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A model is developed in which the pion-Pomeranchon Regge cut in the np charge-exchange
reaction is calculated from the Mandelstam diagram. We find that the Regge cut is self-
conspiratory, and is determined by two parameters besides those associated with the pion
pole and the Pomeranchon. The sharp forward peak is reproduced through the destructive
interference between the pole and the cut. An excellent fit is obtained in the small-t region,
and the values of the parameters producing this fit agree with physical intuition.

I. INTRODUCTION

The np charge-exchange reaction' ' exhibits an
exceptionally sharp forward peak with a width of
ht- m, ', followed by a more gradual exponential
falloff. The shape of the differential cross section
appears to be independent of energy. The sharp
forward peak suggests that the reaction is probably
controlled by pion exchange. However, an evasive
pion gives rise to a forward dip. In order to re-
produce the peak, a pure Regge-pole model neces-
sitates that the pion conspire with a trajectory of
opposite parity. ' ' The fit is satisfactory provided
a rapidly varying pion residue function with a zero
at -t- m„' is assumed. Among thLe objections to
the conspirator-pole model are: (i}no particles
are found to lie on the conspirator trajectory, (ii)
a zero ih present in the pion residue function in

all z-exchanged reactions, (iii} it is incompatible
with factorization. Using factorization alone, Le-
Bellac' has shown that the reaction nN -p4 would

have a forward dip if it were controlled by a con-
spiring pion. Experimental findings show quite
the contrary""; a sharp forward peak is observed.

A more natural description of the data is pos-
sible if we consider, in addition to Regge poles,
the contributions from Hegge cuts. Phenomenolog-
ical models" "employing Hegge cuts have been
known to be successful. Theoretical ground for
the presence of the Regge cuts is also overwhelm-
ing. "" Regge cuts are present whenever two

Hegge poles are exchanged in the Mandelstam
diagram. " Physically, we are primarily inter-
ested in the Regge cuts associated with the ex-
change of a Regge pole and a Pomeranchon. In
this paper, we consider only the pion-Pomeranchon
cut (nP cut).

Instead of generating the Regge cut through the
process of rescattering or absorption, or through
some kind of mathematical transform, we will
generate our Regge cut through the Mandelstam

diagram. We are further guided by the general
requirement that the input ansatz for the pion-
Pomeranchon Regge cut for a particular reaction
must be the single-pion exchange to the same re-
action. The simplest way to realize this require-
ment over a large class of reactions is to assume
that the exchanged Pomeranchon is linked to the
external particles through isoscalar scalar 0
mesons. In the present case of the np charge-ex-
change reaction, we therefore picture the Mandel-
stam diagram as follows: The incoming nucleons
emit o mesons, which scatter via Pomeranchon
exchange while the nucleons themselves scatter
via pion exchange; the scattered o mesons are
subsequently reabsorbed by the outgoing nucleons,
as shown in Fig. 1. We do not consider graphs in
which the exchanged pion couples to the o meson
and the Pomeranchon to the nucleon, as these do
not have the correct input ansatz. Moreover, the
|"parity is not right.

In Sec. II, the parametrization of both the on-
shell and the off-shell n-pole amplitudes for NN
scattering is discussed. The parametrization of
the Pomeranchon amplitude for the 00 scattering
is given in Sec. III. In Sec. IV, the calculation of
the nI' cut from the Mandelstam diagram is given.
The nP-cut amplitudes are expressed in terms of
the structure functions associated with the crosses.
The explicit evaluation of the cross structure func-
tions are given in Sec. V. Some qualitative fea-
tures of the ~I' cut are discussed in Sec. VI. A fit
of our model to the experimental data is given in
Sec. VII, together with a discussion of the fit. An
appendix is included to discuss the explicit forms
of the form factors at the Regge vertex.

II. PARAMETRIZATION QF
m-POLE AMPLITUDES

The on-shell n-pole amplitudes are assumed to
be in the following form:
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where y, (t), g, (t}, and C, (t}are the trajectory
function, the signature factor, and the residue
function, respectively, and V and V~ are the
Reggeon vertex functions. The trajectory function
is given by the usual expression

y„(t)=y', (I-m„'), rp' =1 GeV '.
The signature factor is approximated at small t
by

.
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FIG. 1. Physical picture of the Mandelstam diagram.
Incident nucleons emit 0 particles, which scatter via
Pomeranchon exchange while the nucleons scatter via
pion exchange.

our present case:

so as to display the pion pole explicitly. The
residue function is assumed to be an exponential,

gL 2 2
m2 —A2 m2 —A2

(Pl &P3 ) p2 A2 ~ p2 p2
3

(2.5a)

c„(t}= ce"-'.
The Reggeon vertex functions are taken to be the
vertex functions for "bare" pion exchange,

T;, =-., (p.)(-,„..y, )., (p, ), (2.2a)

I ", , =-, (P.)(-~,...~.), (P.). (2.2b}

The over-all strength C is determined by the known
strength at the pion pole, "which gives

-A m1gy e A m

The on-shell m-pole amplitudes can then be re-
written as

e~~(~- m, 2) . S ~&(')
s tq= e «/ — yJ- a

g3g4, g&g2x
So

(2.3}

Expressed in this form, the on-shell amplitudes
are determined by the parameter A„which shall
be left as a free parameter.

We shall assume a similar1y simple model for
the off-shell m-pole amplitudes, effecting the con-
tinuation off shell by multiplying by form factors
at the Beggeon vertices:

m'- A' m'- A'
g"(p2 p2)=

~~ 2 &~ 4 ~

p 2 A2+Z6 p 2 A2+'l6 (2.5b)

W'e shall assume that A2» m'. As we shall see
later, the integrals describing the nP-cut ampli-
tudes do not depend too sensitively on A', pro-
vided A' is sufficiently large. We may then let

III. PARAMETRIZATION OF
POMERANCHON AMPLITUDE

The Pomeranchon exchange is mediated through
oo scattering. Since this process cannot be
measured, we again rely on the Begge-pole mod-
el.. The trajectory function and the t dependence
of the residue function are taken from elastic Pp
scattering. We find it unnecessary to assume
form factors for the off-shell Pomeranchon ampli-
tude, as the integrals described in Sec. Dt con-
verge without them. The amplitude is therefore
given by

w~(&)

v~ '(s t) -v 'e" '(e '"~=*-
'

So

+X2l 4,.Xl X2 (P2P4) Pl P2)

(S, t)GI'(p 2 p 2)QR(p? p 2)

In (S.l), we have approximated the signature fac-
tor by

t (t) =e " "' ' y (t) =1+ jr' t
(2.4)

The form factors 6 and G" must have the property
that they become small when one of the external
1egs goes far off the mass shell, to ensure con-
vergence of the integrals describing the mI' cut.
In the Appendix we discuss an explicit model for
the pion-pole form factors in a general reaction.
Here we sha11 merely quote the result relevant to

y' =0.56eV ', A =3.5 GeV '. (3.2)

A rough estimate for the dimensionless reduced
residue y~2 can be obtained. The optical theorem
relates y~2 to the total cross section,

The intercept of the Pomeranchon trajectory is
taken to be unity. The slope of the trajectory and
the slope of the residue function are, respectively 20
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o'"& = —ImF& &(s 0)= —y'.1
tot

0
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If we further assume that

~(«) ~(«) ~ O(»)
tot tot 9 tot

we then have the estimate

y '=45.6. (3.3)

q-k

FIG. 2. Labeling of momenta for the Mandelstam
diagram of Fig. 1.

IV. THE MANDELSTAM DIAGRAM

The s-channel helicity amplitudes corresponding to the Mandelstam diagram in Fig. 2 are
d'kd'k, d'k2 e"'"' ~' '

$,/, s| "'"~'
x3)L4 xgx2 (2v)12 t m 2

fl 0

s, &~(~2)
x -y 2e~&'~ e '" 2 — G (k (k - k) )G (k (k2+ k) )X y y X y y,

0
(4.1)

where s, = (k, + k,)', s, = (p, + p, —k, —k, )' are the squared subenergies of the internal Regge exchanges, and
t, =k', t, =(q-k)' are the squared submomentum transfers. G and G" are the Reggeon form factors
given by (2.5a) and (2.5b); and X and X" are

u~, (ig.Nz)(P, —P+ m)(-gp. ..y, ) (P, + m)(ig~N)u~,
(k,' - m'+ ie)[(k, —k)' - m'+ ie][(P, —k, )' - m, '+ ze][(P, —q - k, + k)' —m, '+ ie] '

uq, (ig,s„)(jf,+ )+m)(-kp +y~)(P, + m)(ig,s„)u~,
4'~ (k,'-m +is)[(k2+k) -m +ie][(pm-k, ) -m 2+i@][(p2+q—k, —k)2 —m 2+is] ' (4.2b)

Instead of the set of 4-momentum components (k„k„,k„k,), we introduce, along the line of Gribov's
approach, "a new set of variables (c&, p, k) defined by

c&=s ' 'k =s ' '(k, —k, ),
P=s 't'k =s 't'(k +k,),
k=(k„, k,).

In terms of the new variables,

k'= c&Ps-k',

d4A= ~sdndPd k.

(4.3)

Turning to the integration, we invoke Gribov's finite-mass hypothesis" in order to extract the dominant
region of integration. The assumption. is that the internal Regge amplitudes are small if the invariant mass
of one or more of the internal lines becomes large as fast as or faster than s. The dominant contribution
therefore comes from a region where all internal invariant masses are finite. Further, we are interested
only in the domain where both sy and s„ the subenergies squared of the internal Regge amplitudes, are
large, of order s.

The region of integration for the dominant contribution is easily evaluated from the preceding conditions.
Written in terms of the new variables, this dominant region is given by the following set of equations:

o'~ &ru P~ ti2™~si
&x2 A-»'

k, ', k, , k, (k, —k)', -. —m'.

The squares of the subenergies and the submomentum transfers are then given by s, = &,P,s, s, = (1-z, )
x (1 —p~)s, t, = -k2 = r~, t2 = -(q —k)2-= -T2.

Expressing G X in terms of the new variables, and noting that p«p„we are able to show that G X
is independent of p. Likewise we can show that G~X~ is independent of a. The left-hand cross and the
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right-hand cross are hence separated within the two-dimensional integration over k, and we can cast

$3/4)t1/2 into the following form

d2P ~-A~(~1+~&2) S «(.'71~+ yP(72) -1
p CQt e-APT2 e-im/2

1&14'1112 2s J (2s)' T + m ' s X3X1 X,4X.2 7

0 1 0
(4.4)

where we have put all the iniegrations over the internal variables of the left-hand cross in N», and those
R L R 3 1

of the right-hand in N~, ),, We shall refer to N~, ), and N„~ as the cross structure functions. The ex-
plicit expressions for the cross structure functions are

~2 gfy&& 1 1 Pl
p s)'w(q'1)(I p )4'p(q'2)

xs11 s
4v g1snq+yP (2(()4 1 1

m A m2-A2

n1p1S -k1 —A +16 (n1 —n)p1S -(k1 —k) —A + i6

u ),[,'s' i'( -n, —n)y, +-,'s'~'P, y -y (k, -k)+m]y,
[(n, —n) p, s -(k, —k)' —m'+ is]1[n, —n —(m'+ ~)/s] (p, —1)s -(k, —k+ ((I)'- m, '+ ie]

(n, p, s -K,'- m'+is}[(n, —m'/s)(p, —1)s-k,' —m, '+is] '

and a similar expression for NR~ z .
2

(4.5)

V. THE CROSS STRUCTURE FUNCTIONS

The cross structure functions can be interpreted as the production amplitudes of the Beggeons, corre-
sponding to the diagram of Fig. 3. We shall later see that, as expressed in (4.5), they are independent of
s in the limit of large s. We shall also establish a symmetry between the left- and the right-hand crosses.

For the left-hand cross, we note that when we make the following change of integration variables in
(4.5);

dn1de da1d a1 n 7

the integrand then breaks up into two parts, one involving only n, integration and the other only (n, —n)
integration. The a., integration part consists of the expression

2K Q1P1S k1 A +16 n, p, s —k,' —m'+ie (n, —m'/s)(p, —1)s —k,' —m, '+is '

The integrand of (5.1) contains three denominators: one coming from the propagator of the nucleon line
(1) of Fig. 3, one from the propagator of the a line (3), and the third from the form factor associated with
the nucleon line (1). It is worth noting that the third denominator is necessary to make (5.1) convergent.

Treating (5.1}as a contour integral, we note that it vanishes whenever all three poles are displaced onto
the same side of the real axis in the complex n, plane. To prevent (5.1}from vanishing, we want one of
the poles to be on the opposite side of the real axis from the other two poles. This can be achieved only if
P, is confined between the values of 0 and 1,

0&P, &1. (5.2)

When the condition is satisfied, the o pole is in the upper half-plane, whereas the other two are in the
lower half-plane. We can then close the contour in the upper half-plane and pick up the contribution from
the o pole. Equivalently we replace the o propagator by a 5 function,

[(n, —m /s)(P, —l)s-k, —m, +ie] = 5 n, ——+2 -2@i m k12+ m~
(1 —P, )s ' s (1 —P, )s

The evaluation of the (n, —n) integration is identical, and we obtain

(5.3)

((q, —q-(m + )/s](p, -1)s —()s, —)s+q) —m, +is) = q q, —q — + ' ).2 2 2 ' -1 m + T (k, —k+ q) + m

(1 —P, )s ' s (1 —P, )s
(5.4)



2320 -SWEE -PING CHIA

Having performed the n, and (n, —a) integrations in (4.5), we next approximate by letting A -~. This
will effectively remove two of the four denominators remaining in (4.5), thus greatly simplifying the eval-
uation of the cross structure functions. Justification for making such an assumption lies in the fact that
the cross structure functions are not too sensitive to the particular values of A', provided A' is sufficient-
ly large. " The assumption has the further advantage that our final expressions for the cut amplitudes have
one less free parameter.

Letting A'- ~, and combining the two remaining denominators, we obtain

d2k' Bx }
g dP P "~~~)(1-P )~~'") dx

(2&)' [k,' +x(1 —x}(k—P,q) +(1 —P, )'m'+P, m '-ie] '

(s.s}
where k,'=k, —x(k —P,q), and B)„~,, the cross numerator functions, are

B~ ~ =u),[—,'s ~'(z, -a}y,+~s'~'py -y (k, -k)+m]y, [—,'s'~ o.,y, +-,'s'~'py -y k, +m]u), , (5.6)

The evaluation of the cross numerator functions for the various helicity states is straightforward but
tedious. We shall omit the details and show the results directly. We find that the B~ ~ obey the following
relation:

(5.7)

so that it is only necessary to calculate B„and B, . Explicitly, they are

s, 11+4ReB„=—— (1 —2x)(k —q) ~ (k —P q)
1

ImB„=—,'(1+P, )~'~'k„

ReB j(3+P,)(1 —P~)m -m 2 —x(1-x)[k -2k q+P, (2+P~)q 0
1

&1/2
((I —P,)'m'+ P,m, ' —x(1 —x)[(1 —2P, )k'+P, q ]},

1

(5.8)

1mB~+ ——— " f(3+p~)(1 —p, )m' —m, ' —x(1 —x)[k' —2k ~ q+ p, (2 —p, )q']- —,'p, 'q~] .
1

Because the x integral is symmetric about the point x=-„and BeB„is antisymmetric about this point,
there will be no contribution from ReB„ in our answer. The k,' integration in (5.5) is trivially performed,
giving

2 1 1 Bx xd~ P « i)(1 P )&s& )
4v 4z "'"' ' "', (1 —P,} m'+ P,m, '+ x(1 —x)(k —P,q)'

'

From (5.8) and (5.9), it is obvious that N), ~ does not depend on s, and the energy dependence of the
amplitudes is given by (4.4), which clearly exhibits Regge-cut behavior.

The calculation of the right-hand cross is identical to that of the left-hand cross. In analogy to the
spinless case, a left-right symmetry is displayed by the structure functions,

(5.9)

(5.10)

(5.11)

N~ p=-N ),

Supplementing (5.10) is the relation (5.7), which, when stated in terms of the structure functions, reads

NB, I ( )1A. +g~R. L*

We can further simplify (5.9) by carrying out the x integrations analytically, which gives

2 + 1

dp p w ( g)(1 p )v~( y)- D
4n 4~ 1 1 X3X1 '

0

The functions D~ ~, are defined by

.ReD~„=0,

&1/27 1/2
ImDf, =, sing(1 —P,'.)K(p, e),4m

(s.12)
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& 1/2 T 1/2
ReD, = —

2
cosy[-,'(I —p, )rlK(p, ~)+I]-

2
[PK(P, ~)-I] (5.13}

~ 1/27 1/2 ~ 1/2 1/2
(cos'S sp, is'o S)+ coos(1+ p, )) C(p, tc),

2m2 2m 2m

& 1/2 ~ 1/2 T 1/2 & 1/2
ImD, = sin(p [-,'(1-p, )))K(p, (d)+1]+p,',K(p, (d)+2(1-p, ) cos9)+p, L(p, (0),

where we have defined,

K(p, (o}=— ln
(o '~' 1+ [(o/(p+(o)]'~'

& P+& 1 —[e/(p+&u)]' '

1(p, (0)= -[1-2PK(p, ~)].

ty, we have to use the correct low-energy ampli-
tudes at the end points. This will certainly make
the calculation too complicated. Instead, we shall
simply replace the expression of (5.14) by the
value at midpoint, "

p +ss(~1)(1 p )+g(+2) ~
(—) Psr(s]) + 9/(72) (5.15)

The quantities p, ~, and g are defined by

p=(1+0,)' +P,TI,

(o = 4, (k - P,(I)'

1
~ (T~+ p~ T+ 2p~T T~ cos(p),

2
mQ 4
rn

The angle y is introduced such that k„=7 ' cosy,
ky = 71 slny, 72 = 7 + 71+27 71 cosy and
=2d7 dy.

Let us take a closer look at N~, ~, in (5.12}. The
functions D» as given in (5.13}are well behaved

3 1
~ Iin p, . Hence the behavior of N~, ~, depends on the

behavior of the expression

p ipss(s'y)(I p )rP~(&2) -1
. (5.14)

We know that the integral f, dP, P,'(I - P,)' diverges
for a&-1, or b&-1, due to the singularity of the
integrand at the end points P, =0 and P, = l. It fol-
lows that N„,)„diverges if V)„(T,) &-I or (P~(T, )«.
These correspond to

v & ——m -16eV or 7 & —-26ev .1 2 1 2
1 yI r 2 yi

It thus appears that the structure functions break
down at sufficiently large values of 7„even
though r is small.

However, this is not necessarily the case. Since
the divergence comes from the end-point contri-
butions, we intuitively suspect that the physics
that we put in at the end points may not be correct.
The lower end point p, -0 corresponds to s, -I',
and the upper end point P, - 1 corresponds to
s2- m'. Clearly, at these end points, the internal
amplitudes are non-Hegge-like. Hence the Regge
amplitudes (2.3}and (3.1}do not represent the
true internal amplitudes correctly at the end
points of the P, integration. To avoid this difficul-

For small values of 7., and 7.„ the replacement
(5.15) appears to be a good approximation. A pos-
sible error of less than 5/0 is estimated for values
of v, and v2 less than 0.2 GeV . This approxima-
tion has the further advantage that the integrations
in (5.12) are easily performed numerically. Since
the integrands do not have any singularities along
the contour of integration, the real and imaginary
parts of the cross structure functions are there-
fore real analytic.

VI. THE mP-CUT AMPLITUDES

In the preceding sections, we have employed the
Mandelstam diagram as the generator of a nP cut
in the nP charge-exchange reaction, and we have
arrived at the expressions given in (4.4), (5.12),
and (5.13). In this section, a few (Iualitative fea-
tures of the cut will be discussed. %'e find it more
natural to define the following linear combinations
of s-channel helicity amplitudes:

&1 = &++,.+++ &+-., +,

@3=&++,.--+ &+--, -+,
k~= $+, .

h, =8'... .
The nP-cut contributions to these amplitudes can
be cast into the following form.

FIG. 3. Section of the diagram represented by a
cross structure function.
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2 2 2 2

C = g~N A~ft+ Y

4~ 8~ 4&
(6.3)

1 2

3'1=2 dp, ,~+ 1-p, ~P 'Ima~„

X2 =0,
I 2

dP, P,"(1 P)"—'ReD',-
0

1 2

dP, P,"(1-P, )'&-' ImD,'
0

(6.4)

1

R, = — dd, d, "(I—d ) -'ImD, ,)0

1
s d)l d (I —d )s I"mD). ,

0

In writing down (6.4), we have made explicit use
of the relations (5.10) and (5.11), and the fact
that in (5.13) the real part of Di~„ is even in v)

whereas the imaginary part is odd, so that
crossed terms like (ReD~, ~, ImDs~ ~,) do not con-
tribute.

The wP cut, whose contributions to the s-channel
amplitudes are given in (6.2) and (6.4), is readily
shown to be self-conspiratory, which means that
it contributes to the t-channel parity-conserving
helicity amplitudes of both parities. The con-
spiracy relation, as we recall, relates parity-
conserving helicity amplitudes of opposite parities,
Translated into the s-channel amplitudes of (6.1),
the conspiracy relation reads

h, (s, 0}-h, (s, 0) = 0. (6.5)

The amplitude h, comes from purely unnatural-
parity amplitudes, whereas h, receives a major
contribution from the natural-parity amplitudes.
It is obvious from (6.4) and (5.13) that, in the for-
ward direction,

X1 =X2 =@5=0

e-A, (r, +m, )
h,'"((s, 7.)=,~ d7,

8m SP P 0 7] + m

&m + ~p-1
-Apr2 e-i''/2

s i P

0

(6.2)

where

so that

hn"'(s, 0) = k '(s, 0) PO,

and the conspiracy relation (6.5) is satisfied non-
trivially. Hence the nP cut is self-conspiratory.

Although the nP cut does not have a fixed parity,
it nevertheless has definite signature and isospin.
The isospin of the cut is just the isospin of the m

pole, since the Pomeranchon does not carry an
isospin. The signature of the cut is the product of
the signatures of the m pole and the Pomeranchon. "
Since both the m pole and the Pomeranchon have
even signature, the resulting signature of the cut
must be even. This is readily seen by explicitly
calculating the contribution of the nP cut to the
line-reversed reaction, Pp -nn; we find that

V'"'(np -Ps) =0" (PP -nn),

which confirms that the signature is, indeed, even.
The s and t dependence of the mP-cut amplitudes

can be roughly estimated as follows:

V'p(r1) + Vp(r2) -1
h.IIt - dT dp e -A&r1e -Apr2

1
Sp

In(s/s, ) (s, )
where

I

cp, (T}= y, (0}+cp~(0} —1 +

and

(p„"Ap+ yp2A~

(m.'+ e~}'

For A~ =3.5 GeV ' and A„=4.7 GeV ' (taken from
the fit described in Sec. VII), we obtain di, = 2
Gev '. The nP cut is therefore considerably Qat-
ter than the m pole.

The mechanism through which a flat and self-
conspiratory wP cut can account for the sharp
forward peak is by means of destructive inter-
ference with the n pole." To see that the mP cut
chooses, indeed, this particular mechanism, we
note that the ~ pole contributes only to h„which
is, from (2.3) and (2.4),

2 ( . S y~(r)
I (~) gptlfl+ S-AII(n+mn )i S-i(Idds

2m 7" + m~ s,
(6.6)

X =X~ e0, The contribution of the nP cut to h„however, is

C 2+ e A+~r1+~~2) s ~~+ ~p 2h~t=- ' d~ i dy dp p &II(I —p )&z ' ReDi3 4K2S lg + m s 1 1 1 +—
0 0 0 1 7I 0 0

(6.7)
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It is obvious that k,"t is almost completely out of
phase with h,'"'. The destructive interference is
clearly illustrated in Fig. 4.

We note also that the nP-cut contribution to h,
is absent. We can show that h„when crossed into
the t channel, is predominantly A, -like, i.e., it
has quantum number P = C=-(-l)~. Our model
therefore predicts that the mP cut in the nP
charge-exchange reaction does not have an A, -
like contribution. This agrees with the product
rule for the signature of the Regge cut.

As given in (6.1), (6.3), and (5.13), the vP-cut
amplitudes are expressed in terms of three pa-
rameters, A„C~, and g. The parameter A„ is
the slope of the m-pole residue function, and C~
and g are related to more fundamental quantities,
namely, the o-nucleon coupling constant and the
mass of the o particle, respectively.

VII. DESCRIPTION OF THE FIT

The differential cross section is calculated from
the following formula:

4

, (/a, ('+ ia, f'+ ii, i'+ ia, f'+6(a, i'),
dt 4ss s —4m'

(7 1)

where the total amplitudes h,. are given by

a =I(')+I "'.
The cross section, as given in (V.l), contains
three free parameters.

Recent experiments on the np charge-exchange
reaction are reported by Miller et al. ' and Engler
et al. ,~ providing us with an abundance of data.
However, since we do not include the contribu-
tions of other Regge poles, such as p and A„an
elaborate fit utilizing all the data points is not

(y)e «[ye&a& ~c]l-a ' ' o'
ln(s/s, )

'

!.5—
I

'
I

'
I

P„=IO GeV/c

necessary. We therefore employ only a small
portion of the data —the 10-GeV/c data of Miller
et al. Only the first 23 points are used for our fit,
corresponding to a range of t up to t= -0.105 GeV'.
The choice of the small-t cross section for our
fit stems from the belief that at higher values of
t, other Regge exchanges may become important.

The fit is shown in Fig. 5; the corresponding g'
value is 2.0. This is excellent, considering the
small number of free parameters. One feature is
worth noting, i.e., the theoretical curve is void
of any structure whereas the data appears to ex-
hibit a slight structure at t = -0.03 GeV'. The
structure, however, may or may not be signifi-
cant. From the fit, the following values are
obtained for the three parameters: A, =4.7 GeV ',
Cf =1.17@10', and q =10. The corresponding
values for the parameters associated with the v
particle are, g~„'/4m=14. f and m, =3.52 GeV
The 0-nucleon coupling constant has the right
strength, compared with a value of 15 for the
pion-nucleon coupling constant. The mass of the
0 particle is also the right order of magnitude.

From the fit, we observe that the nP cut con-
tributes significantly only to h, and h4, the two
amplitudes involved in the conspiracy relation.
Although the cut contributes also to h, and h„
these contributions are strongly suppressed. The
cut amplitudes can be approximated by the follow-
ing form:

I.O I l
I

I I I

1.0
(

Al

.I

E

4I-

CI 0
cIuedt

ClcT—due
dt
Clo

cl Ue
dt

h(~)0

„{cut)
to h&

{~) {cut)
to h +h

Al)
E

41

.Ol .05
-t(GeV )

2

FIG. 4. Illustration of pole-cut destructive interference.

I I I I I I I I I I

0.0 .02 .04 .06 .08 .IO
-t (GeV )

2

FIG. 5. Fit of the model to data of Miller et al. , Ref.
3. Parameters in the model are adjusted to fit this data
sample only.
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where p, (7.) is the trajectory function of the cut,
and is given by

I

y, (7) = y„(0)+y~(0) —1—

= -0.02 —0.33~ .

X, is an extra phase acquired by the cut ampli-
tudes, which is

The presence of this extra phase is a surprising
feature of our model; it suggests that the phase
of the cut amplitudes is not determined solely by
the signature factor, which is e ' ~&' '. Equally
surprising is that we have only one X, for the dif-
ferent amplitudes. Absorbing this extra phase
into the cut "residue function, "we are led to
infer that the complex cut "residue functions"
have a common phase although they have widely
varied magnitudes.

A list of the cut "residue functions" y„(7.) is
given in Table I, in which the relative strengths
of the cut amplitudes are displayed. It is readily
observed that h, ' and h;"' are smaller than h, ' and
&au' by a factor of 10; in addition, they are fur-
ther suppressed at small t by the respective
kinematic factors, v. and T' '.

At larger values of t, the theoretical curve
exhibits a distinctive shoulder around t = -0.3
GeV', which is shown in comparison with the
data of Ref. 3 in Fig. 6. The data, on the con-
trary, is quite smooth. Although many of our
assumptions may not be valid at large t [e.g.,
the approximate forms of the signature factors,
the replacement (5.15), etc.], we nevertheless
find that the discrepancy is inherent in the mod-
el. The presence of the shoulder is due entirely
to an anomalous bump in h, at t= -0.3 GeV'. We
can visualize this anomalous bump as follows. As
we go away from the forward direction, the w-pole

contribution h,' grows rapidly until it reaches suf-
ficient strength to destroy the cut contribution RP'
almost entirely. However, as t increases, h~')

falls off faster than h;"', thus allowing h;" to even-
tually regain its strength. As a consequence, a
bump at t=-0.3 GeV' is present. We note that
this effect does not depend on the particular mod-
el of the Regge cut. It depends only on the qualita-
tive features of the cut.

This discrepancy might be removed by including
the contributions of the p pole and the A, pole,
both of which contribute to h4 but not h, . Assuming
strong exchange degeneracy, the combined p and

A, contribution will have the following phase:

I.O,—

l
'

I
'

I
~

I

PL-IO GeV/c

AJ

.I

E

e "~&-1 e "f&+y 2

sing 0' p sinmnA sinma p

which is purely real and positive. The mP-cut
contribution, on the other hand, is almost purely
real negative. We therefore expect a destructive
interference. Moreover, since the p and A, con-
tributions are through tensor coupling, there is a
factor (-t) in their Begge residues. Hence the
interference is substantial only at large values of
t. In other words, while the amplitude h, acquires
an anomalous bump, we expect h4 to be substantial-
ly reduced in size, so that the combined effect
can be a smooth-cross section. This mechanism
of interference between the cut amplitudes and
the exchange-degenerate p and A, has been used
earlier by Huang and Muzinich"; recently, Fox
et al.' have suggested a similar mechanism in
K*' production.

A better understanding of this interference may
be achieved by studying the reaction nP -Pn

TABLE I. A list of the cut "residue functions"
for the pion-Pomeranchon amplitudes.

Amplitudes Cut "residue functions" y&(7)

(1 57)Te-(2.24)r .Ol

—(2.78)& 102)g (2.21)~ (7,0&( 102)7'g (2'86)

—(2,78)( 102)g-~2 2i)&

0 .2 .6
-t (GeV )

2
I.O

(2 92)&i/2&-(2. i5)7' FIG. 6. Behavior of the model at larger t values,
compared with the data of Ref. 8.
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simultaneously with its line-reversed reaction
pp -nn. The contribution of p changes sign from
np -pn to pp -nn, whereas that of A, does not;
the combined contribution therefore has the phase
e ' ~', which is almost 90' out of phase with the
cut contribution. A prediction of such an inter-
ference would appear to be that the cross section
for pp -nn is larger than that for np -pn, which
agrees qualitatively with the data, "with a shoul-
der at t=-0.3 GeV .

The energy dependence of the forward cross
section for the np charge-exchange reaction is
found to obey the following power law:

2.
2.5
2.0

l.5
2.0'

l, 5

I
/

I l
I

l
I

.8

.7

.6

The shape of the differential cross section how-
ever does not appear to change noticeably with

energy, agreeing with experimental observations.
A comparison of the energy dependence of the
theoretical prediction with the data of Hefs. 3 and
4 is shown in Fig. V. The theoretical prediction
appears to depend too steeply on energy. However,
since the data contain a large systematic error,
this apparent discrepancy may not be significant.

We do not predict a sizeable polarization, the
predicted polarization being down by a factor of
10 4. This is expected because the polarization is
given in terms of ~P-cut amplitudes alone, and
all the cut amplitudes have approximately the
same phase. To explain the observed polariza-
tion, we, must cpnsider the contributipns pf pther
Regge poles.

We remark in passing that our model contains
the essential features of the Reggeized absorption
model of,Henyey et al." Like these authors we
predict a flat, self-conspiratory cut that interferes
destructively with the pion pole. We differ, how-
ever, in some particulars. Their model, because
it assumes a helicity-conserving Pomeranchon,
populates only h;"' and h,"'. The Mandelstam dia-
gram model shows explicitly how h;"' and h',"' are
suppressed. Our model also exhibits some other
interesting features of the cut."

I.O

l. OOJ,90 ,8„
l.O"
.9
,8
7

b~

.2

.05

I i I i I i I i I

.02 .00 .06 .08

-~ (Gev )
2

.5

.2

,.05

.05

VIII. CONCLUSION

We have developed a model in which the nP cut
is calculated from the Mandelstam diagram. The
nP cut is found to have the following properties:
(i) It has even signature; (ii) it is self-conspira-
tory; (iii) it has a flat dependence on t; (iv) it
interferes destructively with the m pole. Applica-
tion is made to the np charge-exchange reaction.
An excellent fit is obtained in the small-t region,
but there is a significant discrepancy at large t

FIG. 7. Energy dependence of this model, compared
with the data of Ref. 3 and Ref. 4.

values. This discrepancy can probably be re-
moved in a more complicated model, by means
of interference of cut amplitudes with the ex-
change-degenerate p and A, .
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APPENDIX

In the spinless case (e.g., 0'0 scattering), the cross structure function is given by

, g„g„g„y (d'k,
t

d, d, — 1
4v (2v)' '' ' 2n 2w dd, dd '

where

l~ = n~P~s —k~ m~ + zE'~

d, = (n, —n)P, s —(k, -k)' - m, '+ ie,
2

Qg- I 1 s k~ m~ +z&~
m 2 2 ~

(Al)

(A2)

2m3 +7 2d4= +x + z 1 s- kz -k+q -ma +zc.

We note that the integrands appearing in

f dory d(n, —n) 1
2' d~d3

and
2m d d4

have the right behavior at infinity to make the integrals convergent. The presence of spin, however, in-
troduces extra numerators into the integrand of (Al}. These numerators, in general, contain the internal
momenta, the presence of which introduces divergence in (A1). Since we are considering only n'-exchange

reactions, we will encounter one of the following pairs of particles at the cross: (1}NN, (ii) NA, (iii} wp,

and (iv} vf. In general, (Al) is modified by the presence of spin to be

s2 gla gsa YP d ~
d rp 1 rp&

dnl d(nl —n) xa x~ 312 I B G

4~ (2~)' ' ' ' 2w 2v d, d,d, d,
' (As)

A collection of B» for the four types of crosses is shown in Table II. The fact that B„,„, involves the
3 1

internal momenta has the consequence that the n, and (n, —n) integrals will be divergent. To overcome
this .divergence, we must introduce softening factors in the form factors G„. This can simply be achieved

by putting

k2 A2+ie k2 A2+ie

m32 A32 n3 m~ -A~
(ng —n)Pis-(ki -k) —As +$6 niPis -ki -A~ +l6~ ~

where the integers n3 and n, are the minimal multiplicities.
In general, n, and n, depend on both the spins of the external particles and the coupling at the Regge

vertex. Since the propagator of a particle of spin s contains a numerator which is a function of the in-
ternal momentum to 2s degree, it follows that the propagator itself requires 2s multiplicity. The effect
of the coupling at the Regge vertex is more complicated, and we shall consider each case separately.
The details are complex, but the reasoning is straightforward. We expand the function B~,~, in terms of

TABLE II. List of the cross numerator functions B& & together with

corresponding minimal multiplicities n 3 and n&.

Cross

u& (p'&-p+m)y&(p&+m)uy

(&g-&)„( &-~) (~g-&) & —(&~-~)v&p
A( (a, -a+,) -g„.+k„V.+

3 Sf' Q

(kg -k)„(kg -k)„
&~» g„„+ ", (u, +u)v

P

(k~ -k )p (kg -k)v
fx"' (2Pp pPva+ &Pp&Pvp 3Ppv P~) 0&k', where Ppv = gpv+

8 SZf
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the internal momenta, k and ky explicitly for each case. We next express these functions in terms of
the variables of (4.3), and look at the factor with the highest powers in o., and ri, —o. .For each power of

Qy in B~ „we assign a value of one to n„and for each power of n, —n in B» we assign a value of one
3 1 3 1

to n3. The result of such an assignment is given in Table II.
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Earlier work describing baryon excited states by the group O(4, 2) is extended with par-
ticular emphasis on the SU(3) properties. A single irreducible representation of O(4, 2)
x SU(3) && SU(3) is used. The postulates of the theory of infinite-component wave equations
are contrasted and compared with those leading to the Okubo and isospin mass-splitting
formulas. Tables and curves are presented for mass formulas, mass splittings, and mag-
netic moments, which are in agreement with experiment.

I. INTRODUCTION

In the usual mass formula based on SU(3) sym-
metry, one postulates that m or m' is a particular
combination of tensor operators with respect to

SU(3) representations. ' On the other hand, the co-
variant wave equation from which the mass spec-
trum is derived is written in terms of the compo-
nents of p" and some algebraic operators I'l', and
from this one evaluates the eigenvalues of the


