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We present a numerical calculation of the inclusive one- and two-particle spectra and the
two-particle correlation function at several energies for ladder diagrams in a A, y3 field
theory.

I. INTRODUCTION

At presently available accelerator energies the
inelastic contributions to the scattering cross sec-
tion are dominant; however, the complexity of
many-particle production processes makes them
not immediately amenable to many of the techniques
used in two-body reactions. Thus the understand-
ing of high-multiplicity events requires new

methods and models. In view of the presumably
complicated underlying physical situation, W'ilson'

has suggested that the aim of the new models
should be to explain the gross qualitative features,
which hopefully reflect only the dominant physical
effects. Instead of studying all final-state par-
ticles one should deal only with highly integrated
quantities. Such quantities are the total cross sec-
tion, the contributions of special multiplicity chan-
nels, and the inclusive one- and two-particle spec-
tra. In this paper, the inclusive spectra will be of
central interest.

For the purpose of analysis the spectra can be
divided kinematically into regions called "fragmen-
tation" and "pionization. " As the boundary between
these two regions is controversial, ' let us state
our definition of these terms. Common to all def-
initions are two features: (1) The pionization and
the fragmentation are complementary parts of the
spectrum, and (2) the fragmentation consists of
fragments of the target and fragments of the pro-
jectile which have momenta "comparable" to the
initial momenta of, respectively, the target and
the projectile. The exact mathematical definition
of "comparable" is still moot. For simplicity we
treat always the case in which all particles have
the same mass. To formulate our definition let
us first define the "plus" and "minus" components
of a momentum vector and the "transverse mass, "

p'-p, +p,~, m, =(m'+p, ')'".
We consider in the center-of-mass system the
ratio of the plus or minus component of a momen-
tum and its transverse mass,

r'=p:.m. /m, .
If r' exceeds a constant fraction, q, of its maxi-

mum allowed value, we shall call the secondary a
fragment of the projectile. Further, if r' is
smaller than a fixed multiple of its minimum val-
ue —so that r is larger than a constant fraction of
its maximum value —then we shall consider the
secondary to be a fragment of the target. In the
center-of-mass system we have the following di-
vision:

rprojectile

+ +
fragmentation projectile Qrprojectile

+ 1
& r pionization get

fragmentation target &target L= gm / Sg

(2)

Here g is a constant less than 1 but independent of
s, say 0.1. Campbell and Chang show in an analy-
tic calculation' that such a division is suggested by
the multiperipheral model. As a slight change
which does not alter their arguments, the trans-
verse mash is included here to achieve a more
symmetric form. Some features of our definition
seem to be clearer in the rapidity space. The
rapidity of a secondary is defined as z =lnr'; our
definition gives a finite range in the rapidity space
to the fragmentation regions, while the range of
the rapidities of the pionization region grows with
lns. The regions in this variable are given in ex-
pression (3):

Z projectile fragmentation proje«lie

Zpioni tion & Zt get+ COns

&Z fragmentabon target &
&Z

where

const = 1n(1/q).

These relations are invariant under longitudinal
boost since such Lorentz transformations corre-
spond to simple translations in the rapidity space.
The division allows a simple interpretation of the
empirical result (n) A1 s Bn+The term .A lns
comes from the pionization region —in which, by
Feynman's scaling hypothesis, the spectrum is as-
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sumed to have an essentially constant height as a
function of rapidity —and the term B represents
the constant contribution from the fragmentation
regions.

Current theoretical investigations' suggest that
in the fragmentation region the secondary spectra
depend on the initial particles; on the other hand,
the pionization products are believed to be roughly
independent of the beam and the target. Therefore,
in seeking a first understanding of gross features
common to all multiparticle production processes,
we shall concentrate primarily on pionization
products. In the pionization region, however, it
appears to be difficult to distinguish clearly be-
tween existing models, as many models give total
cross section, multiplicities, and one-particle in-
clusive longitudinal spectra all in rough agree-
ment.

To differentiate between the models one must
either go to quantitative considerations or look for
quantities which contain more detailed, model-de-
pendent information. The main purpose of this
paper is to investigate such new quantities in a
simple Xy' multiperipheral model. We shall con-
centrate on the one- and two-particle inclusive
spectra and on the two-particle correlation func-
tion.

A second purpose of this investigation is to test
the results of existing calculations' (which use ap-
proximations like the neglect of transverse mo-
menta and the assumption of infinite initial energy)
with an unbiased and roughly accurate Monte Carlo
integration. This comparison will be limited in
most cases to the qualitative behavior, since the
present calculation uses only the rather simplified
Xcp' model.

The remainder of the paper is divided into two
parts. Section II contains a detailed description
of the model in which the calculation was done,
while Sec. III presents the results of the calcula-
tions, dealing first with the general features and
the one-particle inclusive spectrum and then with
the two-particle inclusive spectrum and the two-
particle correlation function.
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aries are considered; This simplified model leads
to the following expression:

oo n=l

.ra-~mgp:t. ";=,(q -m')' '

where dy„denotes the appropriate phase space.
The Monte Carlo integration used here is de-

scribed in a paper by Kittel, Van Hove, and W6j cik. '
A short description of some details of the calcu-
lation is given in the Appendix.

The exact calculation has to be symmetrized
over final states, as shown in Fig. 1(b). The big-
gest contribution comes from amplitudes in which
the plus components of the momenta of the second-
aries are ordered in the same way as their posi-
tion in the chain. The product of two amplitudes
with different permutations cannot satisfy the above
condition in both factors. Neglecting such. mixed
contributions (interference terms) is a standard
approximation in analytic calculations and its ef-
fect has been investigated by Snider and Tow' and
Wyld. ' It will cause a sizable quantitative change
of the total cross section, as the number of non-
leading terms rises rapidly, but more qualitative
features like the height of the intercept of the

II. THE MODEL AND THE APPROXIMATION

USED IN THE CALCULATIONS

I I I I

kl kPkP k4k5
kl k2kpk4 k5

I I I I I

kl k4k7kP k5

The present calculation is based on the ladder
model in a Xy' field theory; the corresponding
Feynman diagrams are shown in Fig. 1(a). All
particles, including the incoming ones, are spin-
less and have masses equal to the pion mass; there
are no restrictioris from the odd parity of the
pions, and all additive quantum numbers are like-
wise neglected. For reasons which will be dis-
cussed later only ordered momenta of the second-

kl k4k7kg k5
I I II

(kl & k2&kg -.&kn)

FIG. 1. (a) Feynman graph used. (b) The require-
ment to symmetrize aver the final states. (c) Example
of interference term not considered. (d) Example of
other nonordered term not considered.
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trajectory seem only slightly changed. ' In addition

squares of amplitudes with identical but nonordered
permutations are neglected, as both factors should
be small and such contributions should be less
crucial than the neglected interference terms de-
scribed above. Examples of Feynman graphs of
both neglected types are given in Figs. 1(c) and

1(d).
The approximations are essential for numerical

treatment of higher multiplicities. If we randomly
include events with nonordered amplitudes, there
will be roughly one ordered event with a sizable
contribution in a total of nt events; from nl cal-
culations one would obtain, therefore, essentially
only one significant Monte Carlo event, a fact
which makes the integration statistically unfeasi-
ble. Importance sampling for the selection of
contributing permutations might improve the situa-
tion, but the present calculation avoids this com-
plication.
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III. RESULTS OF THE CALCULATION

Multiplicities
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The contributions from channels with different
multiplicities are given in Fig. 2(a) for the inci-
dent-beam laboratory momenta of 9, 90, and 900
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FIG. 3. Rapidity dependence of one-particle spectrum.
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GeV/c. These values have to be seen in relation
to the chosen mass of the particles, i.e. , the pion
mass. We give therefore the invariant energy over
mass squared,

s/m' = 130, 1300, 13000 .
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FIG. 2 (a) Contributions to different multiplicity
channels. {b) Energy dependence of average multi-
plicity (n).

The leading multiplicity channels are so dominant
that we have standard deviations ((b,n)') of only
0.4, 0.8, and 0.8, respectively. These low values
might suggest that the standard deviation has to
fluctuate with increasing energy, i.e., that it has'
to rise slightly during a transition from one dom-
inant multiplicity to another, when the two leading
channels are about equally contributing. The dis-
tribution is not a Poisson distribution; even its
first binomial moment ((hn)') —(n) does not vanish.
This is expected in the literature' and attributed
to the existence of correlations. The fact that it
does not even vanish approximately seems a spe-
cial feature of the Xy' multiperipheral model re-
lated to the above-mentioned dominance of the
leading multiplicity channel.

Figure 2(b) gives the energy dependence of the
average multiplicity. The values obtained lie ap-
proximately on a straight line with a slope of 0.6
and therefore we have approximately (n) =0.6 lns
+ const.
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FIG. 4. Contributions of different multiplicity channels to the one-particle spectrum.
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FIG. 5. Transverse-momentum dependence of one-
particle spectrum.

One-Particle Spectrum

The aspect of the one-particle spectrum most
thoroughly investigated theoretically is its depen-
dence on the longitudinal momentum. Following

Wilson we use the rapidity as the most suitable
coordinate for examining this dependence. The
spectrum p(z} = (do/dz)(l/o) resulting from our
model is given in Fig. 3 for the three momentum
values mentioned above. It agrees qualitatively
with the standard prediction, based on the gas an-
alogy of the multiperipheral model, that there
should be a relatively constant central region cor-
responding to pionization events. The origin of
the form of the spectrum can be studied in Fig. 4
which shows the individual contributions to the one-
particle spectrum of channels with different multi-
plicities. The relative size from different multi-
plicity channels is determined by the coupling con-
stant X; we have chosen this parameter such that
the total cross section becomes roughly constant
at higher energies (X' =48.0).' However, the ob-
vious oversimplification inherent in a simple lad-
der model suggests that we should not adhere too
rigidly to this value of the coupling constant and
that we should perhaps investigate the effect of
variations in its size. We did such an investiga-
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FIG. 6. The two-particle
spectrum (z& -z2 and z&

+ z2 dependence separately).
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FIG. 7. Influence of cutoffs in large rapidities on the
z& -z2 dependence of the two-particle spectrum.

I

tion in a range from X' = 36.0 to A.
' =60.00 and we

found no noticeable change of the shape of the spec-
trum.

Figure 5 gives the dependence of the spectrum
on the absolute value of the transverse momenta.
We investigated the combined (z, !p, !) dependence
of the spectra and found that the transverse-mo-
mentum dependence of the spectrum is roughly
independent of z in the pionization region. This is
again in agreement with theoretical arguments
which suggest that in the pionization region p(z, pI)- p(p, )

Two-Particle Spectrum

dependence of P on both z, +z, and z, -z, . The
limited number of events allows only a small num-

ber of bins without loss of sufficient statistics.
For the two-parameter dependence we have there-
fore used larger intervals in both rapidities. With
a somewhat optimistic eye one can see a central
region in which the spectrum is more or less only
a function of z, —z, and which contains a small dip,
which is somewhat washed out by the large inte-
gration intervals. The dip disappears for large
z, +z, values, which have still a large contribu-
tion. In the integrated z, —z, spectrum without
exclusion of the fragmentation region by cutoffs
in large !z! values, the relative size of the dip
will therefore be lessened by this flat z, —z, dis-
tribution for large z, +z,.

Correlation 'Function

One problem in the investigation of many-parti-
cle spectra is to separate dynamical correlations
from statistical and kinematic effects. To extract
most efficiently the new information contained in
the two-particle spectrum one can simply subtract
from it an uncorrelated two-particle spectrum ob-
tained from the one-particle spectrum. In the
standard way one can define

The main interest in the present calculation lies
in the two-particle spectrum, g(Plt P2) +(PIP P2) P(PI)P(P2) ' (6)

l d'11((zI, PI) (z2 p;))
((zlzz pI )1 (z2P p2 ))

d( 1)d( I.
)

and, in particular, in its correlated part. As
suitable coordinates in which to study these quan-
tities we use the transverse momenta of the two
particles and the sum and the difference of their
rapidities. Feynman's gas analogy' suggests that
the difference of the rapidities should contain all
dynamical information and that the spectrum
should have only a simple purely kinematical de-
pendence on the sum of the rapidities. Figure 6(a)
gives the z, —z, dependence of the spectrum. One
finds a dip, which does not appear too sizable in
this logarithmic plot, but which clearly exceeds
the size of the random structure in the z, +z, de-
pendence of the spectrum IFig. 6(b)]. The com-
plicated fragmentation region with its strong z de-
pendence might disturb the simple gas-analogy
picture. In general we did not attempt to exclude
this region by cutoffs in !z!, as it seemed not

possible to do so without introducing bias and not

necessary for a qualitative study. The effect of
such cutoffs is investigated in Fig. 7, the dip be-
comes somewhat clearer. The reason can be
studied in Fig. 8 which shows the simultaneous

The only important known structure in the z, +z,
dependence of the correlation function should come
from the momentum conservation which suppresses
two large rapidities with equal sign. The struc-
ture of g in z, —z, depends critically onthe dynam-
ics of the model. e Most models predict that it
disappears for large z, —z, values, but the sign
and the size of the correlation at z, -z, =0 should
provide one of the most significant experimentally
accessible facts about many-particle processes.

The correlation function resulting from our cal-
culation is shown in Figs. 9 and 10 which give the
dependence of g on z, -z, (integrated over z, +z,)
and, for comparison, the dependence on z, +z, (in-
tegrated over z, —z,). The expected dip in z, —z,
is now clearly the dominant feature. The fact that
the correlation function does not disappear for
large z, —z, values at 9 GeV/c can be attributed
to kinematic effects which are still strong at this
relatively low energy. The asymmetry in the z,
+z, dependence is due to fluctuations and is actu-
ally useful in that it indicates the size of these
Quctuations; the asymmetry in z, -z, is due to
the fact that each pair of momenta is counted in
both orders.
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REMARKS
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FIG. 9. The z& -z2 dependence of the correlation
function.

spectrum. It seems plausible that the dip in this
function changes in the same way as the dip in the
true correlation function. The result of this cal-
culation is shown in Figs. 12(a) and 12(b). Restric-
tions in the transverse momenta increase the dip
in the longitudinal correlation. The simple pres
ence of large transverse momenta might lessen
the structure in this longitudinal correlation or
there might be an additional correlation in the
transverse momenta for secondaries with compa-
rable longitudinal momenta. The fact that cutoffs

The paper contains a Monte Carlo integration of
ladder diagrams. The advantage of this method of
numerical integration is its flexibility in regard
to the questions asked; its disadvantage is the
relatively high statistical error. The number of
bins in which the resulting spectra are divided is
chosen large enough so that some obviously statis-
tical fluctuations are not washed out and one ob-
tains in this way a rough estimate of the size of
the error.

As far as the results are concerned, we would
like to place particular emphasis on the dip in the
two-particle correlation function (Fig. 9). Quali-
tative arguments suggest that the existence of this
dip does not depend on the details of the y' ladder
model, but is rather a general feature of any mod-
el of the general type in which the amplitude falls
off rapidly with large momentum transfers. To
show the basic idea let us consider the simplest
case with two nonleading secondaries. Let us ne-
glect transverse momenta and assume that the
ratio of the outermost transfer momenta q,"/q9 is
much larger than one. Using momentum conser-
vation we can obtain the following equations:

q2 ~2 qa q
a~ ~a~Q

y+ +

3

Treating separately the cases in which the ratios
Jpz/q,

' and ke /qe are smaller and greater than one,
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FIG. 10. The z~+z2 dependence of the correlation
function.

FIG. 11. Influence of variations in the coupling
constant on the z& -z2 dependence of the correlation
function.
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relative size of dip
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reiative size of dip
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Dr. D. K. Campbell for many helpful suggestions
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APPENDIX

Some Technical and Numerical Details of the Calculation

ip I-p 2i& iQ
J. J.

(a) (b)

FIG. 12. (a) Influence of cutoffs in max(P&, p~2) on
the size of the dip in the z& -z2 dependence of the
correlation function. (b) Influence of cutoff s in ipt
-p& ( on the size of the dip in the zt —z

&
dependence

of the correlation function.
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and assuming q,', q,'-0( p') )0, we find lower and

upper bounds on the ratios which depend only on
masses and momentum transfers. From these
restrictions on q,'/k, ' and k,'/q, ' we conclude that
the ratio k,'/k,' is large. Similar rapidities for
two different secondaries are therefore unlikely and
the correlation function has to have a negative dip
at z, -z, =0. The assumptions made can be justi-
fied by similar arguments and the argument gen-
eralized to an arbitrary number of final particles.

Our calculation gives the actual size and shape
of this dip in a particular model.

A subroutine of the type described by Kittel,
Van Hove, and %6jcik' generates randomly center-
of-mass momenta in the available phase space. It
distinguishes between transverse and longitudinal
momenta and the known rapid decrease of the am-
plitude in the transverse momenta is taken into
account by importance sampling. The result of
the subroutine is a set of momenta with a weight
factor. In distinction to Ref. 5 we have considered
only strong ordering; therefore we have to sort
the momenta according to their longitudinal com-
ponents and to multiply the weight by the probabil-
ity of such an ordering.

The subroutine belongs to the first part of a
program which writes the momenta and weights on
a disk, together with an amplitude calculated in
a straightforward way from these parameters. A
second step sums the contributions of these events
into large arrays which contain the one- and two-
particle spectra. In a third step we calculate from
these arrays the integrated spectra and the corre-
lated function. Only the last part has to be re-
peated for most of the different parts of the anal-
ysis. All steps were done for p, =9.0, 90.0, and
900.0 GeV/c with more than 30000 events for each
momentum.
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