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It is often stated that a double-Regge-pole-exchange amplitude has definite signature
which is given by the product of the signatures of the exchanged poles. This signature rule
places severe restrictions on any model which generates Regge cuts from the nonlinear
direct-channel unitarity relation. With the intermediate-state particles treated as compos-
ite rather than elementary, however, the signature rule no longer follows. The phase of a
double-exchange amplitude is found to be the same as in the simplified treatment (i.e., a
simple function of the exchanged trajectories) while the s dependence follows from the de-
tails of the spectra and coupling of the intermediate-state particles. It is suggested that
multiple-scattering models should be considered as unitarity-generated approximations in
which s-« crossing is viewed as a constraint on the couplings and spectra of the intermedi-
ate states and not as a constraint on the signatures of the exchanged Regge poles. Phenom-

enological consequences are discussed.

I. INTRODUCTION

It is often stated’ that a double-Regge-pole-
exchange cut has definite signatuve which is given
by the product of the signatuves of the exchanged
poles (and similarly for higher-order exchanges).
The question of the validity of this “signature rule”
is of importance not only because of the consider -
able current interest in Regge cuts,? but more spe-
cifically because it places severe restrictions on
any model which generates Regge cuts from Reg-
ge-pole Born terms through imposition of the non-
linear unitarity condition.® A simple example is
provided by #N charge-exchange reactions. This
reaction is odd under s-u crossing and the above
rule would therefore forbid any contribution from,
say, a pp cut while allowing contributions from,
say, pf. This has been referred to as the “phase
problem” since the signature and phase of an am~
plitude are related. The present paper deals with
the phase and energy dependence of Regge cuts and
their implications for the signature rule. While
we are principally concerned with crossing rela-
tions, we should note that some related argu-
ments* ® motivated a (direct-channel) model for
the Pomeranchukon.

There are currently several quite different types
of models in which multiple Regge-pole exchange
arises. Roughly grouping them into three types,
we shall refer to them in the present paper as (1)
field-theoretic (FT) models, (2) multiple-scatter-
ing (MS) models, and (3) dual-resonance models.
The former (FT) type of cut model arises from the
observation that the high-energy behavior of sums
of Feynman diagrams can give rise to moving cuts
in the j plane.® This type of model is the most fun-
damental in a theoretical sense, deriving many of
the properties of Regge poles and cuts from field-
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theoretic considerations. Whether a field theory
can “eikonalize” in a natural way and produce mul-
tiple-scattering -type cuts is still a very open
question with pro and con papers appearing regu-
larly. Such FT models are of heuristic value but
at the present time do not provide practical mod-
els with which to confront experiment. The second
(MS) model is the type most commonly seen in
phenomenological applications. Models which uti-
lize the nonlinear unitarity condition to “correct”
a Regge-pole input are of this type (e.g., K-matrix,
eikonal, and absorption models).” The relation be-
tween the MS and FT types of cuts is at best heu-
ristic, the connection being even more obscure
than that between a Regge pole and a sum of Feyn-
man “ladder” graphs in the £ channel. The Vene-
ziano model in its operatorial form® produces cuts
via the “loop” diagrams but, like the FT models,
is not yet an acceptable vehicle for phenomenology.
Arguments for the signature rule have been given
for both FT and MS types of cuts and we now turn
our attention to these arguments.

For FT cuts, the signature rule has been proved
by Branson® for a certain class of Mandelstam -
type Feynman diagrams. For MS cuts, the argu-
ment proceeds as follows. If A(s, ¢) (omitting spin)
is the amplitude for the reaction ab- cd, then the:
amplitude A*(se'™, t) corresponds to the reaction
Tb —ad at the same energy and momentum trans-
fer. Consider an amplitude corresponding to the
exchange of two Regge poles of signatures 7, and
Tas

i
Ads, )= 1575 fdtlfdtle(s,tl)

X Ry(s, t3)0(K)K ™",
1)
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where
K=—(t 2+t 2 +12) +2(¢ b, +E 0+ 1))

and R, and R, are the Regge amplitudes. Equation
(1) is represented schematically in Fig. 1(a). It
is easy to verify that

AX(se' t)=T,T,A (s, t). (2)

Another approach is to consider the fixed-¢ as-
ymptotic behavior as s—. The amplitude A (s, ¢)
for fixed £ <0 satisfies the boundedness, analy-
ticity, and asymptotic criteria for application of
the Phragmén-Lindel6ff theorem® in the half-
plane Ims>0. As s- +i at fixed ¢,

LAds t) _m{e"‘""“/zy T,T,=+1

(3)

s%c¢ o~ ime-1/2 , T T,=-~1,
where
at)=a,(3t)+a,(it)-1.

This means that the leading behavior of A (s, t) is
entirely of signature 7,7,. This latter argument
pertains only to the leading behavior at large s.
Throughout this paper we shall primarily be con-
cerned with the cut amplitudes and signature rule
at large energies.

1I. SIGNATURE RULE REEXAMINED
A. The Role of Intermediate States

There are two observations to be made about the
signature rule for FT cuts. Firstly, the rule has
only been shown to hold for a limited class of
Feynman graphs.® Secondly, it has been noted!!
that the s dependence (j-plane position) of pertur -
bation-theoretic cuts is sensitive to details of the
dynamics and is not determined solely from the
asymptotic behavior of the Jacobians in Feynman
integrals. We shall arrive at this latter conclusion
via other arguments and discuss its implications
for the signature rule below. The importance of
composite intermediate states in FT cut models
has recently been stressed by Risk? and Quigg.®®

The MS cuts are usually generated in some man-
ner from the unitarity condition in the direct chan-
nel with the Regge-pole amplitudes as input. Such
an expansion into a multiple-scattering series may
be a reasonable approximation for some region of
physical s and £ in the direct channel and be quite
meaningless when extrapolated to the u channel,
i.e., a good approximation for a certain region in

“the s channel need not analytically continue to a
good approximation of the z-channel amplitude.
The use of the direct-channel unitarity condition
to generate the “corrections” would suggest that
this is a reasonable viewpoint. It is the physical
amplitudes which (presumably) satisfy exact

crossing symmetry and not necessarily the indi-
vidual terms of an approximation. Therefore the
question of the s-u crossing properties of MS am -
plitudes generated in this fashion may very well
be a meaningless one. While this must be kept in
mind, we shall for the rest of this section assume
that the MS expansions in the two channels are s-u
crossing-symmetric at high |s-«| and small ||
(even though an entirely satisfactory expansion has
yet to be found), and therefore with this assump-
tion the crossing properties of individual terms
has meaning.

In connection with unitarity -generated MS expan-
sidns, we make the following two observations.

(1) Intermediate-state particles in Fig. 1(a) lie on
Regge trajectories and this should be taken into
account, thus incorporating some aspects of the
compositeness of these particles. (2) It has been
pointed out* that duality may provide the connec-
tion between the usual unitarity sum over many-
particle on-mass-shell intermediate states and a
sum over quasi-two-particle intermediate states.
We should therefore be dealing with diagrams such
as the one shown in Fig. 1(b)'* rather than that of
Fig. 1(a); the intermediate-state wavy lines denote
leading Regge trajectories and also possible
daughters.

We represent the full double Regge-pole ex-
change in terms of a sum over intermediate states,
which is shown graphically in Fig. 1(c). Follow-
ing Freund* we let the resonance mass spectra be
given by

mAjl2=mAjz=onz+&1—,j, I=1, ... ,a;
(4)

2 _ 2 _ 2 - —_
Mp,, = Mg, = My +a'k’ n=1,...,b,.

The index j (k) represents the position on a linear
trajectory (spin) while the a;(b,) index degenerates
Ay’s (B,,'s) of various spins. We thus write the
double-Regge -pole -exchange amplitude as

; . 0(K)
A (s, t)= —* ffdt'dt"
{8, 1) = oo j;;" dt'" ===

R R
e AAla.,A“Bk"(S, t')AA'f;Bk,,-»cp(s: £,

(5)
where A®: and A®2 are the Regge-pole-exchange
amplitudes.

In order that the A;,B,, intermediate state con-
tribute appreciably, this state must be produced
with small squared momentum transfer? |# |-
For large s,

‘t 'minz mAjszkz/s ’ (6)

and we may roughly account for this kinematical
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FIG. 1. (a) Double-Regge-exchange “box’’ diagram
schematically representing Eq. (1). (b) Box diagram
representing Eq. (5) with s-channel intermediate-state
wavy lines denoting Reggeized particles, daughters,
etc. (c) Representation of Eq. (5) with the intermediate-
state sum over the resonant-state spectrum of Eq. (4)
explicitly shown. (d) Crossed diagram representing the
analytic continuation of a »-channel double scattering to
the s channel.

constraint by requiring

mAj

where p is a small mass constant. Kinematic ar-
guments leading to Eqs. (6) and (7) are included
in Secs. III B and NI C.

The point to note here is that the number of

szkz = I“Lzs ’ (7)

2 +s(2t-2m?-3)

terms in the sums over p; and #,; is not fixed but
increases with s. This introduces an additional s
dependence over that given by Eq. (1) even though
the same Regge poles, R, and R,, are exchanged.
Asymptotically, the s dependence of the amplitude
of Eq. (1) is given by s%c® [where a,(¢) is given
after Eq. (3)] while that of Eq. (5) depends on the
details of the spectrum of intermediate states and
their couplings.

B. Kinematics and the Phase of the Cut Amplitude

For simplicity, let us consider a process ab- cd
in which these particles are spinless mesons. In
calculating the amplitude of Eq. (5), we shall con-
sider the exchange of two Regge poles, both of tra-
jectory a(¢), and intermediate states lying on a
Regge trajectory which we will take to have the
same slope a'.

We can write the amplitude for one of the single-
Regge-pole-exchange processes (omitting spin in-

" dices, as usual) as

R(s, t) = B(t)[Pys(—cosb,) +TP,p(cosb,)].  (8)
The expression for cosé, is

12 +42s -2m? -3)
|(s2 = 4sm?)(s% +A% -2s%) |12

cosf, = (9)
where A=M72-M}2 Z=M2+M,}?. We are inter-
ested in the leading behavior in s for fixed {#0.
Also, we consider couplings which do not vary
rapidly with intermediate -state spins j and 2. We
may therefore approximate cosé, as

2is 21s

MjaMkz NMjZMhz * (10)

cosf,~1+

The expression for the s-channel scattering
angle is

cosf, =

from which we can derive the smallest squared
momentum transfer kinematically allowed as
~ M2M?
—t,= =% - (12)
As-pointed out in Ref. (3), this squared momen-
tum transfer must be small in order for the (j, &)
amplitude to contribute appreciably. If we let
sz j, k) denote the threshold for production of the
(4, ) state, i.e.,

sp(7, k)E(M; +Mk)2, (13)
we get from Eq. (12) that the (j, k) state contrib-

182+ m*+ M,* =28 (m® + M%) = 2m> M2 1721 82 + m* + M, -2t (m® + M,°) = 2m> M2 1122

(11)

T

utes appreciably only if
s> sq(j, k), (14)

since M+ M,%>2M;M, and s> M,? + M,?. For
large s, we therefore have the condition that én-
termediate states in Eq. (7) contribute appreciably
only far above theiv production thrvesholds. From
this observation it immediately follows that all
such terms contribute the same phase (up to a
sign) to Eq. (7); this phase is given by Eq. (3) of
Sec. II. The phase of Eq. (7) is thevefore fixed by
the Regge trajectories exchanged and is equal (up
to a sign) to that of the simpler Eq. (1).
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C. Example of a Signature-Rule-Violating
Double-Exchange Amplitude

In this section, we give an example of a “signa-
ture-rule”-violating cut amplitude. We calculate
a double-exchange amplitude according to Eq. (5)
corresponding to Fig. 1(c) and show explicitly that
the exchange of two even-signatured poles can
yield, for example, an odd-signatured cut ampli-
tude for particular choices of intermediate-state
couplings. In the example we construct below, we
shall, for simplicity, consider only intermediate
states lying on a single leading trajectory and omit
degeneracies and daughter states [i.e., a;=b,=1
in Eq. (4)].

In terms of factorized residues, we can write
the Regge amplitude Eq. (8) in the form

Ry(s, -x?) =g [/(x®)g ;x(x?)

2x%s =% ( 2x2s )"“"‘2)]
x| (55— A
(Gezsez) o) )

(15)

where we have put x=V-f. Assuming the reso-
nances j, k to lie on infinitely rising linear trajec-
tories of slope o/, and extracting the signature
factor, we rewrite Eq. (15) for an even-signatured
pole as

Ry(s, —x%) =g [,(x)g j(x?) e*o-*?
%2 ! \-* 2)
() @, ae)
where g’/ and g’ are related by
81,81 =281] glrcos[za(~x™)]. (17
We choose both R, and R, to be of even signature
for our example.

We now make a specific choice of coupling con-
stants (residues):

252’ \x D
g,’.f(xz)g,'.k(x"’)=f”2(k)g,.(‘1'-§7e‘r) , (18)
where g, are real constants, n=1,2, and f(k) is
any well-behaved real function satisfying

S
I L8 gp - c= const (19)
1

which converges to C faster than O(1/s). Equation
(18) is not singular in the forward direction be-
cause of the kinematic condition (12) (i.e., x? is
always greater than zero). The (j, &) term of Eq.
(5) is now straightforward to calculate.

Ants, )= E8 explG(1)8(5)], (20)

where
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B(s)=ln(sa’) —izm, G(t)=2a(0)+3a’t.
The total amplitude of Eq. (5) is given by
As, t) =E Ajk(s: t) s (21)
ik

where the sum runs over all states j, 2 not sup-
pressed by the kinematic condition that Itol be
small in Eq. (12). While there are several ways
to impose this condition (e.g., an exponential cut-
off), we have chosen to follow Ref. (4) and choose
a small constant —¢,=pu? and include only those
terms in the j, k sum for which the Reggeon mo-
mentum transfer is less than this value, i.e.,

2 2 3
MM gk <|2. (22)

s (a’)s

This cutoff produces an s-dependent upper limit on
the j, # sum. Converting the sum to a double inte-
gral, it is easily evaluated.

Als, 1)=5 B2 explG(t)pts)]

ap
x [(ar [ O s, (23)
Als, £) =iy l—gi exp[G(t)A(s)], (24)

where y=4g,8,(a'?u?C is a constant, and as s—«,
(Ins)/B- 1.

The Regge poles exchanged were both chosen to
have positive signature; the signature rule states
that the double-exchange amplitude must there-
fore be of even signature. The amplitude A(s, ¢)
of Eq. (24) is asymptotically of odd signature.
This is a consequence of the sum over interme-
diate states in Eq. (5) which, in our example,
raises the energy dependence compared to Eq.

(1) by one power of s in the amplitude without
changing the phase. One could just as easily have
chosen couplings which lower the s dependence by
one power [resulting again in an odd-signature

A(s, t)] or which produce an A(s, ¢)of even or of
mixed signature. This example is purely illus-
trative, and the couplings in Eq. (18) were chosen
to produce a'maximal violation of the “rule” and
are in no way intended to represent actual physical
couplings, about which we know very little.

D. The Phragmén-LindelSff Theorem

The situation, then, is the following. The as-
ymptotic phase of the “new” amplitude [Eq. (5)] is
the same as that of Eq. (1) whereas the s depen-
dence of the new form of the amplitude may be
shifted from that of Eq. (1) by the sum over high-
er -mass (and spin) intermediate states. It follows
that the signature rule of Sec. I cannot, in general,
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be derived for the amplitude of Eq. (5).

Unless the s dependence of Eq. (7) is shifted
from that of Eq. (1) by a factor s?¥, where
N=...,-2,-1,0,1,2,... , the amplitude of
Eq. (5) is not asymptotically of signature 7,7,.
~ This is a consequence of the strong phase-s-de-
pendence~-signature connection provided by the
Phragmén-Lindelsff (PL) theorem.?® If the ampli-
tude oscillates as s -, the PL theorem is not ap-
plicable and the signature rule is still not deriv-
able in this way.

III. REACTIONS OF DEFINITE SIGNATURE

Because of the signature rule, it is sometimes
stated that double-Regge-pole exchange violates
crossing symmetry.!® Implicit in this assertion
are the assumptions that the expansions in the two
channels must analytically continue to one another
and that Eq. (1) gives the (second-order) cut am-
plitude; as pointed out in Sec. II, neither assump-
tion is a necessary requirement of a realistic
model. The arguments leading to Eq. (5) [or Eq.
(1) for that matter] indicate that the multiple-scat-
tering series consists entirely of MS “ladder” dia-
grams and does not explicitly include the crossed
diagrams such as the one shown in Fig. 1(d). Let
us consider reactions with definite symmetry un-
der crossing (e.g., 7 p— 1%, 7°7°-~ 7°7° etc.).
It might be expected that trouble with crossing
symmetry would show itself most glaringly in this
class of reactions since such reactions obey the
stringent requirement that they are equal up to a
sign,

AU, 0)=TAI(E, 0), (25)

where I and II denote the two crossed reactions,
7=2%1 is the signature, and the spin indices have
been omitted for simplicity.

Will a multiple-scattering Regge-cut model, ap-
plied separately to reactions I and II, satisfy Eq.
(25)? This question has a straightforward answer.
Any multiple-scatteving Regge-cut model which
satisfies isospin invariance at the vertices obeys
Eq. (25) to all orders in the scattering. (Note: this
does not mean that the amplitude for reaction II is
the analytic continuation of the amplitude for reac-
tion I; that will depend on the details of the model.)
Equation (25) is preserved to each order in the
scattering and, further, there is a diagram -by -
diagram correspondence where reactions I and II
are related by charge symmetry (as well as s-u
crossing), whereas otherwise the correspondence
is only between sums of diagrams. These proper-
ties follow from the observation that reactions of
definite signature result only in cases where the
crossed reactions are related to one another by

[

isospin. (The proofs of these statements are
straightforward and we omit them.)

A specific example will place these remarks in
perspective. A pp amplitude calculated from Eq.
(5) for the reaction 7~ p— 7% will automatically be
exactly the negative of the corresponding pp ampli-
tude calculated for 7% - n*%, at the same energy
and scattering angle in each reaction, and simi-
larly for all other box or ladder diagrams result-
ing from multiple exchanges contributing to these
two processes. This is totally a consequence of
isospin conservation at the vertices.

Thus the stringent requirements of Eq. (25) for
reactions of definite signature are aufomatically
satisfied in MS models which conserve isospin at
the vertices. Such MS models may therefore be
constructed as approximations to the physical am-~
plitudes without fear of violating Eq. (25), or any
isospin relation, even though such a model may
not satisfy asymptotic s-u crossing symmetry. If
in addition one wishes to construct an MS model
with explicit asymptotic crossing symmetry, this
additional feature may be included as a constraint
on the intermediate-state spectrum and couplings.
We have shown that this is possible (at least to
second order in the cuts), that it leaves much
freedom in the model, and that it is therefore un-
necessary to s-u “symmetrize” the model by the
artifice of simply adding the crossed («-channel-
diagrams [see Fig. 1(d)]. This latter method of
imposing s-u crossing symmetry has the added
disadvantage of abandoning the direct connection
with unitarity, which was the ‘original motivation
for the double exchange. A phenomenological
model of this.latter type has recently been pro-
posed by Quigg.'"

IV. CONCLUSIONS AND DISCUSSION

We have, in the present paper, examined the
signature rule of Sec. I in the context of unitarity -
generated multiple -scattering Regge cuts.’®* We
observed that a more realistic handling of the in-
termediate states leads to the following conclu-
sions (at high s and fixed ¢): (a) The phase of an
MS amplitude is determined by the trajectories of
the exchanged poles just as in the simpler treat-
ment of intermediate states. (b) The s dependence
is sensitive to the dynamical details such as the
spectra and couplings of the intermediate -state
particles and is not merely the simple function of
the Regge trajectories obtained from the simpli-
fied treatment.  (c) Taken together, these two ob-
servations remove the foundations of the signature
rule and leave no “phase problem” for the unitar-
ity -generated cut models. This suggests that s-u
crossing in such models should be viewed as a
constraint on the couplings and spectra of the in-
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termediate -state particles and not as a constraint
on the signature of the exchanged Regge poles.

We have not disproved the signature rule for all
models. Henyey!® has shown that in at least one
case Mandelstam -type cuts can provide cancela-
tions which might lead to the signature rule, and,
as mentioned before, Branson® has proved the rule
for a certain class of such perturbation-theoretic
cuts.

We noted that MS models which conserve isospin
at the vertices satisfy all isospin relations to each
order in the scattering. Certain regularities be-
tween line-reversed reactions of definite signature
follow from this without imposing any additional
constraints whatsoever. These remarks, and the
observations that such cuts are generated from the
unitarity condition in the direct channel, suggest
that it is also possible, and perhaps preferable,
to view MS cut models as direct-channel approxi-
mations to the physical amplitudes and not as ex-
act crossing-symmetric representations of them.2°

Finkelstein®! has recently proposed a “selection
rule” which predicts small or null contributions
from certain double Regge-pole exchanges. The
selection rule is based on perturbation-theoretic
arguments combined with duality -diagram appli-
cations to determine which double exchanges are
allowed. In the present paper, we have generally
avoided perturbation-theoretic arguments in our
discussion of MS corrections. We do not, there-
fore, speculate on the validity of this selection
rule for the type of two-Reggeon corrections con-~
sidered by Finkelstein. We do, however, wish to
point out a basic difference between the two types
of corrections which suggests that this selection
rule should probably not be applied to MS correc-
tions. In the Finkelstein derivation, the double
Regge-pole exchange arises from iterating a par-
ticle-Reggeon amplitude via {-channel unitarity.
(The argument is that both particle-Reggeon am-
plitudes must then have planar s-u duality dia-
grams for the cut to exist.) In an MS model, the
corrections are generated from the s-channel uni-
tarity relation. This difference in the mechanisms
producing the corrections is fundamental and it is
doubtful the Finkelstein’s selection rule should be
applied as it stands to MS models. Another feature
of this selection rule which we note in passing is
that it forbids for many elastic reactions the dia-
gram proposed by Freund and Rivers® as a repre-
sentation of the Pomeranchukon, which subsequent
dual -resonance calculations®® showed to be size-
able. It is interesting to note that this diagram is,
in effect, an s-channel iteration of a single-twist
duality diagram and not a f-channel iteration.

Thus far, our arguments concerning the signa-
ture rule have dealt with the construction of multi-
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ple-Regge-exchange models. We would like to con-
clude our discussion by addressing the following
question: How can the signature rule be assessed
experimentally? This is clearly not an easy ques-
tion to answer because of the model dependence in-
volved and because double-Regge-pole exchange is
expected to be a secondary effect in most reac-
tions. Double-charge-exchange (DCEX) reactions®
might be expected to provide the most sensitive
physical tests of the signature rule and the phase-
energy -dependence arguments of this paper since
double Regge-pole exchange is expected to provide
the leading behavior in such cases.?® A direct test
of the signature rule is difficult. The reaction
K~p-K*Z~ might appear to be the best candidate
for such a test because of its definite signature.
This reaction is even under s-u crossing, and the
leading behavior in the near-forward direction
would presumably be given by double (K*-K**) ex-
change. Unfortunately, a difficulty is immediately
encountered; the strong exchange-degeneracy con-
dition on K*-K** is sufficient to ensure the cancel-
lation of the ¢,{,=~1 contributions to this reaction,
quite apart from the signature rule. This simplest
model therefore rules out a “test” of the signature
rule and underlines the model dependence of any
such test. Other accessible double-charge-ex-
change reactions®® such as K~p—-7*Z~ and 77p

— K*2" are of mixed signature, and the construc-
tion of simple double -exchange models for this
pair of reactions, especially when higher -energy
data become available, seems to be the best phe-
nomenological approach to the signature-rule
question.

Finally, quite apart from the validity of the sig-
nature rule, we would like to mention as an aside
an interesting feature of Eq. (2). If it happens that
a power -law dependence in s is produced from Eq.
(2) for the spin-nonflip K “p—~ K*=~ amplitude [and
of course this does not necessarily follow from Eq.
(2)], then the differential cross section at inter-
mediate and high energies in the forward direction
do/dt(t=t mpn = 0) is proportional to s**¢~2, The
phase of the amplitude at ¢~ 0 from Eq. (3) is

exp{~i3ma.(0) -2N]},
where
0,(0)=20a,+(0) - 1.

The phase -energy -dependence relation then re-
quires that, for K™p—~ K" 5",

Z_(;(t:m: s20tc(0)-aN=2 =s*, (26)

where

x=4[a,#(0) —N -1]. @17
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Since N is an integer, and a,*(0)~3, x is per-
mitted to have only one of the values x~-3, -7,
~11,..., etc.?® If the phase is required to be un-
changed from Eq. (1) by the sum in Eq. (5), then

N must be even and not odd, and x is then restrict-
ed to one of the values x ~-3, -11, -19, ... . Bet-
ter statistics on do/dt (¢=0) as a function of ener-
gy are needed to test this relation. There is also

some uncertainty in the value of a,«(0). It is in-
teresting to note that do/dt« s™! (with large er-
rors) roughly describes the data on this reaction.2¢
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