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In the framework of the chiral SU(3) SSU(3) charge algebra and asymptotic SU(3), a scheme
of asymptotic algebraic realization of SU(3) is proposed. For the axial-vector couplings, it
yields D/E =

& but g&(0) =-Wf, f being the universal fractional contribution (=50%) to the sum
rules coming from the ground-state baryons. Neither the assumption of saturation by lovr-
lying states nor the introduction of large configuration mixing is necessary.

We propose a possible scheme of algebraic real-
ization of SU(3} in the framework of the chiral
SU(3) 8 SU(3) charge algebra and present a new
derivation of the D/F ~atio of hyperon axial-vector
semileptonic coulilings and g„(0). Our proposed
scheme may provide new insight in hadron physics.
Some years ago, Gerstein' observed that, by sat-
urating the algebra Solgly by the ~" octet and ~+

decuplet, the exact SU(6) value' of D/F can be re-
produced without assuming SU(6) or SU(6) current-
commutation relations. However, though certainly
remarkable, Gerstein's result cannot be taken toG
seriously for the following reasons: (i) The sat-
uration argument used is hardly justified. Actually
the calculation yields, at the same time, a bad
value g„(0)=-,', as is also the case with exac&
SU(6).' On the contrary, the Adler-Weisberger
calculation, ' which is based on the same algebra
but does not use the saturation argument, gives a
correct value of g„(0). (ii) Exact SU(3) is assumed
for the matrix elements involved. There is no a
priori justification for this assumption.

In this paper, we point out that there is a way
out of these difficulties. Our new points are as
follows: (a) The saturation argument of Gerstein
can be replaced by our scheme of asymptotic alge-
braic realization of SU(3). (b) Exact SU(3) used
in Ref. 1 can be simply replaced by our asymptotic
SU(3) proposed before. ~ The degree of accuracy
of our asymptotic SU(3) can be best seen as fol.-
lows. ' If the basic (not effective) SU(3)-breaking
Hamiltonian belongs to an octet, in the framework
of asymptotic SU(3) the Gell-Mann-Okuko mass
formulas (including the effect of particle mixing)
become exact mass formulas (rather than first-
order formulas' ).

We have already applied our proposed scheme
and asymptotic SU(3) to bosons and found an en-
couraging result. 6 There, the generalized boson
nonet coupling scheme has emerged as a conse-
quence which reduces to the ideal nonet scheme
[also obtained' from exact SU(6)], whenever one of
the constraints of ideal nonet (such as m ~m~) is
realized.

We denote the baryons by B,. 0. stands fox the
(physical) SU(3) multiplets, i.e., (N„A„Z„=,)
for octet and (L„Z,*,=,*,0,) for decuplet. s de-
notes the J and other quantum numbers. We con-
sidex the algebra sandwiched between the one-
particle baryon state with infinite momentum. The
algebra [V;, V,] =if„I,V, will then be automatically
satisfied by our asymptotic SU(3). The algebra
[V„A,.] =if„,A, yields the following important in-
formation when combined with oux asymptotic
SU(3): Although SU(3) is broken, the matrix ele-
ments of the form {B„,(j)~A;~B8,(j)) with q-~,
do allow' exact SU(3) parametrization (including
the usual particle mlxlng which 18 defined only 1n
the limit j-~). The implication of this fact in the
B BSI' couplings was discussed in detail before. '

Now, the most interesting commutation relation
which presumably contains the most dynamical in-
formation is' [A„A&]=if;,~V~. Although we can
proceed as in Ref. l without specifying the A s,
we pick out the commutator (A+ =—A, +iA„
V, =-f„etc.}

[A„A ]=3V,

for illustration. Sandwich this commutator be-
tween the states {B„,(q')

~
and ~B„,(q)). We then

obtain for q
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—,'(I,)„,-'Zl:&a„,(q }IA+ln„&&n„lA la. ,&q)& —&B„.(q')IA Ima, &&m8, IA+IB„,(q)&]=ix(2v) 5 (q-q'). (2)

Here (I,)„,denotes the (nonzero) eigenvalue of I,
of the baryon B,. n6, and m6, represents one of
the presumably infinite set of intermediate states
with appropriate quantum numbers (P, t). Note
that we have normalized the right-hand side of
Eq. (2) to unity up to the trivial factor (2v)'
x5'(q- q'). In Eq. (2) by varying the SU(3) indices
o. for given s, one can study the SU(3) implications
of the algebra in the limit q-~. An intriguing
question is: How does the fractional amount of
contribution coming from the (fixed} state (P, t)
change when the SU(3) indices o.'s are varied for
given s?

Let us now choose B„,to be the —,
"baryon

(N, A, Z, ) and write down Eq. (2) for the choice
u =p, Z', and "'. For the intermediate states (p, t),
only the &' and —,

"baryons will be written explicit-
ly, '
&plA, ln&&nlA-lp&+ &plA, IA'&«'IA Ip)

—&plA l~"&&A"IA,lp&- ~ ~ ~ =1,

2(&Z'IA, IA&&AIA IZ'&+ &Z'IA. IZ'&&Z'IA IZ'&

+ &Z'IA, IZ*'&&Z*'IA lz'&+ ~ ~ ~ ) =I,

+&:"'IA I="* &&:-* IA, I:"'&+

Since we have taken the limit q-~, all the matrix
elements involved allow exact SU(3) parametriza-
tion' in the framework of asymptotic SU(3). Thus,
we already have overcome one of the difficulties
of Ref. 1. W'e use the usual parametrization':

&P(q) IA, ln&=6~2(D+F),

&Z'(q) IA, IA'& = G(2/~3)D,

&Z'(q) IA, IZ'& = 6(-2F),

etc. , with q-~ and D+F = 1. By choosing the he-
licity state of &' baryons, for example,

u*„(q) = (q, +m„)'"(2m/ '(100lql(q, +m„) '),

we observe'

&p(q)IA, ln&=6~2-=g (0),

etc. , for q-~, i.e., baryon masses do not appear
in the above equation. ' This implies that in the
framework of asymptotic SU(3), exact SU(3) para-
metrization is permitted for the physical axial-
vector semileptonic couplings (but only in the
zero-four-momentum transfer limit). We empha-
size that this is by no means trivial. In general,
asymptotic SU(3) does not allow exact SU(3) para-
metrization for physical couplings even in the zero

four-momentum transfer limit. ' Thus the experi-
mental indication that the hyperon semileptonic
decays seem to permit exact SU(3) parametrization
for the g's supports our asymptotic SU(3). We
normalize the matrix elements &

—,"IA;I—", ), which
also allow exact SU(3) parametrization at q-~, by
writing'

&p(q)IA, IA'&&A'IA lp)—=6*' for q-

Then the above three equations become

2G'(D+E}' —2G*'+ ~ ~ ~ = 1,
2 62D2+2Q2F2+ ~ Q42+ ~ ~ ~ = 1

2G'(D —F)2+6*'+ ~ ~ ~ = 1

(3)

(4)

(5)

26'(D+ E}2—2G*' = 6'D'+ 26'F'+ ,—6*'—
= 262(D F)2+ 6+2 =f (6)

f denotes the fractional contribution coming from
R„Eq. (6) gives (with G*c0)

16*I=I-'Gl =
I (4/5~~)g~(0} I,

I et us look at the fractional contributions coming
from, for example, the —,

"states (i.e., G* terms)
in Eqs. (3)-(5). They are in the ratio -2:—,':1
compared with the (normalized) SU(3) ratio. of the
right-hand sides of Eqs. (3}-(5), 1:1:1. There-
fore, the ~" intermediate states alone cannot real-
ize the SU(3) contents of the algebra. However,
this might suggest an alternative. Our present
conjecture is as follows.

The baryon states (with infinite momenta) will
make a certain grouping, R„R„R„.. . and the
contribution from each R, will now realize the
(asymptotic) SU(3} contents of the algebra. This
possibility is probably related to the possible ex-
istence of an asymptotic higher symmetry. We
use the quark model as a guide, recalling that the
powerful commutation relation, Eq. (1), comes
also from this model. ' The simplest grouping will
be the orbital angular momentum classification
(L =0, 1, 2, . . . ) with the possible introduction of
principal quantum numbers n =0, 1, 2, . . . . There-
fore, we may have Ro(n= I.=0), R, (n = 0, L= 1), . . . .
In the simple (qqq) model the octet and decuplet
baryons" with J = 2' or 2' are possible for the
ground state Ro. Experimentally, we found indeed
the octet —,"and decuplet —,

"baryons for low-lying
baryons. Thus, the R, will consist of the
(N, A, Z, -) and (b, , Z*, "~,Q). Then, according to
our conjecture applied for the ground state R„we
obtain from Eqs. (3)-(5)
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g„(0)=-,'v f . (8)

Therefore, we have reporduced the results of
Gerstein' or of exact' SU(6) [Eq. (7)], assuming
neither the concept of exact symmetry nor the sat-
uration of the algebra by low-lying baryons. How-
ever, the value of g„(0) is not vs [see Eq. (8)]. The
value f= 50% yields the experimental value g„(0)
= 1.2. The corresponding value of 6* [from Eq.
(7)] enables us to evaluate I'(b,-¹),if the partial-
ly conserved axial-vector current hypothesis is
used. " We obtain a reasonable value I'(b, -Nv)
=150 MeV. We need to study also the case B
= —,
"in Eq. (2) by taking a = b, ', Z*', and:-*'. In

this case, the contributions coming from the states
belonging to R, automatically satisfy our require-
ment. Namely, both the &' and —,

"baryon inter-
mediate states seParately realize the SU(3) con-
tents of the algebra, a simpler situation which

supports our simple conjecture. Exact' SU(6) or
the saturation of the algebra by low-lying baryons'
are certainly inaccurate as exemplified by the bad
result, g„(0)=&. We have shown, however, that
in deriving the ratios D/E and 6*/g„(0), the pro-
posed asymptotic algebraic realization of SU(3)
in the algebra is sufficient. There is no need to
bring in a large configuration mixing with higher
states. ' Qur conjecture could be applied also to
the computation of other physical quantities.

In this paper our discussion has been confined
to the ground state R,. The most interesting
question is: What will be the correct classification
of baryon resonances compatible with our scheme?
SU(6) SO(3) classification is a candidate, judging

from the present result. We may assume that our
R, belongs to the (56, n = L, =O) representation.
[For bosons, the SU(4)Im0(3) classification may
be a candidate. ~] For baryons belonging to R„
R„.. . , complications arise from the particle
mixing possibility since there are many octet (or
singlet) and decuplet baryons with the same J~
within the comparable mass values for higher
states. Furthermore, physical coupling constants
do not allow exact SU(3) parametrization. '

Finally, in our framework, the correction to
our result, Eqs. (7) and (8), comes from the pos-
sible mixing between the ground-state baryons
and the higher-lying ones with the same J' [such
as, for example, the member of the (56, n = 2,
I.=O) representation] which will modify the exact
SU(3) parametrization used in this paper. That is,
we need to consider only the small configuration
mixing of this type. Our Gell-Mann-Okubo mass
formulas neglecting such an effect contain some
errors, as exemplified by the quadratic decuplet
mass formulas, m& -m. + =m. ~ -m&+ =m&+4 2 2 2 2 2

—m~', which read 0.46=0.42=0.3S in GeV'. The
inclusion of such an effect could change the values
of D/F, g„(0), and g~„„obtained by several per-
cent "
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