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%'e establish exact bounds on the absorptive parts A(s, t) of an elastic scattering ampli-
tude (spinless case) and evaluate them for positive t values lying within the Lehmann-Martin
ellipse [the major axis =2(1+ tp/2k )j. These bounds are used to derive a number of asymp-
totic results; e.g. , (i) the "diffraction-peak width" TV is larger than Wmm -4tp/(1+A)
x (1-2e) (lns) (for s ~); (ii) the leading Regge trajectory for tp&t & 0 lies below [1+(t/tp)'~l
-A[1 —(t/tz) a]; (iii) there are no complex zeros of A(s, t) for (t~ &4to/(1+X)te2(lns)2 (for s

~) and no real zeros for t p &t & —8' . , where X =lim~ „lnotpt (s)/1ns and
cr =lims tp~tpt (s)/4x(lns) .

I. INTRODUCTION

The investigation of bounds on scattering ampli-
tudes, and in particular on absorptive parts, fol-
lowing from the general principles of analyticity,
unitarity, crossing, etc., has proved to be quite
fruitful in the study of the strong interactions. '
The restrictions on the absorptive part, for a given
total cross section u„,(s) (vs =c.m. energy), were
first studied by Martin. ' The exact solution to this
problem, as well as to the one with both the total
and elas'tic cross sections given, was given by
Singh and Roy, who succeeded in constructing the
correct Fresnel-plate solution. ' A comparison of
the unitarity upper bound, involving the total and
elastic cross section, with the experimental data
in the diffraction-peak region showed that the
bound was almost achieved. "Tge purpose of the
present paper is to show how one can establish
bounds on the absorptive parts which, apart from
unitarity constraints, also take into account their
polynomial boundedness. These bounds are eval-
uated in the positive-momentum-transfer region,
lying within the Lehmann-Martin ellipse and have
important consequences for the "diffraction-peak-
width, " Regge behavior, and zeros of the ampli-
tude.

ln order to derive these new bounds we make use
of only (i) unitarity, (ii) analyticity within the Leh-

mann-Martin ellipse [the major axis = 2(1+ t, /2k'),
k =c.m. momentum], and (iii) the Jin-Martin upper
bound '

A(s, tc) ( (s/s, P,

where A(s, t) is the absorptive part of the elastic
scattering amplitude (we restrict ourselves to the
spinless problem for simplicity) and s and t are,
respectively, the squared c.m. energy and momen-
tum-transfer variables. No assumption shall be
made about the high-energy behavior of the total
cross section og g(s).

II. BASIC THEQREMS

Ws
A(s, t) =—P (2l+1)ima, (s)P, (z),

k t=o
(2.1)

where t = -2k'(1 -z). We also have the following
unitarity restrictions on partial-wave amplitudes:

k k'
A (s, 0) =—a„,(s)

=P (2l+1)Ima, (s)
2=0

(2.2)

The absorptive part A(s, t) of the elastic scatter-
ing amplitude has the following partial-wave ex-
pansion, valid within the Lehmann-Martin ellipse:
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and

(positivity): Ima, (s) -0,
(boundedness): 1 & Ima, (s).

(2.8a)

(2.8b)

itivity and the boundedness constraints (2.3).
It is convenient to define the sets of l values

U (M, N; z, x) and W (M, N; z, x) as follows:

We further know that U(M, N; z, x) —= (l~ P(M, N, l; z, x)(0},
(2.5)

A(s, to)= Q (2l+1) Ima, (s)P, (x),
Ws

E=O
(2.4) W(M, N; z, x) -=(l~P( M, N, l; z, x) -0, I &M, N},

where t, =2k'(x —1), satisfies the Jin-Martin upper
bound (1.1).
. In order to take into account the unitarity restric-
tions as well as the polynomial boundedness of
A(s, t), we formulate the following mathematical
problem. " Find extrema of A(s, t) such that.
A(s, 0) and A(s, t, ) have given fixed values and the
partial-wave amplitudes Im a, satisfy both the pos-

where x & g, JI/I &N and

P(M, N, l; z, x) =P„(z)[P,(x) -P„(x)]

(2 6)

+ P, (z)[P„(x)-P„(x)]
+ P„(z)[P„(x)-P, (x)].

Using the definitions (2.5) and (2.6), we can state
the solution to the extrema problems as follows:

Theorem 1. The upper bound on A(s, t) is given by

A,„(s, t) &A(s, t)

for f; real and within the Lehmann-Martin ellipse, where

(k/Ws)A (s, t) =Q(2l+1)P, (z)+ (2m+1)s P (z)+ (2n+1)e„P„(z) (2."t)

and Qs stands for the summation over l values contained in the set U(m, n; z, x). The non-negative inte-
gers m, n (m &n) and the numbers s, c„(l& s„,e &0) are to be determined by

and

Q(2l+1)+ (2m+1)e + (2n+1)e„= A. (s, 0)
U s

(2 ~ 8)

Q(2l+1)P, (x)+ (2m+1)e P„(x)+ (2n+ 1)e„P„(x)=—A(s, t, ).
V s

Proof. Using Eqs. (2.2), (2.4), and (2.8) we have

Q(2l+1)(1 —c,)+ (2m+1)(e„—c„)+(2n+1)(e„—c„)=Q (2l+1)c,

and

Q(2l+1)(1-c,)P, (x) + (2m +1)(e —c„)P (x)+ (2n+ 1)(e„-c„)P„(x)=Q (2l+1)c,P, (x),

where

c, =Ima, (s)

and P~ stands for the summation over the l values contained in the set W(m, n; z, x).
We now consider

D -=(k/vs)[A „(s,t)-A. (s, t)]

= Q(2l+1)(1 —c, )P, (z)+ (2m+1)(e„—c )P (z)+ (2n+1)(e„—c„)P„(z)-g(2l+1)c,P, (z).

Eliminating (e —c„)and (e„—c„)from D, by using Eg. (2.9) we obtain

[P (x) -P„(x)]D= Q (2l+1)(1 —Ima, )[-P(m, n, l; z, x)]+g (2l+1) Im a, P(rn, n, l; z, x).

(2.9)
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If we now use E(I. (2.8), the definition (2.5), and

P„(x)&P„(x) for x&1, m&n,

we obtain

D~O
1.e.)

A,„(s, t) & A(s, t).. Q.E.D.

Theorem Z. The lower bound on A(s, t) is given by

A. (s, t) & A;„(s, t)

for t real and within the Lehmann-Martin ellipse, where

(h/Ws)A (s, t) = Q(2t+1)P, (z)+ (2m'+1)e„,P„,(z)+ (2n'+1)e„,P„,(z) (2.10)

and Q~. stands for the summation over the / values contained in the set W(m', n'; z, x). The non-negative
integers m', n' (m' &n') and the numbers e„,, c„, (1 & e„,, e„,& 0) are to be determined by

Q(2I+1)+ (2m'+1)e„, + (2n+ l)e„= A(s, 0),
w' S

Q(2I+1)P, (x)+(2m'+1)e„.P .(x)+(2n'+1)e„.P„.(x)= —A(s, t,).s' 8

(2.11)

A proof of Theorem 2 can be given along the same lines as that of Theorem 1 and so it shall be omitted.

Bema~he. (i) Theorems 1 and 2 are true for
aB energies above threshoM and riot just for high
energies.

(ii) The upper bound given by Theorem 1 is sat-
urated for the following set of the partial-wave
amplitudes:

te V(m, n; z, x)

=0, I CW( m nzx).
Since the upper bound is achieved, and the theo-
rem has been proved by the "direct subtraction"
method, it follows that the upper bound is the best
possible one under the stated assumptions. Simi-
lar remarks apply to Theorem 2.

(iii) Even for a problem with spin there is always
an amplitude which is formally similax to the one
we considered in the spinless case. ' Fox example,
the amplitude Ws(f, +zf, ) for vN scattering is such
an amplitude, where f, and f, are respectively the
standard nN spin-nonf lip and -flip amplitudes. AB
our considerations equally apply to such an ampli-
tude.

(iv) Dependence of the ex''ema of A{s, t) on
A(s, to). The bounds given by Theorems 1 and 2 are
obviously functions of A(s, 0), i.e., o««&(s) and
A (s, t,). We however do not in general know the
value of A(s, t,). Asymptotically A(s, t, ) satisfies,
of course, the upper bound (1.1). We would thus

obtain interesting asymptotic results from Theor-
ems 1 and 2 by combining it with the Jin-Martin
bound if, and only if, the upper (lower) bound on
A (s, t) is an increasing (decreasing) function of
A(s, t, ) for a fixed A(s, 0), i.e., fixed total cross
section. %e, therefoxe, note that:

Lemma l.

5(A, (s, t))= " 5(A(s, t)),P.(z) -P„(z)
mx nx

provided

5(A (s, 0)) = 0.

P~oof. Let us introduce small changes in A(s, t,)
by introducing small changes 5e in ~ and 5~„ in
~„but keeping m and n unchanged. %e obtain

ii A(s, i
))

= (R~+1)a„(x)lie + {Rn+))P„(x)lie„.

The small changes 5c and 6e„are, however. , sub-
ject to

(Rm+))iis„+(2m+1)ila„=il A{I, O))=0.s

The changes 5c, 6e„ introduce a change in
A (8, t) given by

il 2 (, t))=(2m+1)J'„(g)i)e +{ m+1)P (3c) aii„
Eliminating 6~ and 5e„between the expressions
for 5(A(s, t, )), 5(A(s, 0)), and 5(A. (s, t)) we obtain
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Lemma 1. Similarly, we have:
Lemma 2.

fol

m) l)8 x~g + 1.
5(A;, (s, t))= "'

(
"

( )
5(A(s, to)),

provided

5(A (s, 0)) = 0.

These lemmas also follow from the general analy-
sis given by Einhorn and Blankenbecler. '

(v) A variant of the above problem with total
elastic cross section, instead of the total cross
section, given has been considered earlier by Ein-
horn and Blankenbecler. '

III. EVALUATION OF THE UPPER BOUND ON

A(s, t) IN THE REGION to) t )0.
It is obvious from Lemma 1 that if we wish to

use the Jin-Martin upper bound (1.1), in conjunc-
tion with the extrema theorems, we can do so only
for the upper bound, Theorem 1, in the region
t, &t&0 (i.e., x&z &1). For an explicit evaluation
of A,„(s, t) it is useful to know the following re-
sult.

Lemma 3.

where

A..„(s, t) =[P. , '(x)+P. '(a)+ (2m+1)~.P (z)]
—[P. , '(s) +P.'(a)

+ (2n+1)(1 -e„)P„(z)]
for

x)~g )~ 1 (3.2)

Similarly, by choosing (y„y, y, ) =(P, (x),P (x),
P„(x)) and (P (x), P„(x),P, (x)) we find that

P(m, n, E; z, x)&0

for
x~g & 1, m)n) l, and l)rn)n.

This proves Lemma 3.
if we combine Theorem 1 with Lemmas 1 and 3

we obtain the following theorem.
Theorem 3.

A,„(s, t) & A (s, t),

and

fol

EE(m, n; s, x) =(E)m& E&n]

W(m, n; z, x) =fE(n& E& 0]+fE[E&mj

The non-negative integers m and n (rn &n) and the
numbers e, e„(1&e„,e„&0) are to be deter-
mined by

—v„, (s) =[m2+ (2m+1)e„] —[n'+ (2n+1)(1 —&„)]

xo~ o I m)n

Proof Consider .the function f (y) defined by

f(y) =-[(1-ri)P. (&) 0P+,+i(&)]

(3.1) (3.3)

A(s, t,)=[P,'(x)+P '(x)+(2m+1)e P (x)]

-[P„,'(x)+P„'(x)+ (2m+1)(1 -~„)P„(x)],

y = (1 -q)P„(x)+qP„„(x),
6=0 1 2 . . . 1)/~0 x~8 ~ 1.

where A(s, t,) is any number larger than A(s, t,).
We now proceed to evaluate the asymptotic upper

bound on A(s, t) given by Theorem 3. We use

By varying n in integral steps and g continuously
between 0 and 1, the variable y takes all possible
values from one to infinity; the numbers x and z
are. fixed numbers. It has been shown by Singh
that the function f (y) is a convex function of y for
y) 1.' We therefore have

(y, -y)f (y, )+ (y, y, )f (y)+ (y--y, )f (y, ) - 0

for all

y )~y &~y )~ 1

Choosing

(y„y, y, ) =(P„(x),P, (x), P„(x))
we obtain

(-)P (m, n, E; g, x) & 0

A(s, t,) = (s/s, )'.

Solving Eqs. (3.3) we obtain

m ~ —(1 + A. ) lns + ~ ~ ~

s~~ Wto

n ~—(1+1)(1 (r)'r21ns +-~ ~ ~~--v t0

where

inc'„, (s)
Ins

&r = lims'. 4w(lns)' '

(3.4)

(3.5)

(3 6)

(3.V)
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Note that A. is nonzero only if o„,(s) has a power decrease with s.
We thus obtain, using the solution (3.5), the asymptotic bound:

Theorem 3(a).

[I,((1+y) (t/t, )' ' lns ) —(1 —o)I,((l + A ) (1 —o')' '(t/to)' ' lns )]/o',
t

where 1,(y) =21,(y)/y and I, (y) is the modified Bessel function of the first order
Remark. If a =0, then Theorem 3(a) leads to the result

I ((1+3.)(t/t )'~'lns) .A. (s, t)

(3.8)

(3.9)

IV. SOME CONSEQUENCES OF THE UPPER-

BOUND THEOREMS 3 and 3(a)

dlnA(s, t)
dt t=o

(4 1)

It follows from Theorem 3 that

A,„(s, t) -A(s, 0) A(s, t) -A(s, 0)
tA(s, 0) tA(s, 0).

We shall now discuss some of the important
consequences which can be deduced as corollaries
of Theorems 3 and 3(a).

(a) The "diffraction-peak uidth" W. We define

bound on W ' given by Martin, i.e.,
rrr -1 « t&t

S~~ 327T

we obtain the Lukaszuk-Martin upper bound on
the total cross section.

(b) Asymptotic pofver behavior If the .amplitude
A(s, t) has a power behavior like s""' then using
Theorem 3 (a) one obtains the following upper
bound:

Theorem 5.

a(t) & [1+(t/t, )"'] -X[1 —(t/t, )'"] for 0 ~ t ~ t, .

(4 5)
for

to«t«t.
Taking the limit t-0+ we obtain

A „(s,t)-A(s, 0)
~Y+ tA(s, 0)

We now use Eqs. (3.2) and (3.3) to obtain:
Theorem 4.

W -'«d-
min

(4.2)

This improves a result of Martin" given by
n(t) &1+ (t/t, )'" for t, & t& 0.

Remark. If there is a J-plane singularity at
J = a(t) then it is well known that unitarity implies
the presence of further J-plane singularities hav-
ing positions Z = o.„(t)-=n a(t/n') —1, n = 2, 3, 4, . . . .
It follows therefore that if J'= o. (t) is the leading
singularity for t, «t«0, then it must satisfy

o.'(t) -nn(t/n') —1, n =2, 3, . . . (t to 0).

where

[m + (2m+ 1)e„-n' —(2n +1)(1—e„)][8k'~ . ']
—= m~(m -1)+2m(m+1)(2m+1)e

-n (n' —1) —2n(n+1)(2n+1)(l —e„)

(4.8)
and m, n, e, e„are given by Eqs. (3.8).

Similarly, using Theorem 8(a), we obtain:
Theorem 4(a).

(1 + X)'(I —o/2) (lns )'
min s~ ~ 4t S

0

Theorem 4(a) removes the major arbitrariness
in &e upper bound on W ' given by Kinoshita, ' i.e.,

const{lns)'&W ' for s-~
and improves an earlier result of Singh. ' If we
combine Theorem 4(a) with the unitarity lower

It is nice to note that our bound on n(t) does have
this desirable property both for A. ~0 and X =0.

(c) Zeros of A(s, t) in the comp/ex t plane The.
zeros of the scattering amplitude near the forward
direction have been investigated in connection with

the possible violation of the Pomeranchuk theo-
rem. " Let n(y) be the number of zeros of the func-
tionA(s, t) for ~t~ &y&t, . Then from Jensen's the-
orem we have (t, &r&0)

""dyn(y) 1 " A(s, t=re'~)
y 2v o A(s, 0)dQ ln

Using

(A(s, t =r @e)~ &(As, r)
we obtain

n(y) A(s, r)
y A(s, 0)

'
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If we now combine this result with Theorem 3(a)
we get:

Theorem 6(a).

J
f r n(y) (r 1/2
I dy & (1+3)l— for t, & r& 0, s- ~.
o Ito

We can also extract a bound on n(y) itself from
Theorem 6(a) by noting (for t, & r& r, & 0) that

4t 1
lfl&( )2 2 ( )2

These results make some of the earlier results of
Eden et a$. more precise by determining the un-
known constants in their results.

On the real t axis we can obtain a stronger re-
sult as follows. Using the inequality

P, (g) & [1--',/(1+1)(1-z)j for 1&s& -1

dy &n(r, ) —=n(r, ) ln—I"n(y) t'" dy r
p 4 ~1

(4 'I) it is easy to show that

since n(y) is an increasing positive definite func-
tion of y. Optimal results are obtained by choos-
ing (r/r, ) =e' for t, /e'&r, &0 and (r/r, ) =t, /r, for
r|& to/e'. Therefore we have the result:

Theorem 6(b).

e(1+X) t
n(r) &

2 tp
lns for~&r&0 s-~

A(s, t) &A(s, 0)(1+(/W) for 0& t& -4h'.

It follows that:
Theorem 7. For 0 ~ t) -4k,

A(s, f) &A(s, 0)(1+(/W ). . (4.6)

Corollary. The absorptive part A(s, f) can not
have a zero on the real t axis for 0) t&-5';„. The
A(s, t) does not, of course, have a zero for
tp) t) 0.

n(r)& for to&r&-I, s-~.(1+A.)lns ~t

In(t, r) ' e"
Corollary. The absorptive part can not have a

zero in the complex t plane within the circle
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