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In this paper we study the contra. sting dynamical roles played by the "wee" and the "nonwee"
partons in the process ep e'QB (4, & being hadrons) when the negative squared mass Q of the
virtual photon becomes large. Two relevant asymptotic limits are pointed out and are shown
to be controlled by the two different parton mechani. sms which are possible. In each ca.se, one
of the two final hadrons is forced to emerge predominantly in the direction of the virtual photon
in the laboratory. This imposes testable kinematic restrictions for either limit. Moreover,
the behavior of the structure function W2 in these two limits is related to the square of the a,s-
ymptotic electromagnetic form factor times unknown functions of the scaling variables.

I. INTRODUCTION then

The parton idea of Feynman, ' based on the appli-
cation of the impulse approximation to instanta-
neously free pointlike constituents of a hadron in
the infinite-momentum frame, is now widely
known for its considerable predictive power in
inclusive deep-inelastic lepton-hadron proces-
ses.' 4 It is less commonly realized, however,
that the model- can lead to very interesting re-
sults for certain exclusive reactions also. In the
parton description of such reactions the very soft
or "wee"' partons play a crucial role. "Wee" par-
tons carry a rather small fraction of the relevant
hadron's momentum in the infinite-momentum
frame and are of two types: (1) those carrying a
fraction m/v s of the hadron's longitudinal momen-
tum (v s being the c.m. energy) and (2) those car-
rying a fraction p/~Q' of the same (~@~ being the
leptonic momentum transfer). Here m, p are
masses typical of the transverse-momentum cut-
off seen in hadronic reactions, i.e., 400 MeV
~m, p, ~1 GeV. The first type of wee partons con
trois high-energy hadronic cross sections. The
second type of wee partons is important in exclu-
sive electromagnetic processes mediated by highly
virtual photons. Drell and Yan' first encountered
this latter kind of wee partons when they consid-
ered-elastic ep scattering at large Q' in the par-
ton picture. They made the important observation
that, for the leading contribution to elastic ep
scattering in the limit when Q'-~, all of the par-
ton', in the proton except for the electromagneti-
cally scattered one have to be wee. This enabled
them to obtain a connection between the asymp-
totic elastic form factor F.,(Q') and the near-
threshold deep-inelastic structure function F,(&u)

of the proton; namely, if

In the present paper' we use the approach of
Ref. 6 to study single-particle electroproduction'
at large Q' in the field-theoretic parton model of
Drell, Levy, and Yan. 4 The process includes all
reactions of the type ep-e'AB where A and B are
hadrons (if these are resonances our statements
will be valid only in the zero-width approxima-
tion). Certain aspects of the parton analysis of
this process involve slightly stronger theoretical
assumptions than those needed to consider elastic
ep scattering at large Q'. On the other hand, the
kind of predictions that one can make here should
be more easily testable than the Drell-Yan con-
nection for which the experimentally difficult task
of determining the precise form of F,(&u) near
~=1 has to be accomplished. ' In particular, at
the time of writing, a whole range of experiments
are in progress at the Cornell electron synchro-
tron on processes such as ep-pm', pp', nn', np',
etc. which can hopefully test at least some of the
theoretical results obtained here.

The paper is arranged in the following way. In
Sec. II we discuss the kinematics of our process
and set up the infinite-momentum frame for per-
forming the parton analysis. Two different asymp-
totic limits that can be studied in the large-Q re-
gion are discussed. In Sec. III a qualitative study
of the parton dynamics in elastic ep scattering at
large Q' is followed by the derivation of kinematic
restrictions on the free variable in each of the
above two asymptotic limits for single-particle
electroproduction. Two different parton mech-
anisms are obtained and are shown to be control-
ling the two limits. In each case, one of the two
final hadrons is predicted to emerge predominant-
ly in the direction of the virtual photon in the lab-
oratory. Section IV contains a review of the argu-
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FIG. 2. Laboratory description of the reaction
eP —e'AB.

FIG. 1. Covariant description of the reaction
ep —e'AB.

ment leading to the Drell- Yan' connection using
an approach due to Yennieg and a discussion of the
perturbation-theoretic basis of this argument. In
Sec. V we set up our basic parton equation for the
single-particle electroproduetion amplitude with
which to investigate the two asymptotic limits
mentioned above. The specific form of the equa-
tion for either limit is given in terms of integrals
over parton variables of suitably defined vertex
functions. In See. VI the role of the wee partons
in controlling the leading Q' dependence in the two
limits is studied. With some reasonable theoreti-
cal assumptions the large-Q' behavior of the elec-
troproduction amplitude in each of these limits is
related to certain asymptotic electromagnetic
form factors and the perturbation-theoretic basis
of these relations is discussed. In See. VII the
above relations are translated into predicted as-
ymptotic forms for the structure function W, in
the two limits. Section VIII contains some con-
cluding comments and summarizes our results.

II. KINEMATICS AND ASYMPTOTIC LIMITS

For the process ep- e'AB, let q =k -0' stand
for the four-momentum carried by the virtual pho-
ton and p, p„, and p~ for that of the proton, of A,
and of B, respectively (Fig. 1). Define Q'—= q'&0, -

v=p q/M ,v((„s=—p p„s/Mv. Then four mom-en

turn conservation p+q =p~+p~ and the mass-shell
constraints P'=M~', P„s' =M„s', (P„+P~)'
&(M„+Ms)' imply the following relations:

2M~v —Q &(M„+Ms) -Mp,

Mq —Q +M„s -Ms „=2q P„s—2M'(v —tc„s).
(2.2)

In the laboratory frame (Fig. 2) c and k, respec-
tively, define the energy and the momentum of the
incident electron and similar primed symbols de-
fine the corresponding quantities for the scattered
electron, -8, being the electron scattering angle.

In the metric (1, -1, -1, -1) and with the normal-
ization (p'

~ p) = 5('~(p' -p), our scattering ampli-
tude is

S~ — — s 2n' I5 p+q -p~-p~

x e'rV, (k')y "u,(k), . (p„,ps i Z„ i p) . (2.3)

In Eg. (2.3) g& stands for the hadronic electro-
magnetic current. If, when a final hadron 8 (this
can be either g or B) is detected, the azimuthal
angle (p~ associated with d'p~ in the laboratory
frame is integrated away, then for the triple-
differential cross section in the laboratory frame
we have (cf. Ref. 4, first paper)

4 2
(0"0"+0'"0'+ ',q—'g"")-

d6 dcos8 dE~ Q

d P d P 5 g — 2g Q P+q-P -P P J„Q p, p p, p J' Q pB A J'
spins

» Eq (2.4) the symbol Q,~;„, implies that the initial spins are being averaged and the final spine summed.
Noting that Q', p, and g~ can be taken to be the three independent variables, we introduce two structure
functions %,(Q', v, gI) and 'H, (Q', v, ~~) via the relation

SP111S

v

2 qpql='vv„=vt)(Q, v, v ) -)v„v, +, vV, (Q, v, v ) p„—,Vv („-, V). (2.5).P'q P'q
qa Mp
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Now Eg. (2.4) can be cast in the following conven-
ient form:

p~ =(I +I,'/2I, 0, 0,I ),
q" = (M,v/P, g„0),
e,'= e'+ 0(1/f").

(2.V)

Here the longitudinal direction is that of the pro-
ton's momentum and g is a transverse vector
such that the large-Q' limit corresponds to q~- ~
in this frame. As has been discussed in Ref. 3,

'

the assumptions of the parton model are imple-
mented in processes ygith highly virtual photons
by taking P first to infinity with q~ fixed, and then
letting q go to ~. The four-momentum of each
final hadron in this frame can be described as

p,"=(X,I +(iaaf;+h„')/2X, f „k„,X,I ), {2.&)

where k~ is a transverse vector and X~ a scalar.
Novp from the definition of g~, ere have

(2.9)

—[vp, cos'(-', 8,) +2'W, sin'( —', 8,)I .
dQ'dvdz~ Q'

(2.6)

Thel6 Rx'6 two asymptotic llmlts fox' slngle-
particle electroproduction at large Q' that are of
interest in the present parton analysis:

(1) Fixed-e limit (Bjorken limit): Here v-~
and Q'- ~ in such a way that the ratio 2M, v/Q' —= &a

is kept fixed 3t some value &1. In this limit there
is no a' priori kinematic constraint on g~ except
that it has to be in the range M~ ~ I(:~ ~ v.

(2) Fixed-7~ Iinnt: Here v-~ and g~-~ in
such a way that the ratio g~/v= T~ is kept fixed
at some value &1. In this limit Q' can, a priori,
have any large (for the parton analysis to be valid)
positive value bounded by 2M~v.

The parton analysis has to be performed in a
sultRble lnflnlte-momentum frame. Following
Ref. 6, we choose the frame with I'- ~ in which

production at large Q' in the parton model (at
either of the two asymptotic limits mentioned
above) one of the final hadrons will be shown to
emerge predoroinantly in the direction of the vir-
tual photon. Henceforth me shall refer to this
pgrticle as A. It is to be noted that some of the
most interesting results of the pax'ton model will
directly involve the kinematic variables of this
pRx'tlcle. Hence ln ox'dex' to test the x'esults of
the pRrton model experimentally, lt, %'ould be con-
venient (although by no means necessary) to de-
tect a final hadron in the direction of the elec-
tron's momentum tx'ansfer. During the rest of
the paper me shall therefore +rite down all our
formulas simply replacing the subscript J by A,
the extension of our considerations to the case
m'here B is detected being quite straightforward.

The kinematic restxictions follovging fx'om the
parton model for single-particle electroproduc-
tion at large Q* are restrictions on the behavior
of the free variables in each asymptotic limit.
Thus —for leading contributions to the fixed-e
limit —the variable I(,„&rill be forced to behave
in a constrained may that is observable; the same
is true fox' the variable Q in the fixed-7„ limit.
In order to understand these restrictions, it is
instructive to begin by making a qualitative study
of the parton dynamics of elastic ep scattering at
large Q' as considered by Drell and Yan' (Fig. 3).
The point of utmost importance in this ease is
that for the leading contribution Rll the parton
constituents of the proton except the electromag-
netically scattered one have to be wee. This is a
necessaxy consequence of the basic requirement
of the finiteness'0 of the transverse momenta in-
volved in Rny hRdx'onlc vex'tex with pRrtons even
in the q~-~ limit, as can be seen in the follow-
ing way, Let the ith parton in the undressed pro-
ton ln Flg. 3 have the four-momentum

Qn the other hand, momentum and energy consex'-
vRtlon lIQply

(2.10a)

(2.10b)

(2.10c)M„+k„~ MB +k~~

The relations (2.9) and (2.10) will be suffi. cient
fox' our purposes to detex'mine J~, k~~ in terms
of the observables Q2, p, and g~.

The final remark that vm m'ant to make in this
section is that for leading single-particle eleetro-

Nonwee Parton

FIG. 3. Large-momentum-transfer elastic ep Scatter-
ing in the Drell- Yan parton picture.
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p~ = (q,P+. (p,.'+ 0,,')/2q, P, .k, „q,P), (3.1)

p„= (1 —q,)P+P k, ,
j vsa

and that of the scattered constituent is p, = g,P
+k,~+q, where k„=-P,.„,k, , We rewrite these
as

where q,. is its fraction of the total longitudinal
momentum P and k,. its transverse momentum;

g,.q,. =1 and P,.k, ,=0. The transverse momenta
are all kept under a cutoff." Let a be the elec-
tromagnetically scattered constituent and p, be
some mass of the order of the k, cutoff. On being
scattered by the virtual photon, the parton a com-
bines with the unscattered bunch in the redress-
ing vertex in Fig. 3 to give back a final physical
proton of momentum P+q~. Just before the re-
dressing, the momentum of the unscattered bunch
1S

and

p~= xp~+p

= X(7}.P+q, )+Xk„+p' (3.4a)

P.=(1 —x)b. -p, (3.4b)

where p' is defined as the vector transverse to

p, =g,P+k, +q . The requirement of the finite-
ness (as q, —~) of the transverse momenta (rela-
tive to p, ) at the A vertex simply means that p'
is finite. Note that Eqs. (2.8) and (3.4a) imply

vertices since we look at a time-ordered diagram;
there is only over-all energy conservation. At
the A vertex let the particle A take up a fraction
x (~1) of the momentum of the decaying parton,
whereas let the other fraction be carried off by
the bunch n. For the momenta of the physical
particle A and of the bunch u, respectively, we
can then write

p„= (1 —q,)(P+q, ) —(1 —q, )q, +g k...
j&a

p, = q,(P+ Q, ) + (1 —q, )Q, —P k, ,
(3.2) and

xg = xn.

k, =yq +finite.

(3.5a)

(3.5b}
It is clear that relative to the final-proton's mo-
mentum p, +p„= P+q~, all transverse momenta
can rergpin finite in the redressing vertex as
q, -~ onlyif lim, „(1—q, )q, is finite. In other
words

n. =1 —~/4, and

P.=(1 -x)b. -p'

=(1 —X)(q,P+Q, )+(I —X)k, +p' (3.6a,)

At the B vertex, on the other hand. , the combining
momenta are

and (3.3)
p ~

= (1 —7},) P —k,i . (3.6b)

q,. = (p/q, )x,. ( j+a),
where QI„x,. = 1. This means that only the a par-
ton is "nonwee" and the rest are "wee." (Note
that if large-Q' elas'tie "ei'eetL'wn'scattering of a,

hadron is controlled by the wee partons, one is
inclined to expect the asymptotic form factors of
all hadrons to fall off with the same power of Q '.
In other words, the leading power of Q

' is con-
trolled totally by the wee partons being emitted
and absorbed and not by the external particles.
This is the point of view that we shall adopt. )

In the reaction ep- eAB some interaction is
necessary" between the elec'tromagnetically scat-
tered parton of momentum p, and the unscattered
bunch to produce two final hadrons. Let us con-
sider, for example, the situation depicted in Fig.
4. The initial proton is undressed into partons of
which one is electromagnetically scattered. The
scattered parton decays at the A vertex into the
physical particle A and some other partons (call
this bunch n). The latter combine with the origin-
ally unscattered partons (henceforth called bunch

P} at the B vertex to give the physical particle B.
Of course, energy is conserved at neither of these

(3.7)

8 —Vertex

FIG. 4. Interaction betwet. ~ the electromagnetically
scattered parton and the unscattered bunch in the reac-
tion eP -e'AB.

Hence the momentum of the physical particle B is
finally given by p~=p +pe, i.e. ,

P. = (1 —q. x) P —. ,xk,::,+3&-..x)q. —p'

From Eqs. (3,6). and (3.7) it should be clear that
the requirement of finite (as q~- ~) transverse
momenta at the B vertex with respect to p~ can
be satisfied only in two ways: (1) X-1 —p/q, as
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q~-~, i.e. , the bunch n consists of wee partons
only, and (2) q.-l -m/q, as q, - ~, i.e. , the
bunch P consists of wee partons only. The first
case corresponds to wee-parton exchanges be-
tween the 4 vertex and the B vertex. There is
clearly no reason why these wee partons should
only go from the A. to the 8 vertex. The more
general situation of this type is shown in Fig. 5
where wee partons go from either of the two ver-
tices to the other one (everything, of course,
moves forward" with time}. We will show that
this picture describes the fixed-(d limit properly.
The second case corresponds to nonwee-parton ex-
changes between the vertices A. and 8; but all the
partons produced at the initial proton-undressing
vertex except the eleetromagnetieally scattered
one are now wee. Hence in this case any interac-
tion between the A. vertex and the J3 vertex via non-
wee-parton exchanges can be possible only if these
nonwee partons move from the former to the lat-
ter. We will show that this picture correctly des-
cribes the fixed-7„ limit.

Let us now' discuss the above two cases in de-
tail.

Case 2 {Fig. 5). Let the group of wee partons
moving from the B vertex to the A. vertex bring in
a total momentum of (X, —1)(q,P+k,~+/~)+ p,

' to
the former. Similarly, let those going from the
A. vertex to the B vertex take away a total momen-
tum of (1 —X,}X,(qp+k„+g~)+pm from the same.
Here X~-1+9,/q~, ,X2-1-P~/q~, P, , -k~ cutoff,
p,', ~ (q,P+k, +Q~}=0, and p,', are finite. Now
Eqs. (3.4a) and (3.7) are still valid in this more
general situation provided we write X

= X,X, -1
+ (p, —g,)q, ' and p' = p,' —p,'. Also, since from
Eqs. (3.4a) and (2.8)

4 t

k„~ ~ [1+(p,, —gm)q~ '](k,~+Q~)+finite,

we have

lim "~ ' =O(l/q ).
Substituted in Egs. (2.10c), this implies that in
the large-Q' limit one has

(3.8)

2

lim X„= + O(1/~qm) .
2M pv

On the other hand, from Egs. (3.4a) and (2.8),
once again, we have

[1+(&i &2)q~ ]'qe
q~~ oo

so that we get

q, = lim X„= +O{l/~g'}.
2M~v

In this case, however, q, -the fraction of the lon-
gitudinal momentum carried by the electromag-
netically scattered parton in the P- ~ frame —is
some finite number in the range 0&q, &1. Hence
this case corresponds to that large-g' limit,
where 2M v/Q = v is fixed [i.e., the Bjorken (Bj)
limit] and we have

(3.10)

(3.11)lim X„=q, = 1/(o+ O(1/Iq') .
Bj

Now Egs. (3.8) and (3.11) imply, in conjunction
with Eqs. (2.9) and (2.2), that:

lim —"=lim, " = 1+O(1/~Q) .K~ . 2q p (3.12)

Thus the free variable of the Bj limit, i.e. , I{.~,
is forced by parton dynamics to tend to v in the
leading terms. Moreover, if 8„ is the laboratory
angle between the momentum p„of the particle A
and that of the virtual photon g, Eg. (3.12) implies
that"

lim(1-cosg„) =O(1/~v'),
8

(3.13)

i.e. , in the fixed-~ limit A should come out most-
ly in the laboratory direction of the virtual photon,
as claimed in See. II.

Case 2 (Fig. 6). This case can be considered
using arguments analogous to those given above. '

Now q, -1 -m/q, as q„-~, where m -k, cutoff
and

Virtual Photon

Physical Hadron

Nonwee Parton

Wee Parton

PIG. 5. Single-particle electroproduction in the
fixed- ~ (Bj) limit.

p~ ~ X(P+Q~) + Xk

~+'finite�

.
gag ~ oo

From Eqs. (2.8} and (3.14) we have

lim X„=X+0{1/~Q')
q~~ oo

llm km~ =
XQ~ + fin

q

Substituted in Eq. (2.9), Eqs. (3.l, 5) imply

(3.14)

(3.15)
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(3.16)lim —"= + O(1/Wtz) .
Og

On the other hand, Eqs. (2.10c) and (3.15) lead to
the result

B-Vertex

Q2
lim = 1+O(1/~Q')

„2M~vq ~oo

which, combined with Eq. (3.16), yields

(3.17)

0 q

A-Vertex

lim —"=}) +O(1/~Q') . (3.18)
q ~~

For the present case, X
—the fraction of the mo-

mentum of the electromagnetically scattered par-
ton carried off by the particle A at the A vertex-
is a finite number in the range 0 &X &1. Thus now
we have the limit where ii„jv= v„ is fixed so that
lim, ))

= T„+O(I/~q&) Eq.uation (3.17) is the par-
ton restriction on the free variable Q' in this lim-
it. Substituting this in Eq. (2.2) we obtain
lim, q p„/-M, v= T„+O(1/Wv) which implies"

A
that once again, in the laboratory frame, we have

Virtual Photon

Physical Hadron

Nonwee Parton

Wee Parton

FIG. 6. Single-particle electroproduction in the
fixed- 7A limit.

too Moreo. ver, Eqs. (3.15) now become

lim X„=~„+O(1 /~Q2)

(3.19)lim(1 —cos8„)= O(1/~)zs)
A

and that A comes out mostly in the direction of
the electron's momentum transfer in this case,

lim kA~ = TAq, + finite .
TA

(3.20)

IV. DRELL- YAN RELATION BETWEEN DEEP-INELASTIC AND ELASTIC ep SCATTERING

) vz) = ~z, ~z)+ g jii z'a,.
l i, i„,) ' " ' " ' '" s"' pi, . - z) .

l=1 l 1

In Eq. (4.1), f„ the vertex function associated with undressing the proton into I+ 1 partons, is given by
l+1»' i'" ~ i'5~» ~k. -P =(k k ~Up).1 ')+i

(4.1)

(4.2)

In this section we review the argument of Drell and Yan' that led to a connection (see Sec. I) between the
proton's elastic form factor F,(Q') at large Q' and its deep-inelastic structure function F,(&u) near the
threshold ~=1. This review will be useful when we use similar arguments to relate the large-Q' behavior
of our structure function%~ to the asymptotic electromagnetic form factor. The authors of Ref. 6 start
by undressing with the unitary U matrix the physical proton of momentum P (in the infinite-momentum
frame) into bare partons:

Z, —the wave-function renormalization constant of the proton -has to be set equal to zero" to ensure the
absence of any pointlike behavior in large-Q' elastic ep scattering. The normalization (Up' ~Up)
= 5~»(P' —P) is maintained by the condition

(4.3)

To obtain a parton-model expression for F,(&u), Drell and Yan' rewrite Z„ in terms of the bare current
j„by J„(0)= U 'j (0)U, choose just the good components (p =0, 3) so that only partons moving forward in
the P- ~ frame are relevant, ' and use the free-parton approximation. Then one has

lim Wi(Q, v) -g„„+ "2' + '
2 p& —

~ q& p, —
2 q, = — po d xe" "(U ~jp„(x)j,(0')~Up).

Pj

(4.4)

In Eq. (4.4) one can substitute the expression for
~ Up) from Eq. (4.1) and use the Born result
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4~fd «~ "('R i.„l)'(~b (D)"l&; k„,)=g '. ~., (-(,"'()'+4).'0:+ )o(c'+2)', e)
a g

&&
g(') (p, -k ) ~ ~ ~ (excluding ath factor) 5' (p„, —k„,),

where A,, is the charge of the scattered constituent a. If we call the fraction of the longitudinal momentum
carried by the ith parton q„ then in this frame 0(' = q, p" +nonleading terms T. hus one obtains [see Eq.
(78) in the second paper of Ref. 3]

(4.5)

Similarly, starting from (2n)'(Up'
~

j"
~ Uj))„„.„,„=E,(Q')

(2)))'(k," k' „~j"~k, .k„,) = 5,„PX.d"(k,' -k, )

we get'

and using

~ ~ (except ath factor) ~ ~ ~ 6(') (k' „—k, „,) (4.6)

where

(4.7)

Here f and f,, are vertex functions associated with the initial undressing and the final redressing ver-
tices of the proton, respectively.

The Drell- Yan connection, which can strictly be established only between E;, (&u) and E;,(q') and then
conjectured to hold between E,(&u) and I', (Q"J, becomes particularly transparent in an argument due to Yen-
nie. ' In Eq. (4.7) substitute qj for jWa by pq~ 'x,. in accordance with the second of Eqs. (3.3). In the q,
integration, we write

where p, - p, (cf. Sec. III). Thus, in the q, -~ limit, because of the first of Eqs. (3.3), we can write

and replace q, by 1 everywhere in the integrand. Now Eq. (4.7) becomes

(4.8)

In Eq. (4.8)

frt
=f~(1, gx, q ;..).—),

f( ' ~f(,'(I ) (ux;qi

These functions have the same longitudinal vari-
ables, but their finite transverse variables are
different by finite amounts -uq~. It is reasonable
to assume that the finite transverse variables do
not play an important role in controlling the q,
dependence of Ef, (q, ). Now one can rewrite
E;,(~) of Eq. (4.5) in a similar manner by sub-
stituting 1 —q, = x,(1 —a& ') and q,. =x,.(1 —(d ') for
j&a. Then one has

(4.9)
Once again I,"dx.- Jo"dx. and, as ~-1,
9(1/(I —~ ') —x.) can be taken =1. Now the
argument of f~( in Eq. (4.9) is the same as that
in Eq. (4.8) except that pq, ' is replaced by
1 —m ' everywhere. Thus the leading powers
of these variables emanating from the integrals
of Eqs. (4.8) and (4.9) should be the same. Hence
the leading power of pq, ' in E;,(q~) is expected
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to be greater than that of 1 —&u
' in F2', (tu) by one

in the respective limits q, —~ and ~-1 while
there is an additional factor of &u

' in F2, (&u). This
is what leads to the Drell- Yan' connection.

Drell and Yan have verified that their conjec-
ture is valid (by a diagram-by-diagram analysis)
to any finite order in old-fashioned perturbation
theory so long as the virtual transverse momenta
are kept finite. They take a model' of 0 mesons
and —,

"baryons with a y, coupling and a trans-
verse-momentum cutoff. In this model, to every
order, the diagrams contributing to F,(Q') and

those contributing to E, (&u) have a one-to-one cor-
respondence. Moreover, the contributions from
corresponding diagrams satisfy the Drell- Yan'

relation. This can be checked by using a simple
power-counting method. Take any diagram con-
tributing to E,(Q'). First we have to identify the

wee and the nonwee particles in the intermediate
state. Since only the electromagnetically scat-
tered parton is nonwee, this identification is trivi-
al once we can lump all strong vertices either in

the initial undressing or in the final redressing
of the physical proton. Then the origin of the var-
ious powers of q, in the q~- ~ limit can be traced
following the second paper in Ref. 3. One obtains
a factor of q, from each internal wee line-particle
line, a factor of q, ' from each loop containing a
wee-particle line, a factor of ~q, from each me-
son-baryon vertex where only one of the two bary-
ons is wee and a factor of q~

' from each wee-
particle-containing energy denominator. Thus,
for example, the contribution from Fig'. 7(a) is
proportional to q~

2 and that from Fig. 7(b) to

q, '. The corresponding diagrams for F,(v) are
shown in Figs. 8(a) and 8(b) and in the &u- I limit
their' contributions a,re proportional to &v '(1 —~ ')

and a& '(1 —&o ')', . respectively, in agreement with

the Drell- Yan relation.
We conclude this review with one observation.

It was suggested in Sec. III that in the parton pic-
ture all hadronic electromagnetic form factors
should fall off with the same power of q~

' as q~
In terms of the diagrams of the above model,

this would be the case provided to every diagram
for the form factor of a baryon, there is a corre-
sponding diagram (with the same wee particles)
for the meson form factor giving the same leading

q, dependence as q, -~. This correspondence is
generally true and is elegantly exemplified in

Figs. 9(a) and 9(b) where each contribution is pro-
portional to q

' for large q~. However, there are
some situations when the diagram for one case
happens to vanish owing to a symmetry principle,
but does not vanish for the other case. In particu-
lar, this occurs when all the wee particles are an

odd number of pions in which case their contribu-
tion to the pion (but not the nucleon) form factor
vanishes (cf. Fig. 10). In order to have universal-
ity in the asymptotic behavior of all electromag-
netic form factors, one has to make the necessary
but ad Roc additional assumption that this small
subset of "anomalous" diagrams makes no differ-
ence to the final result.

V. PARTON EQUATION FOR SINGLE-

PARTICLE ELECTROPRODUCTION

Starting with the amplitude (pa, p„l J„lp) in the
Q'= q~'- ~ limit, we shall now set up and con-
sider the basic equation of our model. Although

this matrix element has well-defined external
spin factors, we are in fact interested in

Z (pl ~. l p., p.&(p. ,p. l~, I p&
spms

~W

w~ &:&~g
W

r

Virtual Photon
(b)

Baryon or Antibaryon

0 Meson

w = Wee Particle

FIG. 7. Two time-ordered diagrams contributing to F&(Q ) in the DLY model: (a) contribution ~ q~ 2,

(b) contribution ~ q~
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I

/ ~ Ok ~ Ek
Jl

I

I

I

(o) Virtual Photon

0 Meson

FIG. 8. Y%'o diagrams (col lesponhg to Fig. 7) contributing to 5 2((d): (a) contribution ~x:QP (1—(d ) s
'

(b) contribution c&'~ «(1-v. «)2.

[see Eq. (2.5)] wherein these have disappeared.
These external spin factors do nest play any xole
in determining the leading q~ dependence of the
above spin-summed quantity when q —~ (this will
become clearer later). Hence, for notational brev-
ity, we shall always absorb them in the appro-
priate vertex functions.

Let us, for simplicity, begin with the situation
illustrated in Fig. 4. This was discussed in Sec.
III in connection with the derivation of kinematic
restrictions enforced by parton dynamics. Un-

dressing the current 8" by U 'j"U (y =0, 3), we
note that the bare current j„acts as a one-body
operator in scattering a single charged consti-
tuent a and giving it the momentum p, as defined
in Eq. (3.2). Now let I and Iz denote two dis-
tinct subsets of states standing for l partons in
the bunch o. and for l,z partons in the bunch P, re-
spectively (see discussion in Sec. III). Introducing
a complete set of such states and summing over
them, we can use the factorization" of the 0' ma-
trix ln our model and write

&f ~,j, I
U 'j "IIJf»=Z Z &f, l IJ 'I Ie, I.&0~ I. l IJ 'ls, j»(I8+s.j.li "I IJf».

a l~. kg

Because of Eqs. (4.2) and (4.6), we have"
lg(»» g»g)

(I + P l.o, slIJP& ai~ Ps-qi~Px& iP(
(2v)'(I"~)"'

(5.1)

(5 2)

(5 2)

where p,
8 is the momentum of the jth member in the bunch P with P,.sp&s =p& and where ft~ is the vertex

function associated with the initial undressing of the proton into I, &+ 1 partons. Similarly, in analogy with
Eq. (4.2), we can write

&of

ps P~ Zp~

A

/

N+

Virtual Photon

BR~on or Antlbargon

0-Meson

~=Wee Particle

(b)

FIG. 9. Diagrams in the DLY model involving the same "wee" particle: (a) meson form factor ~@~ «, (b) ba~on
form factor ~@~ «.
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and
lB le

6"' Zp, '+Zp;-p,
i ~B.~n ~n

&I., ill I/IPe& I-(~ p) d„+ dg-1]1/2 hp (Pl d
~ ~ ~ d Pfsd Pl r ~ ~ '

d Pd„) (5.4)

In Eqs. (5.3) and (5.4) p„" is the momentum of the xth member in the bunch n and P„'"p =p„. Moreover,
h~~' and g~d are vertex functions associated respectively with the undressing of B into iwo bunches o., p
and of A into the bunch o. and the parton a carrying momentum p, . Using Eqs. (5.2), (5.3), and (5.4) in

Eq. (5.1), we can write

&P., P. I
IJ 'I"

I
f/-P&=Z 2 Z &P.,P. I

I/'~"
I UP);, ,

a l fx=1 lB=1

where

A.a
PddPddl a

'
I ~P&d~, d8 (~ l~+lp-lx l&p2l&z+2l8-1)1/2

B A

(5.5)

j=l r=l. j r
(5.6)

g'~ and h'a'~ are as defined in Eqs. (5.2), (5.3), and (5.4), respectively.
A B

We now substitute

and

p;=(1 —x)~,p. —p,
' (5.7a)

(5.7b)p,.'= (1 —q.)x,.p+ k...
where p, = q, P k,~ Q„P„'~y„=1,Pp„'=p', PP'x, =1, and Pk,.~ =-k„. Thus we preserve Pp„=p and

P.p~=p~, where p'8 are given by Eqs. (3.6). With this substitution and because of Eq. (2.10a), Eq. (5.6)
becomes

1 pl
&Pz Pe I

I/ 's"
I UP&f„, d, =~p IX d (I x )d„.d, ]x/ JI -dn. J)d'h:( n.)' '( --x)' 'n. '

~
'n'

ii Jl d. fd k;'fd, y f'd ,D d(d —p''. ',)d(
-'i', ,)f,'d, ' h,'d'"

(5.8)

In Eq. (5.7) f~s, g'", and h~~' can be written as functions of longitudinal and transverse variables defined

with respect to p, $„, and pe, respectively, i.e. ,

f,"-=f,"(q., (1 —q.)x,;.. .),

l~ l~ 1 1 —g
&ry '

x x
(5.9)

l, le 1 ga 1 X .

1 —Xn "1—xn.

with r (j) running from 1 to I„-1 (ls —1) and . . .
standing for finite transverse variables (integrated
within the finite transverse-momentum cutoff")
with which we shall not be concerned.

Equation (5.7), derived above for the situation
depicted in Fig. 4, is the basic equation of our par-
ton model and we shall investigate the fixed-+ and

the fixed- ~A limits with this. Let us now consider
these limits in the context of this equation:

(1) Fixed-ap limit (Fig. 5, case 1, Sec. III). The
general situation in this case is slightly more com-

w
W W

Virtual Photon

Nucleon or Antinucleon

Pion

w = Wee Particle

FIG. 10. A particular timf -ordered diagram for the
pion form factor whose cont. ibution ~@~ 2 but where
the constant of proportionality has to vanish because of
G -parity invariance.
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p,~, = Pj2jfj., X...(jd &+k,j.+flj.) -p,'

In Eq. (5.10), the subscripts 1, 2 keep track of whether the wee parton moves from the A vertex to the
B vertex or vice versa (see Case 1, Sec. III) and+„y„=l, P„p„' =p,', . Moreover, Eq. (5.7b) for the
momentum of the jth member of the nonwee bunch P becomes

p,
~ =(1 —(u j)x,.P+k, ,

(5.10)

(5.l.1)

Finally, in the q, integration we can substitute

n. = ~ '(I - (v. - u, )q, 's.l ',
so that as q —~, jl,-~ ' as required by Eq. (3.12); on the other hand, in the q -~ limit we can write

plicated than that shown in Fig. 4. However, an equation analogous to Eq. (5.8) can be written down" pro-
vided we extend g~, the vertex function associated with the A. vertex, to include wee partons moving from
the B vertex to it and take lj,~=y and p,

' —p,'=p' (see Sec. III). The I partons in the bunch jj. are all wee
now whereas the l& partons in the bunch p are nonwee. Since X»-1+ p,»q~ ' and q, - ~ ' in the present
limit, Eq. (5.7a) —giving the momentum of the j th member in the wee bunch cj —now becomes

and replace g, by ro ' everywhere in the integrand.
We now replace X„by ~ ' in accordance with Eq. (3.12). Using the equations and the substitutions of

the above paragraph, we can rewrite Eq. (5.8) as

(5.12)
Equation (5.12) is the fundamental equation which will give us information on the single-particle electro-
production amplitude in the fixed-&jj limit. Here g- gj, and from Eq. (5.9) we have

f'jj=f~8((u ', (1 ——(u j)xj;. . .),

(5.13)

@18 fo ~lg la
+B ~g (d —1 Q' ~

The functional dependence shown in Eq. (5.13) is a direct consequence of the fact that the bunch pis non-
wee in this case whereas the bunch n consists exclusively of wee partons.

(2) Fixed-T„ limit (Fig. 8, case 2, Sec. III). In this case we can use Eq. (5.8) directly with the con-.
straints that g,- 1 -mq, ' and X~= y

—-7„. Hence

p„"= (1 —j.„)y„ji.P+ (1 —r„)y„$,+ finite

(5.14)

Row in. the q, integration we substitute
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q, = 1 -m'w. /q, ,

where m'-m so that since g, -1 as q~ -~, we can take

d'g
O 9'1. O

and replace q, by 1 everywhere in the integrand. With these changes, Eq. (5.8) becomes

bm(, U-' "V
A. 1

pg«ps I 2 I p)f ~, ls ~p [+ l ~(I + )l««+ Es-1]1/s
rA A A

ckv d k~g

lg 1 l ct 1 lg -1 1 l ct-1
x Qg dx, e1. —p x,, ~td'h, , dy„9 1 —p y, d'p„'g, "„h,s' f,sj r 0 r &a

(1 —v„)'~ 's ' 't' m 's

q o

g-1 l ot-1 1 l8-1

r

(5.15)

Here,

(5.16)

Equation (5.15) is our basic equation for the fixed-7„ limit. The functional dependence shown in Eq. (5.16)
reflects the wee (nonwee) nature of the bunch P(c«) in this case.

VI. ROLE OF VfEE PARTONS IN THE FIXED-u
AND FIXED-rA LIMITS

We first write the equations [corresponding to

Eq. (4.8)] for the elastic electromagnetic form
factors" of the particles A., 8, and p. Assigning
the momenta p„, p~, and p~=p, respectively, to
A. , 8, and p before they are scattered elastically
by a virtual photon of momentum q~ in the infinite-
momentum frame and considering the contribution
from a certain configuration of I, wee partons, we

have

11m El = A dz d kgj

(6.1)

In Eq. (6.1) the subscript K can be A, B, or p.
Here f', and f» have the same longitudinal vari-
ables 1, p.z&q, -1 —only their finite transverse vari-
ables are different by finite amounts and these are
immaterial. Hence, for the purpose of determin-
ing the leading q, dependence, f», can be taken to

&sr

behave in the same was as f» . Now a comparison
between Eq. (6.1) and Eqs. (5.12)-(5.15) clearly
brings out the role of the exchanged wee partons
in controlling the leading q~ dependence in the lat-
ter cases. %'e consider the two relevant asymp-
totic limits separately.

(1) Fixed-. ru limit. In this case it will be con-
venient to consider Eq. (6.1) with /= I . Hence in
the above equation, as in Eq. (5.12) (Fig. 5), &„ is
the number of wee partons being exchanged. In
either equation there appears a factor of (pq„')'"
outside the integrals. The q, dependences in the

integrands come from the longitudinal variables in

g», h,s' [see Eq. (5.13)] and from those in f»«~

It is to be noted that the vertex functions g~& and
f'& are very similar in that they involve transi-
tions of the same physical particle with the same
momentum into one particular nonwee parton and

a certain bunch of / wee partons. The only dif- '

ference between these functions lies in the fact
that the former involves a vertex where some of
the wee partons are emitted and some absorbed,
whereas the latter involves one where all are emit-
ted. But because of their soft longitudinaL compo
nents of momenta in the I«- ~ frame, the tsee
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Paxtons axe unable to distinguish between enzis-
sion and absorPtion in the q~- ~ lb@it. More pre-
cisely, in the model of Ref. 3, to every order
there is a one-to-one correspondence between

f~2" and g~2~ and, as q~ -~, the dominant power
of q, ' is the same for vertices belonging to each
corresponding pair (specific examples will be
found in Appendix A). Hence we shall assume
that the leading behavior of these two vertex func-
tions are the same in the large-q, limit.

Arguments will now be given in favor of assum-
ing a similar relation between h'8'~ and f'".

Pg Pg
These involve vertices undressing the same physi-
cal particle B and the same wee partons. The
difference is that 5~8'a has la associated nonwee
partons whereas fa'~ has only one (i.e., fa'& is sim-
ilar to h~a'&). But the wee partons —which gen-
erate the crucial factor determining the dominant

q, behavior in the large-q, limit —are precisely
the same for either. Counting on this fact, we
shall assume that the number of associated non-
wee partons has nothing to do with the dominant

q~ behavior of a vertex so that ha'2'~ and f2'a give
the same leading power of q~

' as q~ -~. In the
model of Ref. 3, there is no longer a one-to-one
correspondence between h'2'~ and f'& so that an

Pg Pg
order-by-order comparison is not possible any
more. For each perturbative vertex contributing
to f2", there is now a class of vertices (involving
the same wee partons) for h22'& arising out of
l 8 (~1) nonwee partons in the latter. However,
when q -~, the leading q~ dependence of this
class is invariably" the same (although some par-
ticular vertices of the above-mentioned class may
not contribute to this leading behavior) as that of
the corresponding vertex for f2'~ (specific exam-
ples will be found in Appendix B). This suggests
that our ansatz on the dominant power of q~

' in
h22' ~ and f22 being the same in the large-q, limit
is reasonable.

The above assumptions, although strong, appear
to be sensible from a physical standpoint. Argu-
ments for their justification can be given in the
model of Ref. 3 based on old-fashioned diagram
calculations. Given these assumptions, a com-
parison of Eq. (6.1) (with l= I„) with Eq. (5.12) im-
plies that

F a ~2)F a ~2 1/2

limp (p~, p2I U j '
I Up&i (

Bj gs

(6.2)

In Eq. (6.2) the left-hand side has been summed
over the irrelevant nonwee partons and the pro-
portionality constant includes inconsequential spin
factors and an unknown function of ~. From this
equation we shall infer -in the manner of Drell
and Van' (see Sec. IV) —that

(6.3)

Equation (6.3) can be rewritten in terms of the
spin-summed square of the matrix element as

»mg(22)'&Uplj "UIp„p &&p, p IU 'j "IUP&
Bj 3pins

(6.4)

where u(&u) is an unknown function of ar.

(2} Fixed-v„ limit. In this case it is convenient
to choose l = l2 in Eq. (6.1) so that the number of
wee partons being exchanged here is now the
same as in Eq. (5.15) (Fig. 6}, i.e. , l2. The other
considerations proceed as in the fixed-~ limit.
In both equations we have an over-all factor of
(uq~ ')'8. The q~ dependence in the integrand of
Eq. (5.15) comes from the vertex functions f'8 and
h'2'~

I
see Eq. (5.16)]. The former occurs expli-

citly in Eq. (6.1) for K = p. The latter is assumed,
using the same argument" as given above, to have
the same dominant q~ behavior in the large-q,
limit as fa . With this assumption, the equationPg'
analogous to Eq. (6.3) for this case is

F( 2}F (q2)"

(6.5)

and that corresponding to Eq. (6.4} is

»mg(2 )'2&Upl j"UIP, P,&(P, P~IU 'j"
I UP&

spins

&2(Q') +2(Q')
( )P A

(6.6)

v(T„) being an unknown function of T„
The meaning of Eqs. (6.3) and (6.5) in old-fash-

ioned perturbation theory can be understood in the
following way. Consider Eq. (6.3) first. Take any
two time-ordered diagrams contributing to p„(Q2),
Es(Q') that involve the emission and reabsorption
of a certain bunch of l„wee partons. There will
be a class of diagrams with the same wee partons
exchanged for the process ep- e'AB in the fixed-~
limit, the number in the class depending on the
number /e, of nonwee partons untouched by the vir-
tual photon. However, when q, -~, the leading
q, dependence'9 in the latter class of diagrams
in the fixed-u& limit will be related to the domi-
nant q~ behavior of the former by Eq. (6.4)."
One example" with l =1 and le=2 is illustrated in
Fig. 11 and should be compared with the form-
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~W~ Virtual Photon

Baryon or Antibaryon

0 Meson

Wee Particle

(b)

. FIG 11. Speclflc diagrams fox' the Ineson electl oploductlon aInplltude: {a) lea(4Ilg contribution fxlg~

{b) nonleading contribution fxq~ 2.

factor' cases shown in Fig. 9. Similarly, for the
fixed-TA limit, the dominant q~ behavior of any
two diagrams for F~(Q') and Jls(Q') involving the
same bunch of l ~ wee partons will be related to

the leading q~ dependence of the corresponding
class of diagrams for the amplitude of ep~ e QJ3
by Eq. (6.5).

We shall now convert Eqs. (6.4) and (6.6) into forms that are more directly related to experiment, Con-
sider first the fixed-~ limit. If we take p, v =0, 3 in Eq. (2.5) and apply the P- ~ limit to both sides of
this equation using Eqs. (2.7) and (2.8), we obtain that in the infinite-momentum frame,

l % dX "d2k 5
XAMP MA +uA

5
™Pv

x(»)'Z &~ l~" l~. , ~.,&O. , ~.I&'I». (7 &)
SPIS

In the right-hand side of Eq. (7.1), we have used Eqs. (2.9), (2.IOc), and (3.8). Now we substitute Eq.
(6.4) in Eq. (7.1) to obtain

llm&2 2
= dXA5, XA -- 2XA

ej Mp M~ 2M~v

x —, wa).„'5(2X,~„M, -&„M,' -I, —4 ~ )2& ~,(&,I
—&„(Q')E,(Q')u(~),

lim vW, =&„(Q')&))(Q')U(&),

where Ij((d) =u((o)M~/(2w(u)' is an unknown function of (d.

A similar analysis can be made for the fixed-r„ limit. We write Eq. (2.5) as
2 2 1 M 2+

2@6 M s 2 ~i + ~ ia — ~il +Ma

~(2 )'5 &~i~"If.,~.)&f., S.I~"l~). (7.3)
SPlQS

Using Eqs. (3.17), (3.20), and (6.6) in Eq. (7.3), we have

lim% 2, = —wdk~ 6(k„~ —2w~M~a„)2M~r~2P
M~ M~

1 M 2 M 2 1 g 3

X dxA g 'TA XA, 2 j 2 2 ~+B +P @ ~A
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or
lim%", = F~(Q')Fs(Q') V(7'„),

rA
(7.4)

where
Mp TAV(7 A)

MA M~
(1 —r„)

is an unknown function of w„.
In Sec. IV we argued that in the parton picture

all electromagnetic form factors should asymp-
totically fall off with Q' with a universal power
law. Adopting this view, we can rewrite Eqs.
(7.2) and (7.4) by dropping the subscripts of the
form factors

(7.5)

7A

Since the structure function W, is related to the
azimuth-averaged differential cross section for
near-forward (i.e. , 8, = 0) single-particle electro-
production by Eq. (2.6), Eq. (7.5) should be di-
rectly testable by experiment.

Before concluding this section we have one com-
ment to make. Equation (6.2) is the fundamental
relation that leads to the behavior of v'+, in the
Bjorken limit predicted above. In deriving this
equation in Sec. VI, we ignored any distinction
between wee partons emitted from the B vertex
before the interaction of the ath nonwee parton
with the virtual photon and those emitted from the
same after this interaction. One may argue that
the behavior of these two cases will be different

in time-ordered perturbation theory. It is easy
to verify. explicitly in the model of Ref. 3 that for
large q~ the leading q~ dependence of any time-
ordered graph of the first kind is the same as that
of a corresponding graph (with the same wee-par-
ton exchanges) of the second kind in the same or-
der of the strong-coupling constant. Thus, using
the power-counting technique outlined in Sec. IV
and in Ref. 19, we can see that the leading q,
dependence of Fig. 12(b) in the fixed-&u limit is the
same as that of Fig. 12(a), i.e. , ~ q, '. Hence
any difference between these two kinds of diagrams
does not affect our conclusions. More generally,
graphs of the type of Fig. 13(a) where wee partons
are exchanged between the initial undressing ver-.

tex and the A vertex are covered by Eq. (6.2).
The above discussion brings out an important

point. We have adopted the view, suggested by the
parton picture, that all electromagnetic form fac-
tors should fall off universally at large Q' and
v'VV, or VP, (depending on the limit chosen) should
be proportional to the square of this universal
power of Q

' times an unknown scale function as
expressed in Eq. (6.5). With this viewpoint and

in our model the leading q, dependence of the con-
tribution to the asymptotic single-particle electro-
production amplitude from any parton configura-
tion is controlled only by the number and type of
wee partons being exchanged, it does not depend
on the nature of the vertices they are being emit-
ted from or absorbed in. This is why there is no
difference between Fig. 13(a) and Fig. 5 so long as
the wee partons are the same. In the same way
in the fixed-T„ limit Fig. 13(b) which includes
wee-parton exchanges between the initial undres-

Virtual Photon

Baryon or Antibaryon

0 Meson

Wee Particle

(a) (b)

FIG. 12. Diagrams for the reaction eP- e'AB with the "wee" particle emitted (a) before and (b) after the interaction
with the electromagnetic current.
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V' t I Ph 1

Physical Hadron

Nonwee Parton

Wee Parton

B—Vertex

o &qL

(b)

FIG. 13. Additional diagrams for the reaction eP e'AB with wee partons exchanged between the A vertex and the
initial undressing vertex: (a) fixed-~ limit, (b) fixed-7& limit.

sing vertex and the A vertex is covered by Eq.
(6.5).

VIII. CONCLUDING REMARKS

We have two types of parton-model results for
large-Q' single-particle electroproduction in the
fixed-~ and fixed-v„ limits. The first type is a
straightforward consequence of the parton picture
and consists of kinematic restrictions on the free
variable in each limit, as given by Eqs. (3.12) and

(3.17). In the laboratory frame this amounts to
one of the final particles emerging predominantly
in the direction of the virtual photon -as expressed
in Eqs. (3.13) and (3.19). The second kind of pre-
dictions depend additionally on certain reasonable
theoretical assumptions on appropriate vertex
functions and relate the asymptotic behavior of the
structure function 'N, to the square of the asymp-

totic electromagnetic form factor times unknown
functions of the scaling variables by means of Eq.
(7.5).

Equations (3.12) and (3.17}-which should be
easier to test experimentally than Eq. (7.5)-are
clearly founded on stronger bases than the latter.
In fact, we do not pretend that Eq. (7.5) is any
more than a conjecture based on arguments that
seem plausible in the parton picture. However,
the basic qualitative feature of Eq. (7.5), namely
that v'vv, or 'W, (depending on the limit) should tend
to.zero as some power of Q

' is inevitable in any
self-consistent parton treatment of the problem.
For the specific process eP - cusp' a different pre-
diction-namely, nontrivial scaling for v%~ in the
Bjorken limit- has been given by Lee" in a model
based on the current-field identity. Another re-
sult to compare is the prediction of Frishman et
al.'3 (from light-cone-dominance assumption} that
in the fixed-~ limit vVP, should behave as
Q-'"F, (&u, T), where 7 = -(P +q -P„)' and a is related
to the dimension of the leading field in the operator-
product expansion. All these results will be con-
fronted with experiment at Cornell before long.

Virtual Photon

Baryon or Antibaryon

0 Meson

w= Wee Particle

FIG. 14. Particular perturbative diagram included
in Fig. 5.
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ADDENDUM

We have recently learned from Professor
R. P. Feynman that some of the above ideas have
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occurred to him independently.

APPENDIX A:

COMPARISON OF fP~ WITH g ~&& FOR LARGE q~
IN THE DLY MODEL

f -vertex h-vertex

The large-q~ behavior of specific perturbative
vertices contributing to f™and g~" can be studied
explicitly in the pseudoscalar fielct theory of Drell,
Levy, and Yans (DLY). Here we demonstrate with
some examples that, in this model, the dominant
power of q~

' is the same for vertices with the
same particles and does not depend on whether the
wee ones are emitted or absorbed. For brevity,
we use the power-counting technique outlined in
Sec. IV, although the reader can verify our results
by direct computation. The old-fashioned diagrams
to be considered are displayed in Fig. 15 -in cases
(a), (c), and (d) A. is a baryon whereas in case (b)
it is a 0 meson. For the pair (a), we obtain a
factor of q~

' from the wee-particle-containing en-
ergy denominator and one of Wq from the normali-
zation of the wee particle (for an internal "wee"
line two such factors give q -see Sec. IV); hence
each vertex is proportional to v'q, -~. For the pair
(b) we have not only the same factors as above but
also an additional vq generated by only one mem-
ber of the baryon-antibaryon pair being wee; hence
each vertex is q~-independent. The vertices (c)
have two wee particles and two wee-particle-con-
taining energy denominators so that each is pro-
portional to q '. Each vertex of the pair (d) has
one wee particle but two wee-particle-containing

A

h-vertices

0 Meson
Baryon or Antibaryon

w =Ace Particie

FIG. 16. Examples of corresponding vertices for
f&~ and kps ~ (see Appendix 8).

energy denominators, thereby being proportional
to Vq~ '. Clearly, "crossing" one or more wee
particles has no effect on the dominant q~ depen-
dence of a vertex.

APPENDIX B:
LARGE-q BEHAVIOR OF f ~of AND p'84 IN THFJ. Pg Pg

DLY MODEL

Here also we demonstrate the validity of the
claim made in Sec. V (regarding the relation be-
tween h~s'~ and f+~ when q~ -~) with specific per-

B
turbative examples. Figure 16 contains the rele-
vant diagrams. First, it wit. l be noted that the cor-
responding diagrams are not of the same order.
In case (a) /„=I, /8 =2, f/is a fermion and so is
the wee particle; for the f vertex, the other non-
wee particle is a meson whereas for the h vertex,

Vf+~ ~V/

A

gled

(d)

--0 Meson
Baryon or Antibaryon

@=Wee Particie

Virtual Photon

Baryon or Antibaryon

0 Meson

w =Wee Particle

PIG. 15. Examples of corresponding vertices for
f& and g& (see Appendix A).

FIG. 17. Specific diagram for single-pion-electro-
production (see Appendix C).
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both the two other final nonwee particles are ferm-
ions. For either vertex we obtain the following
factors: q~

' from the wee-particle-containing en-
ergy denominator, vq from the normalization of
the wee particle, and Wq, from only one of the
fermions in a fermion-meson vertex being wee.
Hence each vertex is q~-independent. In case (b)
E =1, i& =3, B is a meson, but the wee particle is
a fermion; for the f vertex the other nonwee parti-

cle is a fermion but, for the h vertices drawn, the
three other external nonwee particles consist of
two mesons and one fermion. The f vertex is pro-
portional to v'q~ ' and among the h vertices the
one to the left is proportional to v'q~ ' whereas
the other one (which has two wee-particle-contain-
ing energy denominators) goes as v'q~ ' and is non-
leading. Hence, once again, the leading q~-depen-
dence possible for h '8'& is the same as that of f'n.

Pgy Pjp
'

APPENDIX C: EXPLICIT VERIFICATION OF POWER-COUNTING TECHNIQUE

FOR A SPECIFIC DIAGRAM

Consider the time-ordered diagram shown in Fig. 17 for single-pion electroproduction. Let g be the ef-
fective pion-nucleon coupling constant. We ~we E, for the energy of a particle with momentum k, and M
and m stand for the nucleon and pion masses, respectively. Now

A —= (2v) "(p„,ps out~ Jo 3 ~ p)

g M d3k' 1 1 1 E„+E,„1 1 1
v'2E»E» E» (2m)» E-E„E», 2E„-2E» 2E»„qo+E» —E», E»„2E-» E»+qo —E& -E» -E»,

&x &a

x Q u (p~) y» v ~'» ' (k )v "»' (k )y» u" '
(k') u ~' ' (k') y» u (p) .

tS~» S

Here s, s' stand for internal spins which are being summed.
In the infinite-momentum frame introduced in Sec. II, we can write

p=Pg,

k = 7IP+ k~ (0 & q & 1,
k'= (1 —q) P- k~,

k" =gP+ k~+q~,

k~ ~ a=0),

p„=X(rlP+k~+Q~) —p' [0 X 1, p" (7/P+k~+Q~) =0],
k = (1 —X)(7iP+k»+q~)+p',

p =(1 —Xn)P-Xk +(I —X)L+p

Hence

E» —E» E», =(2P) '[M -—(ki +m )7i '(1 —ri) '],
q +E —E, -E „=(2P)»[2Mv+M» —(k~ +m»)q '(1 —q) —2k~ q q —q~q ]

and

q +E —E —E, —E„=(2P) '[2Mv+M' —(k, +q )'q '(m'+p" + )(1 -X) 'q

—(0,'p ')(1 —q)-' —(m'+p" + ~ ~ ~ )X 'n '] .
We also have

X„=XII [see Eq. (3.5a)],

and

»m(1 -X)q.=o(p),
q —7 00

J.

lim K„=&u ' [see Eq. (3.9)] .
q~

1 f' lt
Hence, as in Sec. V, we can substitute q=+ '(1+ pq~ 'z) ' and replace, dq by &u 'pq~ ' dz. Then we

0
have
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1
k~ +en

u) '(1 —(u ')

1 1
~ '(1 —(u '), k~'+m'

i~( —,
)

k2 (spinor part) .m~~ +0 (q~ j, , k
M —mq~z&u —m~q z —,—M ~ —(p + ~ ~ )

/2 40q j
1-A mz

It is now easy to see that each energy denominator coming after the interaction of the virtual photon gives
a factor of q ', the loop (containing a wee particle) generates another factor of q ', the "wee" internal line
supplies a factor of q~ and the spinor part [following Eq. (9) in the second paper of .Ref. 3] contains a factor
of q coming from the wee internal nucleon. Thus A. ~q~ ' when q~- ~, as given by the power-counting
argument of footnote 19.
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This is because, in the model of Ref. 3, a single bare
parton cannot make a transition to a physical particle
(see the discussion towards the end of the first paper

in Ref. 3). Hence we must have at least three final had-
rons in order to avoid any interaction between the elec-
tromagnetically scattered parton and the unscattered
bunch.

~2This can be achieved by considering only the "good"
(p =0, 3) components of the electromagnetic current.
See the second paper in Ref. 3.
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= 1+O(1/VQ~) as Q
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ing the square roots binomially, (1+M& Kz) (1—coso&)
= O(1/ v) which immediately leads to Eq. {3.13). In the
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alous" diagrams makes no difference to our general
argument.

~~For any time-ordered single-particle electroproduc-
tion diagram, the leading power of q~ in the q~
limit can be checked following the general power-count-
ing method described in Sec. IV in connection with elas-
tic ep scattering. The only subtlety in the present case
is the proper identification of each of the intermediate
states that contributes a factor cc q~

~ to the diagram
from its energy denominator. Any intermediate state
that appears after the interaction of the virtual photon
and before the absorption of the last wee parton has to
be included independent of whether it contains a wee
particle or not. In the energy denominator of such a
state the terms proportional to q~2 cancel out because

of over-all energy conservation, but the terms propor-
tional to q~ persist. See the particular example in
Appendix C.

This buttresses our claim made towards the beginning
of Sec. V that the external spin factors do not affect the
leading q~ dependence.
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q~ dependences for the corresponding physical process-
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a relation between &&& and [F] .
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The problem of the quadratic dependence on momentum transfer of the form factors in';3
decay is analyzed. Assuming that the (3, 3 ) + (3*,3) model provides a reasonable description
of approximate SU(3) x SU(3) symmetry, several new sum rules have been written down which
involve form factors defined at different momentum transfers. A solution of the various E)3
parameters is obtained and discussed.

I. INTRODUCTION

There has been a great deal of discussion re-
cently'- on the validity of the soft-pion theorem' in
K)3 decays . The diff iculty aris es be cause the soft-
pion theorem relates form factors evaluated at the
momentum transfer t = m~', which lies far beyond
the physical region mP &t&(m~ —m, )'. . Thus in
order to test such a relation, one necessarily runs
into the problem of momentum dependence of the
form factors in the unphysical region. It has been
customary to assume a linear t dependence of the
form factors and indeed such a linear dependence
seems to be consistent with the present experimen-
tal data. ' However, if this linear relationship is
extrapolated to the unphysical region, the experi-
mental results seem to contradict the soft-pion
theorem. A possible way out is that the form fac-
tors as a function of t may have nonlinear terms,
which may be relatively unimportant in the physical
region, but may become sizable in the extrapolated
region near t- m~'. This paper deals with an in-
vestigation of this possibility.

Theoretically, one can study the momentum de-
pendence of the form factors through the use of
dispersion theory. In this case, inevitably, two
problems arise. The first problem has to do with
the number of subtractions to be used in the dis-
persion relations, or the knowledge of the asymp-

totic behavior of the form factors, about which very
little is known. The second problem arises in eval-
uating the absorptive part of the form factors, for
which one usually assumes pole dominance. Since
the K* and ~ poles are rather far removed from
the K» decay region of interest, it is not quite
clear how good this assumption is.'

In this paper, we avoid dispersion theory and in-
stead parametrize the t dependence of the form
factors, retaining, however, the quadratic terms
in t2, which are generally ignored. The K» prob-
lem is then studied solely within the framework of
chiral SU(3) xSU(3) symmetry. Such an investiga-
tion has many advantages, and in particular it
serves to sharpen the experimental confrontation
of our ideas regarding chiral SU(3) xSU(3) symme-
try and its breaking. Our attitude in this paper
will be to start with the idea that SU(3) xSU(3) sym-
metry realized through an octet of pseudoscalar
Goldstone bosons, is indeed a reasonable approxi-
mate description of nature. Based on this descrip-
tion, two sum rules relevant to K» decays are well &

known: the usual soft-pion SU(2}xSU(2}theorem'
and the Dashen-Weinstein relation. 4 A third soft-
pion SU(3) xSU(3) sum rule has also been obtained
by us' recently. To investigate the quadratic de-
pendence on momentum transfer of the form fac-
tors, clearly more information is required. In
this paper we derive what we believe is a maximal


