass system. The kinematics give

t = 4(k'+ g') = 4(p'+M'),

s —Q
z, =cos8~= —

4 ~

The differential cross section is given by

scattering (CEX) by a fixed pole in the wN spin-
flip amplitude. It reflects the influence on the am-
plitude of the shielding cut associated with the two-
pion threshold in the crossed channel mw -pp. %e
can write the t-channel NN mm helicity amplitudes
contained in the variable s and t to the s-channel
physical region in terms of scalar amplitudes A'
and B'. Following Singh" we define the non-spin-
flip amplitude

At k =0, the helicity flip f,'(s, t) does not contribute
to the differential cross section. At t=-&, we see
that, if the p trajectory chooses nonsense, only
the shielding cut contributes; but, if the p trajec-
tory chooses sense, the Regge cut contributes to
the nonf lip amplitudes, and we have a displace-
ment of the dip.

From (6), (6a), and (6b) we obtain the energy
dependence of the polarization, which is given by

~t E ""~ ' sin&m(n, —n, +38/w)
dt 1.6~M E, cos27TQpcosg'FQq

Yo( )Pc( )
[1 2(E/E ) (l~)2]3/4

with tan8=m/21nE. The polarization is zero in the
forward direction and will vanish for values of
momentum transfer for which

np(t) —o.,(t)+38/m=n (n=0, 2, 4, . . . ),
so that the location of the zeros depends on the
energy. The energy-dependent zero in the polari-
zation reflects the fact that there exists a physical
value of t for which the sine is zero, and here the
polarization has change of sign. If we suppose that
for some values of t the cut and the pole will get
closer together, then the polarization will be es-
sentially energy dependent and controlled by

sin —,8
[ln'(E/E )+(-'w)']'" '

do

dt
'=

'16 E2 (Ifol + Ifxl ) (4)
In this region the polarization will decrease for in-
creasing E. At large t the contribution of the
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TABLE I. Results of fits to the charge-exchange differential cross sections.

Case 1

Case 2

t+ 0.58

t + 0.58

0.25t —0.02

0.25t —0.02

y0 (t) =~e ~

2 20e'."
3 g e0.1t

b(t
y~ (t) = b0e

5e 0.06t

0.1t

b't
P~(t) =b'0e ~

80e O. it

g 6 0.02t

phase of the cut is bigger than that of the pole and
the polarization will increase with energy. So far
we have not discussed the question of where the
shielding cut comes from. We assume that the
relevant shielding cut is a Reggeon-Reggeon cut.
We approximate it by a linear structure of the
form

o,(t) = n,'t+ o,(0),

))
p (a)

GeV

with

ct,'=, ' ', and n, (0) = n, (0)+o.,(0) —1;
1 2

/

o.,(0) and o.,', o.,(0) are the parameters of the
linear trajectories exchanged which cause it. The
threshold condition gives us n, (0) = -0.08a,'.

In our numerical analysis we fit' the charge-
exchange differential cross section in the region
0& ~t~&2. 5 (GeV/c)', 8&8&18.2 GeV and compute
the polarization for different values of the energy.
We consider two different parametrizations for the
p amplitudes, depending upon whether the p tra-
jectory chooses sense (case 1) or nonsense (case
2) at a~=0. The fit of the charge exchange dif-
ferential cross section gives, from a total of 56
data points, the results shown in Table I.

From the fit of the data we can now discuss the
question of where the shielding cut comes from.
The fit gives us n, (0) =0; this numerical result
suggests us that this cut can be identified with a
pp' cut."

If we omit the dip region at about t = -0.58
(GeV/c)', then models with p choosing sense and

p choosing nonsense give essentially indistinguish-
able fits; it is a matter of parameter adjustment.
At the dip point, the model in which p chooses
nonsense gives a value which is too low by about
an order of magnitude (both the pole and the pole-
cut interference amplitudes vanish; only the cut
contribution is nonzero). On the other hand, the
model in which p chooses sense fills in the dip and
is the preferred solution. In neither model does
the cut significantly alter the energy dependence
of the cross section. This is because the p still
dominates and the spin-flip amplitude, which is
the more important, has an n~ factor in both
models so that the basic features are similar.

The predictions of charge-exchange polarization
in a larger interval for different energies are il-

50%— 5 GeV

.8 GeV

20%—

-O. I -0.5
(G eylc)

I

—I.O

20%
5.9 GeV

l8.5 GeV

25.8 GeV

-O.i I.O

(Gey/c) ~

p (c

l0%—

(Gey/c) ~

FIG. 5. ~ p charge exchange polarization: (a) case
1, choosing sense; (b) case 2, choosing nonsense; (c)
case 2, choosing nonsense.



2364 ROGE R ZAOUI

TABLE II. Results of our calculation compared with experiment.

Momentum-transfer values -0 1 -0.12 -0.50 -0.58 -0.64 -0.93

Results from our calculations
(a) 5.8 GeV/c
(b) 18.2 GeV/c

(a) 5.8 Gev/c
(b) 80 GeV/c

Experimental results
from Ref. 7

(a) 5.9 G V/c
(b) 11 GeV/c

from Ref. 8
(a) 5 GeV/c

5.5%
4%

15%
14%

23%

18%
-65%

50%

60% 30%

lustrated in Fig. 5. If the p trajectory chooses
sense (case 1) in the forward direction the polari-
zation is zero, while for 0.01 ~

~
t~ ~0.58 (GeV/c)'

the polarization is dominated by the factor

sin ,'w(n,-o.,+ 8 e/w)
In'Z + (—'m)']'"

which decreases with increasing energy when E
varies from 3 to 18.2 GeV/c. Near t=-0.58 (GeV/
c)' the n~ trajectory crosses the zero; therefore,
the BzB, interference term vanishes at this point,
and only the A~ and the B, amplitudes contribute to
the differential cross section. At this point, the
differential cross section is minimum; therefore,
from Eq. (7) we see that the polarization is maxi-
mum. This gives at t=-0.58 (GeV/c)' a large posi-
tive spike in the polarization. After this spike the
polarization falls quickly [Fig. 5(a)]. This spike
has been experimentally observed [Fig. 4(b)].

If the p trajectory chooses nonsense (case 2) the
polarization will have, in addition to the moving
zero, a fixed zero at the position of the dip. We
therefore distinguish two cases:

(i) The moving zero is on the right of the Regge
zero. In this case [Fig. 5(b)], the polarization is
zero at the point where the p trajectory crosses
the zero.

(ii) The moving zero is on the left of the Regge
zero. In this case the polarization [Fig. 5(c)]
shows a large negative spike between these two
zeros.

In both cases in the interval 0 & ~t~ &0.58 (GeV/c)'
the polarization decreases with increasing energy.
In case 1, the numerical results agree with experi-
mental values; in case 2, the cut parameters fill
the dip, and we find a polarization which is too
small. Clearly, the model in which the p chooses
sense is closer in magnitude to the data. The
variations of the predicted polarization with pa-
rameter changes are rather different below or

POLARIZATION vr N

0.5 — CEX

5.9 GeV/c
NONSENSE 8

O. I
—.." —"

-O. I -0.2
t (GeV/c)

-0.5—

FIG. 6. xV charge-exchange polarization in the
Michigan model. Data from Ref. 22.

above about t=-0.58 (GeV/c)'. In Table II, we

compare the numerical results of our calculations
with experimental results from Refs. 7 and 8.
It should be remarked that the large negative spike
in the charge-exchange polarization in case 2 only
appears for E & 26 GeV.

I.et us now compare our results with the absorp-
tion-model calculation for mN charge exchange.
The Michigan model2' with p choosing sense and
with a p Pcut (t-his is also the model of Cohen-
Tannoudji etal. 23) has no o~(t) factor in P~. The
cuts are magnified through multiplication with co-
efficients of the order 1.5 and B, is then large
enough to cancel P~ near o, z(t) =0. In the small-
momentum-transfer region they are in agreement
with experimental values. ' The polarization
changes sign at t = -0.4 (GeV/c)' for 8 =9.9 GeV
and has a sharp negative spike near t =-0.55
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0.5—
POLARIZATION m N

CEX

5.9 GeV/|:
SENSE p 0.5

POLARIZATION 7r N

eV/c
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O. I—

-O. I— (GeV/c)'
O. I

-O, I -0.2 -0.5
t (Gev/c)

FIG. 8. mN charge-exchange polarization in the Rivers
and Saunders model. Data from Ref. 25.

-05—

FIG. 7. xV charge-exchange polarization in the Argonne
model. Data from Ref. 24.

(GeV/c)'. The typical polarization curve is shown
in Fig. 6. This negative spike does not agree with
the recent da,ta.'

In the Argonne model'4 (pP and f 'p cuts) and p
and f' choosing nonsense, the Regge parametriza-
tion is not extended in t sufficiently far to include
the oz(t)+1 factor in Az(z, t). The polarization fol-
lows the trend above with a negative spike at the
dip point (Fig. 7). The predictions of this model
also do not agree with the recent data. The model
of Rivers and Saunders" and White' gives a po-
larization of about 8% for small f at 5.9 GeV/c
which continues to rise, i.e., there is no negative
spike (Fig. 8).

In summary, following the requirements of the
unitarity relation, we introduce a eut in the B
amplitude which shields the fixed pole at 3 =0. The
discontinuity of this cut contains the fixed pole,
while the latter does not contribute to the asymp-
totic behavior in the crossed channel. The shield-
ing cut does give a negative nonvanishing contribu-
tion to the differential cross section. In contrast
to the absorption model, the charge-exchange po-

larization is due to the interference between B,'
and A~. The charge-exchange polarization is en-
ergy- and momentum-dependent —a result which
is consistent with the available data. It is further
predicted that the polarization must go to zero for
some value of t dependent upon the value of the en-
ergy. Furthermore, if the trajectory chooses non-
sense, there is an additional zero of the polariza-
tion which does not depend upon the value of the
energy. Clearly, the model in which the p chooses
sense is closer in magnitude to the data. At the
point where the p trajectory is zero, the polariza-
tion exhibits a large positive spike and at E = 5.9
GeV, the polarization is 50%%u~. These results are
consistent with the recent data. The results of
the fit of the data allow us to identify the shielding
eut with a pI" cut.
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Regge-Pole Model of Pion-Nucleon Scattering with Explicit Quarks
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A U(6)-symmetric Regge-pole model with explicit quark spin is applied to meson and bar-
yon exchange in the mN system. Attention is focused on the general form of the polynomial
residues which result from including the required projection operators. Detailed calcula-
tions are exhibited for forward charge-exchange scattering within the context of a dual mod-

el with fixed cuts. For the case of baryon exchange a Regge residue appropriate to the sym-
metric-quark-model spectrum is presented and studied.

Recent work by several authors, of whom we

can refer to only a few, ' ' has stimulated a re-
newed interest in considering a U(6)-symmetric
quark picture of hadrons. For our purposes the
essential feature of this scheme is the utilization
of explicit quark-spin structure to generate the
desired particle spectrum. This leads to polyno-
mial Regge residues which exhibit many desirable
features. Several of these features are indepen-

dent of detailed assumptions about the parti. cle
spectrum, such as those made in Ref. 3, and we

shall present the results of the quark-spin calcu-
lation for meson-baryon scattering in a general
form so that these properties can be exhibited
without further assumptions. Then we shall dis-
cuss the results of assuming the detailed structure
appropriate to the dual model with fixed cuts pre-
sented in Ref. 1.' In particular we shall be con-
cerned with p exchange in forward mN charge-ex-
change scattering and 6 exchange in backward

m p scattering.
To define the desired particle spectrum we shall

assume that mesons are composed of a quark-anti-

quark pair and belong to a mass-degenerate
(6, 6; L) representation of the group U(6)xU(6)
xO(3), i.e. , the usual 36 multiplet. Similarly, bar-
yons are taken to be composites of three quarks
and to appear in the (56, 1;L) and (70, 1; L) repre-
sentations for the case of meson-baryon scatter-
ing. We shall also assume that all couplings oc-
cur via U(6)~ x0(2)~ -invariant vertices.

Once the quarks have been explicitly introduced
via the usual external U(6) wave functions, which
are given along with other details in the Appendix,
the desired quark-model spectrum can be obtained

by utilizing projection operators for the individual

quarks. ' The structure introduced by these pro-
jection operators is the essential feature to be
studied in the present work. These operators
serve to prevent the negative-parity components
(MacDowell twins) of the spin--,' quarks from con-
tributing to the resonances. In the case of the me-
sons the qq propagator must include a factor
(1+//M)(1 —jf/M) near the pole, k ' —= M', where
M is the resonance mass and the appropriate in-
dices are understood to be present. This will en-


