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It is shown how to obtain consequences of current algebra for nonleptonic hyperon decays
in the limit @2=0, with the baryons kept on the mass shell. The p waves are model-inde-
pendent, and an excellent fit determines the parity-conserving spurion. When a E*pole is
included for s waves, a rough fit is achieved.

It is generally recognized that a unified theory
of s-wave (parity violating) and p-wave (parit'y
conserving) hyperon decays does not exist. The
accepted s-wave theory of Suzuki' and Sugawara'
based on soft pions and current algebra implies a
different d/f ratio of the weak spurion than that
implied by the P-wave pole model. ' What is worse,
the ratios of theoretical P to s waves are smaller
than the experimental ratios by factors of 2 to 3.4
The resolution of these inconsistencies is usually
taken to be that the s-wave current-algebra analy-
sis is correct, but the p-wave analysis is ambigu-
ous because the soft extrapolation in pion four-
momentum destroys the SU(3) baryon mass break-
ing and leads to large unknown background terms.
The problem is how to take the pion soft while still
preserving momentum conservation at the thxee-
particle vertex.

In this paper we point out that one can obtain a
unified approach to s and P waves in the limit q'
-0, rather than in the soft-pion limit q-0. Using
the axial-vector Ward identity in conjunction with
the usual SU(3) assumptions, current algebra leads
to the P-wave solutions of ltzykson and Jacob' and
of Kumar and Pati' to lowest order in SU(3) baryon
mass breaking as q'- 0. The s-wave results of
Suzuki-Sugawara are also recovered in the q' = 0
limit; and we find it advantageous to include the
K* pole as well. The q'= 0 limit effectively re-
moves any ambiguity in the soft-pion limit.

W'e note that the P waves are not susceptible to
"SU(3}anomalies, " and that the Ward identity for
the P waves appears less model-dependent than
for the s waves. Hence we regard the former to
be on firmer footing than the latter, and we fit the
data accordingly.

We begin by defining the axial-vector amplitude
M„ for the process B'(p)-B~(p') +AI(q) by'

M„=i "e" "0(x,)&B'('[A'„(x),II ) (B'&d'x

Computing the divergence of (l}and taking the pi-
ons to be massless according to Nambu's version

of partial conservation of axial-vector current
(PCAC), ' we obtain by Gauss's theorem

JIS(q) = )d'xe '" "AID(x, 0),

and the commutator in (2) is at time / =0. We iso-
late the pion-pole contribution to M&, giving the
pion amplitude M, for B'(p)-B~(p') + ll'(q) as

q M=if M +q M" +q M (4)

q M(s wave) =-&B ([ZI III'"])B'&

q M(p wave) =-&B'l[J'. II".1(B'&.

(3)

(9)

We should stress that (3) and (9) are "exact" Ward
identities, valid for any q as opposed to the "soft"
Ward identities used when q-0. ' "'

Finally we state the SU(3) assumptions that we
shall use:

(i) SU(3) is conserved at the strong and weak

where M& corresponds to the baryon pole diagrams
with axial-vector coupling gg~ gppps~ and M p ls the
unknown background amplitude. Separating the
weak Hamiltonian density as II =III„'"+III„, we
have (suppressing the baryon spinors)

M„(s wave) = -&B~III (IIP" (B'& =iA, (5)

M, (p wave) = -&B'II'(III„'(B'&=By„ (6)

with A, and B relatively real (y,' = -l) by T invari-
ance (neglecting final-state interactions). Assum-
ing a current-current form for H, with J= V —A,

II.-Z~~Z j" +Z"J~, (7)

tile collllnutRtol' ill (3) coIltRIIIs 5 (x) fl'0111 the Rl-
gebra of currents, "0or from Feynman dia-
grams. " Thus the dependence of (3) upon Il can
be eliminated and (3) can be evaluated exactly by
I'eplRCillg e7~(Il) wltll tile RXIRl ChRI'ge el5 =eTq(Ii= 0).
The axial-vector Ward identities for s and P waves
can then be written as
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vertices, but the hadronic masses are broken and
kept physical.

(ii) The AI = —,
' sum rules A'= -v 2 A', , = = -W2=', ,

and Z,' —Z =&2Z~, as well as the Lee-Sugawara"
(LS) sum rule A'+2= =v 3 Z', must be obeyed for
both the s and P waves. According to Suzuki' and
Sugawara, ' this is valid in the current-algebra
analysis of s waves if the 27 representation of II„
is suppressed:

&H'iH. (27) ia'& =O, (10)

which implies Z', (s wave) = 0, agreeing with experi-
ment.

(iii} The C parities' of the commutators in (8}
and (9) are +1 and -1, respectively. By CP in-
variance, the octet part of H given by (7) trans-
forms as X, and therefore has C =+1 for H&' and
C = -1 for HP'. The same is true of the 27 part of
H .' Application of the algebra of currents trans-
mits this C parity to the commutator but with op-
posite sign. Clearly this property does not depend
upon the over-all scaling of current algebra, and
we take it as a general constraint upon H . Mod-
els such as the quark density model do not obey
(7) nor have the C-parity assignment as stated
above, and we do not consider them. Because the
BB states which couple to a neutral pion have
C =+1, we can write

f& f&
~a(gA y„y, &A-q„r,),

which gives

(mZ + m, )gA~'(q') q+'h 'A(q') = 0

for any value of q. Applying pole dominance by a
massless pion near q' = 0 to h„ then leads to the
generalized Goldberger-Treiman relation"

,'(m~+ —m,)gA~' =f,g~'. (14)

This technique of first separating the invariants
from the covariants and then taking the q' = 0 limit
can be directly applied to the hyperon decays.
More specifically, by writing the unknown back-
ground for P waves as

valid for any q. Such a current-conservation
statement as (13) is the basis of many of the re-
sults of current algebra, "in particular the Gold-
berger-Treiman relation, and we consider if far
more natural than any other possible P-wave Ward
identity.

The P &eaves. We are now in a position to com-
bine (13) with (4) at q' = 0 to obtain a model-inde-
pendent P-wave result. The conservation equation,
(13), is reminiscent of the conservation of the pa, r-
ity-conserving (on-shell) axial-vector vertex

&H ~H~" ~a'&=o,

gYiH 'ia') =n(d'd"'-y'iy"'),

and from (9),

q M(p wave)=0,

(11)

(12)

M„(p wave) =iG„y„y, +iH„q„y, +X„[y„,y q]y, ,

we find

q M = -i(mz+ m, )GAy, at q' =0.
Then the axial-vector pole diagrams

M)((p wave)=- ,'i g[gA"y) ys(r'p, —m, ) 'H-" +H "(r'p„—m„) 'r„y, gA]
n

evaluated between on-shell baryon spinors allow us to separate the invariant amplitude B from the covari-
ant y, in the P-wave part of (4). Using (13) and (14) we find at q' = 0

fn Hnf Hfn nf g' Z((ml+m)(m„— m, ) (m„—ml)(m„+m ))) ' mg

We regard (17) as a power series in SU(3) break-
ing, so that neglect of the last term leads to an ex-
pected 1¹accuracy; since the baryons have been
kept on the mass shell, this expansion is unambig-
uous. Additional support for our neglect of 6„
comes from an argument of Brandt and Prepa-
rata. " They first generalize the decay to a four-
particle interaction involving a scalar spurion,
then use high-energy Regge and low-energy reso-
nance considerations to establish the smallness
of what in our language is G„.

Compare our approach to the q- 0 limit. First,

fnH nf H fn niZIll tl ll g
t

mn ~] mn mf
(18)

which is the pole-model result of Brown and Som-
merfield, ' and

ll=-Z( + " )+o(().

Both terms in (19) are of O(l) and so one usually

(19)

one separates M,""' with gy, coupling from the
background M„, and determines the latter from (4)
as q-0. One obtains
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neglects all of (19). However, Itzykson and Jacob'
and Kumar and Pati' kept both terms and obtained
a better fit to the data. If one actually combines
the mass factors in (18) and (19) the O(1) pole
terms cancel and one obtains our q2-0 statement,
Eq. (17).

Another approach to the P waves is the SU(3) pole
model for the pion amplitude, which leads to (18)
with a kaon pole added. Since &Ã~H'( v& vanishes
by current algebra and SU(3), Eq. (18}, taken
alone, can be regarded as a consequence of SU(3)
and current algebra. The difference between this
and our result, Eq. (19), would seem to arise from
the opposite order in which SU(3) and current al-
gebra are applied. Notice that since the kaon pole
does not contribute to the axial-vector covariant
y& y„ it never enters the SU(3) analysis of our Eq.
(17). Note too that our unambiguous procedure
leading to nonvanishing P waves strengthens the
assertion" that current algebra is inconsistent
with univer sality. "

We have fitted (17}to the p-wave data, and de-
termined the parameters in (12) to be d'/f '= -0.86—
and h—= 16.2 eV. The fit is displayed in Table I.

The s eaves. In this case, the right-hand side
of (8}does not vanish and explicitly depends on the
structure of the algebra of currents, which implies

q M(s wave) =if~~'&B'(HP-'(B'&

where X is the right-hand side of (20),

X(A') = (-I/W~)&n~ H. ~A&,

X(=- )=(-I/~2)&A~H ~=-'&,

X(~.') = l&P IH. I'&,

X(Z-) =&n(H„(Z'&,

X(~:)= -[&nIH. I'&+(I/&2)&pIH. I'&].
Neglecting the background in (22) because it is
O(b m/m) corresponds to the Suzuki'-Sugawara'
solution of the s waves as q- 0. This of course
leads to the M= 2 rule and the LS rule for s waves
because of (10). However, the best fit to the s
waves gives d'/f'- -0.3 and h-70 eV If .we in-
sist upon the P-wave parameters d'/f '= -0.86 and
h= 16.2 ev, the theoretical s waves for the Su-
zuki-Sugawara solution in Table II are not good
and the B/A ratio is still off by a factor of 2.

Although the second term in (22) is first order
in SU(3) breaking, it is not suppressed by the
Brandt-Preparata argument" applied to s waves.
A possible contribution to the axial-vector ampli-
tude M„ is the jP pole. In contrast to the K pole
for P waves, the K* pole contributes to the s-w'ave

y& covariant, and leads to"

-if'"&B'IHP" IB'&. (20) A" = n(m —m')d'~'( f„if'~'+d„-d'f') (23)

M &(s wave) = F,Z~+F2[y~, y ~ q]+F.q
and noting that M"„does not contribute to s waves
by (11), we obtain from (4) and (20) at q' = 0

(21)

Because (20) is valid for any q, we again take the
q' = 0 limit. Writing the background in (4) as

Q =k gvee/mg + (24)

where f„and d„arise from the K*-baryon vertex
(f„+d„=1). With the aid of a short current-alge-
bra argument relating &v(H'"(K*& to &0(A„H&"(K*&,
we find

A= (1/f„)X+(nm/m)(g/g„)F, , (22)
where

&m'(q) ~H ~Z*'& =a'd"'q (25)

TABLE g. p waves.

Decay Experiment Theoryb

Q+
0

2.28+ 0,07

2.92+ 2s

4.17+0'2(

-0.21+ 0.02

1.55+ 0.12

2.39

2.89

4,17

0.10

1.47

'Experimental values were calculated from those for
n and p [Particle Data Group, Bev. Mod. Phys. 43, 81
(1971)]by assuming T invariance and incorporating
known information about final-state phase shifts.

"g/f =-0.86&: h, =16.2 eV.

and gyps/4w 2
For ~y=1decays, d' "~'=f' "~' =0; using this

together with isospin invariance one finds that Eq.
(23) exactly parallels the structure of the Suzuki-
Sugawara contribution in the limit mA —m„= m E- m~= m& —mA. In fact, the K* pole has been in-
voked as a model for the entire pion amplitude. ""

We will now argue that as a first-order contrib-
utor to A, A~ is anomalously large. " We can
relate the parameter n or lz' to K~ - nw decay by
applying pole dominance by the K* to the latter
process. " According to a theorem of Gell-Mann
and Cabibbo, "with our assumptions the K- n.m

matrix element is first order in SU(3); yet it is
not correspondingly small. In fact, we find
n=3.4&&10 'BeV ', or h'-600 eV in Eq. (25).
This is to be compared with the strength of HP'
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TABLE II. s waves.

Decay Experiment~
Current

commutator

10'a
With K*,

d*=p
With K*,

d*/f *=-0.33

g+
0

M
IN

0.335+ 0.004

0 308+o' ops

0-070-o.o46

0.428+ 0.003

-0.441+ 0.005

0.505

-0.76

1.08

-0.915

0.24

-0.54

0.77

-0.62

0.16

-0.33

0.47

-0.42

Experimental values were calculated from those for n and f4F) [Particle Data Group, Rev.
Mod. Phys. 43, Sl (1971)1 by assuming T invariance and incorporating known information
about final-state phase shifts. In the case of A(Z++), large cancellations of the I=2 and 2

parts allow Q to be any value. Hence A(Z++) might be rather larger than has often been as-
sumed.

in (12), h~d'~-100 eV.
In Table II we display the s-wave fit for the

above value of h' and two values of d„/f„. Univer-
sal vector-meson coupling requires d„=0 at q' = 0,
whereas Regge estimates" from meson-baryon
scattering give d„/f„- -0.2 to -0.5. The value
d„ /f, = -0.33 gives close-to-the-best fit obtainable
with Eq. (23) added to the current-commutator

term. Significant improvement results with the
K*, but the fit is still not completely satisfacto-
ry 25
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%'e establish exact bounds on the absorptive parts A(s, t) of an elastic scattering ampli-
tude (spinless case) and evaluate them for positive t values lying within the Lehmann-Martin
ellipse [the major axis =2(1+ tp/2k )j. These bounds are used to derive a number of asymp-
totic results; e.g. , (i) the "diffraction-peak width" TV is larger than Wmm -4tp/(1+A)
x (1-2e) (lns) (for s ~); (ii) the leading Regge trajectory for tp&t & 0 lies below [1+(t/tp)'~l
-A[1 —(t/tz) a]; (iii) there are no complex zeros of A(s, t) for (t~ &4to/(1+X)te2(lns)2 (for s

~) and no real zeros for t p &t & —8' . , where X =lim~ „lnotpt (s)/1ns and
cr =lims tp~tpt (s)/4x(lns) .

I. INTRODUCTION

The investigation of bounds on scattering ampli-
tudes, and in particular on absorptive parts, fol-
lowing from the general principles of analyticity,
unitarity, crossing, etc., has proved to be quite
fruitful in the study of the strong interactions. '
The restrictions on the absorptive part, for a given
total cross section u„,(s) (vs =c.m. energy), were
first studied by Martin. ' The exact solution to this
problem, as well as to the one with both the total
and elas'tic cross sections given, was given by
Singh and Roy, who succeeded in constructing the
correct Fresnel-plate solution. ' A comparison of
the unitarity upper bound, involving the total and
elastic cross section, with the experimental data
in the diffraction-peak region showed that the
bound was almost achieved. "Tge purpose of the
present paper is to show how one can establish
bounds on the absorptive parts which, apart from
unitarity constraints, also take into account their
polynomial boundedness. These bounds are eval-
uated in the positive-momentum-transfer region,
lying within the Lehmann-Martin ellipse and have
important consequences for the "diffraction-peak-
width, " Regge behavior, and zeros of the ampli-
tude.

ln order to derive these new bounds we make use
of only (i) unitarity, (ii) analyticity within the Leh-

mann-Martin ellipse [the major axis = 2(1+ t, /2k'),
k =c.m. momentum], and (iii) the Jin-Martin upper
bound '

A(s, tc) ( (s/s, P,

where A(s, t) is the absorptive part of the elastic
scattering amplitude (we restrict ourselves to the
spinless problem for simplicity) and s and t are,
respectively, the squared c.m. energy and momen-
tum-transfer variables. No assumption shall be
made about the high-energy behavior of the total
cross section og g(s).

II. BASIC THEQREMS

Ws
A(s, t) =—P (2l+1)ima, (s)P, (z),

k t=o
(2.1)

where t = -2k'(1 -z). We also have the following
unitarity restrictions on partial-wave amplitudes:

k k'
A (s, 0) =—a„,(s)

=P (2l+1)Ima, (s)
2=0

(2.2)

The absorptive part A(s, t) of the elastic scatter-
ing amplitude has the following partial-wave ex-
pansion, valid within the Lehmann-Martin ellipse:


