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Assuming the Gell-Mann ansatz for the structure of the hadronic energy density 'epp epp
+ Q + 6 with Q = E'p(Sp + c S8) belonging to a (3, 3*)+ (3*,3) representation of SU(3) SU(3),
c = —1.25, and the additional ansatz 6 = constant, we obtain an estimate for the decay rate,
I'(g' g~z) & 0.2 MeV, assuming that the q'(958) is the ninth pseudoscalar meson.

I. INTRODUCTION

In a recent paper, ' two of the present authors
(R. and S.O. ) presented a calculation of the rate
I' for the decay q'(958)-pm', under the assump-
tion A that the SU(3) SU(3) symmetry is of the
Goldstone-Nambu type and that the symmetry-
breaking Hamiltonian density u belongs to a (3, 3*)
+ (3*,3) representation of SU(3)S SU(3)."An
anomalously small value for I' was obtained and
it was concluded in payer I that assumption A is
probably invalid. It could be argued that such a
conclusion can only be regarded as heuristic,

since, of course, a prediction of an extremely
small width I' cannot rule out the theory involved,
at least until experiment proves otherwise. The
main purpose of this paper is, however, to point
out that by modifying some of the at first sight
seemingly harmless additional assumptions made
in paper I, but retaining assumption A, that a
value of -0.2 MeV can be obtained as the approxi-
mate upper limit for I'(q'-pan), which is an
order of magnitude larger than that obtained in
paper I. The value I'S 0.2 MeV is still surprising-
ly small for a strong decay and, if confirmed by
future experiment, this could be proclaimed as a
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success of the model under consideration.
There are two main assumptions which were

made in paper I that we modify here. The natures
of these assumptions are somewhat distinct and
hence we can consider the changes to the estimate
for I' in two independent steps.

The first modification concerns the behavior of
the transition amplitude T over the Dalitz plot.
In paper I it was assumed that T was approximate-
ly constant over the Dalitz plot. Here (in Sec. II},
however, we allow for some variation which is ex-
perimentally indicated and find that by taking this
into account a factor of about 5 is gained for I'.

The second change is considered in Sec. III and
concerns the matrix elements (M, lS, lM~). In
paper I it was assumed that &M, lS, lM, ) =6»x
(constant). We now prefer to drop this assumption
which fails in general if dilation invariance is
spontaneously broken, and in its place we assume
the Gell-Mann decomposition for the energy den-
sity 8» = 6»+ u+ 5. We assume, moreover, that
5 is a constant; this assumption is the most ele-
gant and so far there is no evidence against it.'
The magnitude of the amplitude T turns out to be
quite sensitive to the value of the dimension d of
u. For d=2 we recover the result for T obtained
in paper I with m, =0. However, for d=3 (as
suggested by a quark model) the value for T is
approximately double that obtained in paper I. In
Sec. IV we add some comments concerning the
physical implication of the present estimate.

where T(v, ve, k, ', k,') is the weak off-shell
amplitude with normalization

=T(v& v~)6), &

(3)

and Z;,. is the usual Z commutator

z, ,(0) = fix', (0), 8~,(0)]. (4)

In addition to the above constraints we also have
the Adler zeros'

T (v = vo, ve = 0, k„' = 0, k,' = —m„'}

=0

= T (v = -v„v~ = 0, k,' = —m, ', k,' = 0}.

With assumption A, that the SU(3)S SU(3}-sym-
metry-breaking part u of the Hamiltonian belongs
to a (3, 3*)+ (3*,3) representation of SU (3)8 SU(3},'
we have

6&,. T (v = -vo, v~ =0, k, ' =0, k,' =0)

=6,,T(v= v„v =0, k, '=0, k,'=0)

Q= to(SO+ CSB)& (6)
II. DALITZ-PLOT CONSIDERATIONS

To make this paper self-contained we repeat
some of the steps performed in paper I. We are
considering the decay q'(P') - n, (k, )+ m,.(k,}+g(P),
and define the variables

(k. -k, ) (P P')
4m„.

ki (P+P')= Vo+
2myII

k. (p+p')
2m

q
I

(m„,' —m„')
V

4m„,

ki k2Pg=-
2myit

Using standard current-algebra and PCAC
(partial conservation of axial-vector current)
techniques' and taking k, =0, k,'=0 and k, =0,
k,'=0, respectively, we obtain

and Z,-,. becomes

Z, , =6,,~,(c+ Wa)(v 2 S,+S,).

Bose statistics require T to be an even function in

v, and thus the conditions (2) and (6} can be written

T(v'= v,', v~=0, k,'=0, k,'=0) = — a„„(8)2

and

=0

= T(v'= v,', v =0 k'= —m ' k'=0)

respectively, where

o„„,= —,'e, (c+ v 2 }&g(p) l&2 S,+S, lq'(P'))l, , (10)

For the off-shell amplitude T we shall assume an
approximate linear variation in the variables
~~, k, ', k,' in the region 0) k,'- —m, ', Oa k,') —m„' and v~ and v in the neighborhood of the
physical region,

T(v, v~, k,', k,'}= a+ b(k, '+ k,') + eve .
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Then using the conditions (8) and (9) we have for
the on-shell amplitude in the neighborhood of the
physical region

2
T (v, ve) =,o«, + eve.

For + = 0 as assumed in paper I, the result is
essentially the same as one would obtain for a non-
relativistic calculation and one had

2 2
I' = 3.0,o«, keV. ,

7 (v, ve) = M(1+ ny),

where

2(m„+2m, )
m, (m„, —m„-2m~)

(13a)

we have

(2/f')o«
(1+2.0o,}

'

(Isb)

(14}

Qsborn and Wallace' have calculated the phase-
space integrals relativistically and find

r =3(1.00+0.24++0.27m') ~M P keV (15)

We see, therefore, from (14) and (15) that our
estimate for I' is very sensitive to the slope pa-
rameter z.

Qne may ask, what is the intrinsic error intro-
duced by the linear assumption of linear variation
of T in the region of interest? This is certainly
hard to estimate, but we doubt whether this as-
sumption introduces errors for the on-shell am-
plitude much greater than 20% (and hence errors
for I' much greater than 50%). Our argument is
simply that the first nonsmoothness can be ex-
pected to be introduced by some enhancements in
the m-w channel, i.e., for t=m, '. But if one ac-
cepts a rather large value =700 MeV for m, then

(f/m ') reaches a maximum value (m„, —m„)4/m, '
=0.1. in the physical region for g'-gn. w and is
much smaller in the bulk of phase space. This we

consider supports our statement above that our
assumption of linear variation probably introduces
errors for r less than 50%. Furthermore, we

eventually take e from a linear fit to experimental
data and this consideration is also obviously rele-
vant to our theoretical procedure.

Note that since the Z term (10) is itself of order
m, ' an extrapolation of the form (11) is at least
necessary; however, even with this linear extrap-
olation to go from zero-mass pions for which

current-algebra constraints hold to the mass-shell
pions, the slope parameter e is not fixed. In

paper I the assumption that T is approximately
constant over the Dalitz plot was made, i.e., e=0;
however, experimentally this does not appear to
be the case. Writing

However, the experimental estimate for a is n
= -0.28+ 0.06, ' representing a quite appreciable
enhancement in the number of events for higher
dipion invariant mass values and thus probably
reflecting the presence of the 0-meson resonance.
This gives, using (14) and (15),

2 2

I' = 14.8,0„„keV, (16)

which is larger than the above-mentioned estimate
in paper I by a factor -5.

III. ESTIMATE FOR 0'~ ~
i

There already exist many calculations"" of
the g'-gmn decay in the literature and here we
first wish to comment briefly on some of them.
If o«. is estimated as in paper I so that

o„„,= P q[(1 —&2 c)(m„2+ m„a-2m+')
3c

+v 2 cm, ']

p ~ q(2 GeV -1.8m, },c+ &2 2 2

Sc
(17)

e„=6„+u+p6, ,
i

(18)

then a large value of the width I" can be obtained
only if m, ' is very large. Qnly if mo' is of the
order of 6 GeV' would one obtain the value of I'
from (16) and (17) with c = -1.25 to be of the order
of 1 MeV as in Hef. 6. Thus although the calcula-
tion of I' with o«, given in (17) is similar to that
in Hef. 6 where a nonlinear chiral Lagrangian with

(3, 3*)+(3*,3)-symmetry breaking is used, paper I
differs in the use of the value of m, ', for there it
was thought that m, ' should lie in the range 0 ~ m, '
~ 1.25 GeV' which is the natural scale for the
pseudoscalar nonet. Certain other calculations'
have been commented upon in Ref. 6 and concern-
ing these we do not wish to add anything more. We

just add that there also exists a calculation by
Schechter and Veda' who use a linear SV(3) o
model, but it is difficult to compare their results
with paper I.

In this section, however, it is our main aim to
present yet another estimate for o„„using present»

ly acceptable ideas on dilation symmetry. We as-
sume Gell-Mann s ansatz for the structure of the

energy density
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(M(p)l IM(p')&I =. =4 d» (20)

where N is a state normalization factor which we
choose equal to one for mesons and equal to 1/2m„
fox' baryons.

We define the physical states g, q' with obvious
notation as

0 = PR8+ ~0~ 0 = ~8 P~oy

(21)

p2+q2
Then it follows immediately from (20) that

(22)

For i,j, I =1, . . ., 8 we now assume that the foQow-
ing parametrization for the matrix elements of S;
and the vector currents V; z between the pseudo-
scalax' mesons,

&M (p) ls, IM, (p')&I, =. =ed;,

&M, (p) I l'„IM;(p')&

= ff(g([f.(f)(p'+ p) g+ f (t)(p' -p)gl,

(24)

with f, (0) =1, are reasonably reliable. Then taking
the divergence of (24), setting /=0, and using (25)
and the relation

BV( = e,cf(,„S„,
one obtains

f;;((m~' - m( ) = eocPf(,„d„((.

(25)

(25)

Taking M&=K, , i=4+i5, and l=e and 8, respec-
tively, one obtains first the Gell-Mann-Okubo
mass formula

where u, the only term breaking chiral symmetry,
has scale dimension d w 4; 6~ has dimension 4 and
6; are Lorentz scalars of dimension d,. 4. We
shaQ, however, make the more restrictive as-
sumption that there is only one e-number 5 pres-
ent in e„. As mentioned in the Introduction, this
is certainly the most elegant assumption, and to
the knowledge of the yresent authors, so far there
is no evidence against it. Moreover, it seems that
if there wex'e a 5 which played an important role-
for q-q' mixing, then it would be difficult to in-
clude its effect and at the same time justify a cal-
culation based on similar assumptions to those we
shall be making in the following.

The virial theorem is now

8„„=-(4 —d)(u —,&u&,),
and we have for any state IM&

Sm„2 -4m~2+ m, 2 =0,

and second the matrix element

C
~.&n. lcSsln8& —~0 ~

= -', (m»' —m„').

(2V)

(23)

f(c)= k(c+ ~&)(~& —1/c). (3o)

It seems reasonable to impose the orthogonality
condition

&el~le'&l(=0 =o

simultaneously with

&n. ls. ln. &l —.= 0

= &(v. Is. I(v. &I(=. .

(31)

(32)

Then we may neglect the terms in the curly brack-
ets in Eq. (29). Note that we do not assume that
&M(ISOIM(&= 0(&x(constant) for E,j =1, . . . , 8 as was
done in paper I, as this would only be consistent
with oux' other assumptions in the case @=2.

The orthogonality condition (31) gives

p (33)Rl ytl

which together with (21), (22), and (2V) gives

lp ql=0.2i.
%e now have our final estimate

o», =-f(c)p q (m„, '+m„'-2m»')

(34)

d
+4 d(m„. '+m '-2m ')

=+0 &&f(~)(4 +O.84); (35)

The function f(c) is very sensitive to the value of
c. However, if we take c= -1.25 [i.e., f(c)= 0.12)
the "preferx ed" value of Gell-Mann, Oakes, and
Renner, ' one obtains using f, =0.134 (Ref. 10)

2
20'vtv)i ~ 2.D fol' . d= 1,

~ 3.V fox'; d=2

~ 11.8 for d=3. (36)

Note that the result for 4=2 reduces to (1V) in the

For convenience we now first rewrite o«. defined
in (10) as

c„=f(c)p. v(&n. I~In. & ~0&(4lcS.ln. & &no—i~leo&)

+{(li )&nl In' &+ .(~2-1/ )[p e&n. l s.ln. &

+(e'- p')&(v. ls. ln. &9, (29)

where
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case m, =0.

assuming e,(N (cS,~N) is of the order of baryon
mass splittings, e.g., =-0.21, then for c=-1.25
one has

1
ON„=0.0'l3

d
+0.38 GeV,4-d (38)

and again one has a maximum Z term for d = 3 of
about 0.1 GeV. The latter value was in fact
obtained in an analysis of |.heng and Dashen"
using the assumption of linear variation in the
pion mass variables of the weak off-shell nN
amplitude to relate its value at the on-shell point
(v=0, v~ = 0) to v». However, there are too many
varying estimates for o„„in the literature" and
we prefer not to trust the estimate of Cheng and
Dashen which in the above analysis favors the
value d=3; indeed if one had the above situation
with eo(N ~S, )N) large, =M„, then one would ex-
pect a very large Z term in KN scattering of
about 1 GeV and the question arises —why didn' t
von Hippel and Kim "see" such a large effect in
their analysis?"

We sum up our conclusions as follows: The
g'-gmn is a strong decay which proceeds without
angular momentum barrier effects. Therefore,
naively we may expect I'(g'-gnat) a 1 MeV. For
example, the very similar (but G-forbidden)
process, g -net, has a partial width around 1
keV. If this decay were not G-forbidden, we
might have expected a partial rate for this decay
of the order 1-10MeV. Indeed popular models"

IV. DISCUSSION AND CONCLUSION

We see from the result (36) that the estimate for
I' is quite strongly dependent on the value of the
dimension d. Combining the results (16) and (36)
a "maximum value" for I' of about 0.2 MeV is
obtained for d=3 (incidentally the value suggested
by a quark model). Recall the similar situation
for nN scattering. There the assumption of just
a c-number 5 gives

s„„=—,(c+W2) +e, ——&2)(N~cs, ~N),
1 ~2 M~

C

(e.g., the Veneziano model and quark model)
usually predict I'(g'-gnw) =1 —10 MeV.

In this paper we have obtained under the as-
sumption A an approximate upper bound of -0.2
MeV for I'. Although this bound is lower than the
above-mentioned naive expectation, it could not
be considered totally unacceptable, i.e., the at-
tractive assumption A is not disfavored by the
present mere theoretical consideration on I'.
However, we remark that even accepting possible
large errors it would be hard, within the present
framework, to attain a width I' as large as 1 MeV,
keeping c reasonably close to -1.25." It would
thus be.very important to see whether the present
experimental upper limit of -4 x0.65 = 2.6 MeV
for 1 can be lowered by an order of magnitude. Qf
course, our bound depends also very strongly on
the slope parameter g and it will be interesting to
see whether such a large value of u =-0.26 is
found in future analyses of experiments with
higher statistics.

We also note another rather surprising possibil-
ity which is relevant to the present problem. The
spin of q'(958) is not yet established, while there
is another strong caodidate for the ninth pseudo-
scalar meson, i.e., E(1422). E(1422) is listed"
as 0, although the assignment 1' is not com-
pletely ruled out. Theoretically, there are indeed
various considerations" which favor E as the
ninth pseudoscalar meson. If the E meson [in-
stead of q'(958)] were the ninth pseudoscalar
meson, the above-discussed difficulty related to
the rate I'(q'(958)-gal) disappears. The E meson
has a decay mode E -gnn but the decay is domi-
nated by the process E- n„(1016)n -gwn

In this connection then, the clear determination
of the spin-parities of g'(958) as well as that of
E(1422) is certainly awaited.
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A new lower bound is derived for the hadronic contribution to the anomalous magnetic mo-
ment of the muon. In spite of a careful treatment of the p-dominance region, the numerical
improvement over a previous bound due to Langacker and Suzuki is not very significant.

I. INTRODUCTION

Recently, various interesting inequalities im-
posing restx'ictions on some vertex functions in-
volving electromagnetic' or weald hadronic cur-
rents have been derived by assuming cut-plane
analyticity. TechnicaHy, the methods used in
these derivations essentially rely on the Schwarz
inequality or upon a quite diferent maximum prin-
ciple originally intx'oduced by Neiman and x'8-
cently improved by Okubo and the present authors. ~

More specifically, Langacker and Suzuki, s and
Palmer' have obtained in this way lower bounds
for the hadronic contribution to the anomalous
magnetic moment of the muon, Ag&„&, in terms of
~"h-g -d' "fth y'--. . Th b -d @-
rived in Ref. 6 by using Okubo's method is the best
possible one with the total charge and charge ra-
dius of the pion given, and is free of any phenome-
nological input. On the other hand, the method of

Ref. 5 assumes a once-subtracted dispersion re-
lation for the form factor and x'equires in addition
some knowledge of the p-wave wm cross section,
resulting in a substantial numerical improvement.
Although the lower bound thus derived is a dixect
consequence of the Schwarz inequality, it can be
shown that it is an optimal one if the pion charge
radius and the p-wave cross section are the only
input. However& the pion form factor which satu-
rates this lower bound clearly violates %atson's
theorem, ' another condition which arises as
soon as one decides to include the rather reli-
able experimental information on the low-energy
p-wave mm scattering, dominated by the p-meson
contribution. Hence, one can expect a further
improvement if the method can be modified in such
a way that the phase of the pion form factor is en-
forced to have the correct behavior in the p re-
gion. The present paper is devoted to the solution
of this problem. It turns out that the practical


