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A new lower bound is derived for the hadronic contribution to the anomalous magnetic mo-
ment of the muon. In spite of a careful treatment of the p-dominance region, the numerical
improvement over a previous bound due to Langacker and Suzuki is not very significant.

I. INTRODUCTION

Recently, various interesting inequalities im-
posing restx'ictions on some vertex functions in-
volving electromagnetic' or weald hadronic cur-
rents have been derived by assuming cut-plane
analyticity. TechnicaHy, the methods used in
these derivations essentially rely on the Schwarz
inequality or upon a quite diferent maximum prin-
ciple originally intx'oduced by Neiman and x'8-
cently improved by Okubo and the present authors. ~

More specifically, Langacker and Suzuki, s and
Palmer' have obtained in this way lower bounds
for the hadronic contribution to the anomalous
magnetic moment of the muon, Ag&„&, in terms of
~"h-g -d' "fth y'--. . Th b -d @-
rived in Ref. 6 by using Okubo's method is the best
possible one with the total charge and charge ra-
dius of the pion given, and is free of any phenome-
nological input. On the other hand, the method of

Ref. 5 assumes a once-subtracted dispersion re-
lation for the form factor and x'equires in addition
some knowledge of the p-wave wm cross section,
resulting in a substantial numerical improvement.
Although the lower bound thus derived is a dixect
consequence of the Schwarz inequality, it can be
shown that it is an optimal one if the pion charge
radius and the p-wave cross section are the only
input. However& the pion form factor which satu-
rates this lower bound clearly violates %atson's
theorem, ' another condition which arises as
soon as one decides to include the rather reli-
able experimental information on the low-energy
p-wave mm scattering, dominated by the p-meson
contribution. Hence, one can expect a further
improvement if the method can be modified in such
a way that the phase of the pion form factor is en-
forced to have the correct behavior in the p re-
gion. The present paper is devoted to the solution
of this problem. It turns out that the practical
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gain over the Langacker-Suzuki bound is rather
poor. Yet we shall describe the mathematical
method in some detail as it may be of more gen-
eral interest. Though not obvious from the mathe-
matical point of view, the fact that we get only a
minor improvement is physically not too surpris-
ing, since the Langacker-Suzuki bound is almost
saturated when the pure vector-meson dominance
values of both 4a&„) and r, are inserted. It turns
out that, given any reasonable value of r„ the
minimum value of 4a&„~ is not very sensitive to
the phase of the pion form factor on the cut.

In Sec. II, after listing our definitions and as-
sumptions and formulating the problem more pre-
cisely, we write down its solution in the form of
an algorithm which allows us to compute the lower
bound. The derivation of the relevant formulas is
given in Sec. III, with some details deferred to an.
Appendix. Section IV contains the numerical re-
sults and a short discussion.

F(0)=1. (2.2)

The charge radius of the pion is then related to
the derivative of F(t) by

(2.3)

For convenience, we rewrite Eq. (2.1) in the form

F(t) =, 4 2&0lp ~(o)lv'(p)v (-p), in&, (2 4)

where p is the momentum of w' in the c.m. frame
of the two pions. We now assume that F(t) is holo-
morphic in the t plane deprived of the cut

I
4M, ', ~j

and at most one subtraction is needed for the dis-
persion relation. Therefore we have

1 "ImF(t) dt
+6r =+'(O) =-

t 2
tp

with

(2.5)

tp =4M

By applying the reduction technique to Eq. (2.4),
one can write

ImF(t) =Pa„(t)b„(t) (t - t,), (2.6)

where

II. FORMULATION OF THE PROBLEM

AND RESULTS

The pion electromagnetic form factor F(t) is de-
fined by

(p- p')), F(t) =&0ld), (o)l)('(p)v (p'), in&, (2.1)

where t = (p+p')' and J„(x) is the hadronic electro-
magnetic current. The form factor F(t) is normal-
ized in such a way that

4

la.(t)l'=, , b'(p+p'- p. )l&01p &(0)ln&I', (2.&)
0

lb„(t)l'=, , b (p+p p„)l&nIP j (0)l~'(p))l'.
(2w)'

0
(2.8)

Here, j' (x) is the source of the pion field; /In)),
any complete set of in- (or out-} states; Q„ the
integral over the usual invariant measure, and P,
the projection onto the /=1 subspace. The a„(t)
and b„(t}are related to the experimentally mea-
surable quantities, by

(2.9)

(2.10)

or

1
t), a(.„)——

3 dt a ~, (t)G(t}t
4w

b, a(„)—— dt G(t)+la„(t) I,
tp n

(2.11)

with

1 ' e'(I- z)t', g'+ (t/m„')(I- z)
'

Hence if we know 4a(», Eq. (2.11}serves as a
constraint on a„(t). If we also have information on
the cross section or(t), we get a constraint on

b„(t). (The p-wave (((( cross section is known for
the low-energy region and the high-energy part
can be bounded by unitarity. ) To get a bound on

r „we just have to maximize Im F(t) =p„a„(t)b„(t)
subjected to the constraints Eqs. (2.10) and (2.11).
This maximum gives an upper bound for r, in
terms of ha&». Or turning it around, we get a
lower bound of h, a&» in terms of r, . The maximi-
zation procedure can be carried out by using the
functional variation technique with Lagrange multi-
pliers. However, it turns out that the.bound de-
rived in this way is the same as that of Langacker.
and Suzuki. This means that the bound derived by

using the Schwarz inequality is an optimal one

with the information given above. Therefore to
improve the bound, we have to put in more infor-
mation.

Vfe now assume that the mw scattering is purely
elastic up to some energy v t, (in the application,
we shall choose Wt, = 1.1 GeV, much larger than

where o... (t) is the total cross section for e'e
annihilation, and or'(t) is the ((v total cross section
in the p wave at energy Rt. Moreover, the hadronic
contribution b a~& ~

to the muon anomalous mag-
netic moment a(» =-,'(g„- 2) due to vacuum polar-
ization effects is related to o, +, (t) by'
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the inelastic threshold, taking the. elastic approxi-.
mation for granted in the whole p-resonance re-
gion). Then, by using elastic unitarity in conjunc-
tion with Eqs. (2.4) and (2.6)-(2.8), one obtains
Watson's theorem, i;e.,

t t 3/2
(2.1'4)

Thus Eq. (2.11) can be rewritten as

~a(„,= dta(t) [F(t)P
0

+ t dtG(t)g(a„(t}P,
g n

(2.13)

phase of E(t) =6,(t) (modw) for t,& t & t, , (2.12)

where 6,(t) is the mm p-wave phase shift. The
elastic approximation also implies, according to
Eqs. (2.4) and (2.7),

g ia„(t)j' =
86 t, ' jS'{t)p for t, « t & t, .t-t, '~'

Let us notice that the functions 8(t), G(t), and If(t)
are all positive.

Now the problem to solve is the following: By
using the Eqs. (2.13) and (2.6), find the minimum
of the functional 4a(» under the constraints (2.2),
(2.5), (2.10), and (2.12).

The solution is worked out in the following sec-
tion, where a (unique) extremum of the functional
is found, d a&»,„„,. Since we know from previous
works that a lower bound must exist, Aa&„},„„,is
the minimum we are looking for. It is given by
the following set of equations. Define

«(t) =, , xy(—J 'dr, ', , ), (2.15)

G(t') X(o)X(t )t")„ (n = 1, 2), {2.16)

«. t- S(t')S(t') "' 1 1 '~d„, If(t)lx(t)l'
G(t')G(t") X(t')X(t")t"t "' 48m' J,, (t —t')(t t")'— (2.17)

The function X(t) is holomorphic in the t plane deprived of the cut [t, t,]. The real functions o„(t') and
K(t', t") are defined on [t„~]and [t„~](3[t„~],respectively.

Let It(t', t"}be the resolvent of the (symmetric) kernel K(t', t"). Introduce the "scalar products"

(o„la.) =(a.la.) =48„3 «o.(t)[(1-&)a.](t)
„ tj

and the "moments"

(2.18)

(2.19)

(2.20)

z„=,', f"a~ «(i)g(~((* (.= i,os).
fo

Then the lower bound 4a|» - is given by

n' ~ ' x'(0) ' ~ ' x'(0)«(„) =
12 2 [12- (a. I a,)] 6

—
X(0)

+ 2[1&- (a, lan)] 6- —
x(0)

+ [10- (ag le)]

f(,'emw k. From Eqs. (2.14) and (2.17), it is easy to show that in general the kernel K(t', t') is not of the
Hilbert-Schmidt type, because of a singularity at t= t, . As we shall see later, there is no practical diffi-
culty ln coping with this peculiarity.

III. DERIVATION

We first give a formal proof of Eq. (2.20), and next go into the properties of the kernel K(t', t").
(i) Consider the analytic function f(t)—=E{t)/X(t). From Eq. (2.15), one can see that X(t) is constructed

in such a way that it has the same phase as E(t) {up to Nv) in the region t, & t & t, . This gives

phase of f(t) =0 (mode) for t, & t& t, .
Hence f(t) is holomorphic in the t plane deprived of the cut [t„~], since X(t) has no zeros in the region
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go» g» g, . Moreover, X(t}-t as (tI-~, so that a once-subtract«dispersion relation for F(t) implies a
twice-subtracted dispersion relation for f(t}. Thus, taking the normabmation (2.2) into account,

P ", ImF(t') 1+b tF(t)-X(t) dt, ,(, ) (,) +
(0)

where, from Eq. (2.8}, b is related to the charge radius by

X'(0)
6 X(0)

'

(8.1)

(8.2)

[Let us remark that the representation (8.1) is nothing but a particular soluhon to the so-called nonhomo-

geneous Hilbert problem '].In order to make ImF{t) an explicitly real function in Eq. (2.6), we shall write

g (g)
—a (g)e)4n(f)

h.(t) =P„(g) -'&"',

with 0»y„(g), (j) (g}&v and a„(g), p„(g} reaL Then

(8 8)ImF(g} =g a„(t)p„(t)cos8„(t) (8„=(f)„-y„).

We now want to express everything in terms of a„(t), p„(t), and 8„(t). In Eq. (2.18), the first term con-
tains jF(t)p, for which we substitute the representation (8.1) and integrate over t to get

121PEC (I )

dt' dt"k(t' t") ga (t')p (t')cos8 (t') Qa (t")p (t')cos8 (t")
~fI I .

+2 dt'[&, (t'}+b&,(g')] pa„(t')p„{g')cos8„{t')+96'JI dt'C(t')ga„*(t')+I, +8bI, +I, „
4)~ ty n

'

(8.4)

(8.6)

+[ „,P„, 8„]=@[ „,P„, 8„]+Jf dt' (t') 'gP.'(g')-88(t')
4g~

where v(t') is the Lagrange multiplier function, we get from W /58„=0

-~. e(r) (r)()(~) ar)(~ ~-)g'(( )() (r)-.e(r-). () 0(.")).. =
jn

It is easy to show that the integral equation for g(t"),

&(t) IX{g)I'
} X(g')X(g")t"t"'2 „(t-t')(t-t")'

Z (g)=
' -' ~"dgg"'~" ~" (m=1 8)

X(0)X(g')t" v J,,
Now, our initial problem is reduced to an extrema problem for the functional (8.4), under the constraint

(2.10}, which can be handled by the usual Lagrange multiplier method.

IQtx'06QclIlg

(8.V)

(8.8a)

J
dg'% t', t" g g" +1=0,

has no solution, so that we must have sin8„(t)a„(t)g{t)= 0. According to Eq. (8.8), this just means that we

CRQ ChooSG

8„(t)=0 for all n

Next, 54/5a„=O and M/5p„=O imply for all n

2p.(g') «"&(g', g Ea.(t")p.(t")+& (g')+».(t'),i+1»v&(g')a. (g')=0,
df~ ggt
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{3.8b}ya„(t') dt y(t", t 'E"a (t ld'(t I+'E (t )+'EE,(t I)+'»(t )d'.(t )='E ~

4gg

By requiring these two simultaneous homogeneous equations to have a nontrivial solution (at least for one

n), the Lagrange multiplier is fixed to be

(at') td=, dt %(t't )'Q, "a (t )8 "(t I+E"'(t ),+t'E(t )j, .'

Thell solvlIlg Eqs. (3.8) fol' Q„p„and llsing Eq. (2.10), we get

pa (t )P („t )'—„d'd =E, dt d(t "t )p', "(ta)P (t")+„E,"(t )+tE', (t')j.
tt ty m

y(t') + )~ dt"K(t', t")y(t" ) =
4 [oy(t')+ b o,(t')].

(3.10)
It is shown below that the kernel K(t', t") has a
well-defined (symmetric) resolvent R(t', t'). Thus,
in the operator form

KB =AX=K-B (3.1i)
and the (unique) solution of the integral equation
can be written as

y = — — (1-R)(oy+ b o,) . (3.12)

Also, it follows from Eqs. (3.8) and (3.12) that

g~.'(t) =
48 2G

[(i-f~)(o,+bo.)1.
1 1 (3.13)

It is convenient to symmetrize. this equation by
introducing

y(t )=, , g „(t')t(„(t') (3.9)
(:(t') "'

and replacing the quantities {3.5) and (3.6) by
(2.16) and (2.1V), respectively. In this way, we
are led to the following integral equation for y(t'):

(3.14)

(3.i5)
S(t), ~ 481)/t,

(E(t) ~ m~ /3t

X(t),~ 1/t, (3.i6)

X(t) ~ C(t t )by(ty)/tt-I (3.1V)

Equation (3.14) follows from the unitarity bound

ory{t) & 481(/(t- t,), and Eqs. {3.15)-(3.1V) follow
directly from the definitions.

Let us notice that the behavior (3.1V) eventually
allows the form factor to diverge at t= $„when
5,(t,)& t( [see Eq. (3.1)]. In our case, however,
5y(ty) is very close 'to 1Tt thollgll F{ty)=attt lt is R

rather "weak" and perfectly admissible singular-
ity [in fact, the purpose of introducing the factor
(t- t,) ' in Eq. (2.15) is to prevent an unnecessary
zero of F(t) at t = t,]. In any case, we have to as-
sume that 5(t,) & —,')I in order to ensure the. conver-
gence of the integrals in Eqs. (2.16) and (2.1V).
On the other hand, the threshold behavior of the
t)-wave phase shift 5,(t) - (t- t,)'/* as t- t, implies
'tllRt X(t(I) 18 flIllte,

By using Eqs. (3.14)-(3.1V), we obtain from
Eqs. (2.15) and (2.16) the following behaviors:

Then, inserting Eqs. (3.V), (3.12), and (3.13) into
the expression for 4, we get

e,„=48, ((1-a)(o,+bo,),K(i-Z)(o, +bo,) )

-48, ((o, +bo, ), (1-R)(oy+bo, ))
2

+,{(1-B){oy+bo,), (1-R)(oy+ bc,))
1

const„t

o (t') ~ const(tt t )by(t )/ -yt(ty1 2)

K(tt t«) &
gf ]1I

K(t, +bIP, t, +PP) ~ const
p-+0 P

(3.18)

(3.19)

+I +2&I +I

Finally, a simple reduction using Eq. (3.13), the
symmetry of R, and Eq. (3.2) leads to the result
(2.20).

(ii) In order to investigate the properties of the
kernel K(t', t"), we have to know the behavior of
the vR1'10118 flBctlons lllvolved Rt lllfinlty Rlld hl
the neighborhood of the singular point t= t,:

Equation (3.18) shows that o»(tt)eL, '(t„~). How
ever, we see from Eq. (3.19) that the integral. of
I K(t, t")pt though converging at infinityt diverges
Iogallthmically Rt t'=t" =ty Thus K(t',, t.") is not
a Hilbert-Schmidt kernel. In order to isolate its
singular part, we replace X(t) by the expression
(3.1V) in Eq. (2.1'l), and all the other functions
regular at t = t, by their value at this point. We
get
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3/2
K, (t', t")=S(t,) ' ' (t'- t, )" (t" t-, )"

where

1,«& dt
X4«' J,, (t, -t)'"(t-t')(t-t") '

q = I - 5 (t, )/w (0 & q & -,') . (3.20)

Although K~(t', t") is not a Hilbert-Schmidt kernel,
it is proved in the Appendix that K~ is a bounded
operator, when acting on the Hilbert space
L'(t„~). More precisely, its norm is shown to be
bounded by

IIK, II- »'5, (t,). (3.21)

On the other hand, it is easy to see from Eqs.
(2.17) and (3.20) that the regular part K„defined
by

K(tl tll) K (tI tll) +K (tI tll)

is of the Hilbert-Schmidt type, i.e.,

II+, II„,=J « « 8«'"
tj

Hence K itself is a bounded operator acting on
L'(t„~). In our case, we can evaluate an upper
bound for its norm from Eqs. (3.21) and (3.22):

(3.22)

Iy(t'}I'- s,, g~.'(t') gP.'(t') =2G(t').g~.'(t'),

which implies

llyll'-4". «(»&"

IIK II
& IIK.II+ IIK„II„&0.066+ 0.27 = 0.34.

Then, since IIKII & 1, the operator (1+K) has a
well-defined bounded inverse (1-R). This proves
the existence of the bounded (self-adjoint) resol-
vent R and the uniqueness of the solution of the in-
tegral equation (3.10) in the space L'(t„~).

Furthermore, from the (strongly convergent)
Neuman expansion R =K-K +K'- ~ ~, we get

IIR II& IIKII/(I-IIKII) ~ 0.51.
This means that the term containing R in Eq.
(2.18) must appear as a rather small correction,
which is confirmed by the detailed numerical anal-
ysis. Also the fact that IIX~II« II Kll means that
the singularity of the kernel at t=t, is harmless
in the actual computation of the resolvent (which
may be carried out consistently with the method
of Ref. 10, for instance). Finally,

'
we have to

make sure that L'(t„~) is the suitable space in
which a solution of Eq. (3.9) has to be found. But
this is an immediate consequence of the definition
(3.9) and Eqs. (2.10) and (2.11}. Indeed, we have

With these ingredients, it is easy to convert the
formal derivation given in (i) into a rigorous
argument.

cr'(t, ) = sin'5, (t, )
1 0

reaches the unitarity limit 48m/(t —t,) .
(iii) Replace or'(t) by its unitarity limit above

vt =20 GeV.
Clearly, step (ii) is not completely secure,

because the real ~w cross section could go above
the straight line extrapolation. We will come
back to this point below.

We first evaluate the functions S (t) and K(t) by
using the experimental data, and. then apply the
algorithm given at the end of Sec. II. As discussed
in the previous section, the singular part of the
kernel K(t', t") plays no significant role, so that
we can compute the resolvent R(t', t"}by the ma-
trix inversion method. The final result is

b.a&»~ 4.5x10 'l(&r ' —0.0697)'x21.72

+2(6'r ~ —0.0697)x1.45+0.11], (4.1}

where r, is the charge radius of the pion in fermis.
This has to be compared with the Langacker-
Suzuki bound"

b, a(~) ~ 2.61x10 (4 2)

Since the "experimental" -value for the charge ra-
dius of the pion is still somewhat uncertain, "we
have plotted both bounds (4.1) and (4.2) as functions
of ~„ in Fig. 1. For reasonable values of r„, the
improvement of our bound over Eq. (4.2) is not
particularly impressive. If r, =0.86 F, for in-
stance, "we obtain a gain of -5%, which is not
very significant in view of the uncertainty on the
experimental value of ~, and the rather critical

IV. NUMERICAL RESULTS AND DISCUSSION

Our main result is stated in Eq. (2.20). The
numerical evaluation is straightforward but rather
tedious. From the formula for the lower bound,
we see that we have to calculate the "moments"
I„and the scalar products (o„lo ). For the evalu-
ation of these quantities, we use a method similar
to that of Langacker and Suzuki for the treatment
of n7t scattering data in the p wave, in order to
see the improvement over the simple Schwarz
inequality argument. This method consists of the
following steps.

(i) Use the experimental p-wave mm phase shift"
from the elastic threshold t, up to ~t, = 1.1 GeV.

(ii) Extrapolate vr'(t) from ~j, =1.1 GeV with a
horizontal straight line up to +g= 20 GeV at which
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dependence of the bound on this variable.
Now we come back to step (ii), namely the ex-

trapolation to the unitarity limit. In the bound

derived directly from the Schwarz inequality, the
integral between )( [),= 1.1 GeV to v t = 20 GeV con-
tributes only 15% of the total integral. This
means for instance that if we increase this linear
extrapolation by a factor of two, the lower bound
decreases by 15%. Roughly the same thing hap-
pens with our improved bound. Thus we see that
our result must not be very sensitive to the de-
tailed form of the mm cross section between 1.1
and 20 GeV.

We want to stress here again that even though
the numerical improvement over the Schwarz in-
equality is rather deceptive in this case, the
method we have described is flexible enough to
make a full use of various pieces of information,
and could be used in dealing with other similar
problems.
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FIG. 1. The lower bound stated in Eq. (4.1) as com-
pared to the bound of Langacker and Suzuki.

APPENDIX

We want to prove that the bound (3.21) holds for the norm of the "singular" kernel Ks (t', t"). This is
easily done by using a very simple formula due to Tiktopoulos. ' It can be written in our case as

(A1)

and inserting Eq. (3.20) into Eq. (A1}, we obtain, after a simple change of variables,

I&*(~ ~ )I(() ))"',""
where p(t') is any positive (measurable) function such that the integral is convergent [p(t') is not required
to belong to L'(t„~)j. Using

S(t,) =48)[ t, sin'5, (t, )/(f, —t,)'~'

1 ~l r) t~~t~ dx
[[)r,[[-p sin'a, (t, ) sup (,)

&'"(r(x")x"" „(,)( „)). (A2)

If one restricts oneself to a simple class of functions of the form p(x'} =x'", it turns out that the right-
hand side of Eq. ('A2) is maximized for n = --, . With this particular choice, we get

~ 2([&*II-ps'» (&)~& "' '") *~(„,„)f „«*-~(„„„))
z

t
(ty-tp)/z' dy goo F1/

s 1( 1) uP J vs+))(1 ) J „g/s r)(1 rr)

Sin $1(tj) =tan 5~ t~ . Q.E.D.sin[(-', —q)rr jsin[(-', + ri))r j
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Symmetry-breaking corrections to the current-algebra formulas fox X 2x and X-3x
decays are calculated in the framework of a general form of the linear SU(3) o model.

I. INTRODUCTION

The first generation of workers on "current
algebras" produced some interesting results' on
the K-2n and K-sm decays. Nevertheless these
are still among the most mysterious processes in
all of particle physics. One of the associated
problems is to find the symmetry-breaking cor-
rections to the current-algebra formulas. This
has been attacked by many authors with different
kinds of results. The basic difficulty is that the
situation is rather complicated so that a fairly
large number of assumptions must be brought into
the picture. In the present paper we shall calcu-
late the symmetry-breaking corrections in the
framework of an SU(3) o model of spin-0 mesons.
The advantage of this mode12 is that, while it is
realistic enough to give all the curre'nt-algebra
formulas in the appropriate limits, it is simple
enough so that we can perform the calculations in
a self-consistent way without introducing extra
assumptions. Specifically, we wiQ consider cor-
rections to the K-SI amplitudes resulting from
the SU(3}noninvariance of the "vacuum, '* and also

corrections to the K-2w amplitudes resulting both
from the SU(S) noninvariance and the SU(2) (elec-
tromagnetic} noninvariance of the "vacuum. "
These effects are similar to the so-called "tadpole"
effects but not to the strangeness-changing tadpoles.
In our work we shall assume that the weak nonlep-
tonic interaction is of current-current form and
can be effectively represented by a pure octet in

SU(3) space,
The main results in this model are as follows:
(l) For &'- m'w' the "tadpole" contribution is

most likely much too small to explain the entire
decay rate.

(2) For K-Ss the effect of symmetry breaking
is possibly in the right direction to improve the
agreement with experiment.

(3) A comparison of K-Bn and q-3w, which
has been discussed in the present framework else-
where, ' shows that the predicted spectrum shape
is the same even though K-3m arises from a cur-
rent-current interaction and q -3m arises from a
tadpole-type interaction. Thus the apparent ex-
perimental similarity of these two spectra need
not indicate that both a11se froIQ effective lntel-


