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From a numerical survey of the dual-resonance model {DRM), it is found that (i) scaling
in the central region is approached much more slowly than in the fragmentation regions due
partially to kinematics, - and partially to the overlap of the two fragmentation regions; (ii)
the triple-Hegge limit of the model remains a good approximation over most of the frag-
mentation region, if it is multiplied by a simple modulating factor. The physical origin of
such a factor deserves theoretical attention. (iii) If the exchange picture is taken seriously,
one should expect wrong-signature-nonsense-zero dips in reactions such as 7t. +p 7t + X
for x~ 0.2. The phenomenological implications of the DRM are also discussed.

I. INTRODUCTION

In the past, dual-resonance models (DRM) have
provided valuable insights into the structure of
scattering amplitudes due to constraints of cross-
ing symmetry, Regge behavior, and narrow-reso-
nance behavior. These insights have been of both
a theoretical and phenomenological character. '
Most recently, attention has been centex'ed on the
qualitative application of dual models to inclusive
reactions. DeTar, Kang, Tan, and Weis (DKTW)~

have shown that this model contains many nice the-
oretical properties, such as limiting behavior in
the central and fragmentation regions, triple-
Regge asymptotic behavior, and a universal cutoff

-4n%' 2in transverse momentum of the form e 4"+j- . A

next step would be to study .the quantitative appli-
cations to data.

Some work of this kind has been done alx eady, s

and raises many interesting questions concerning
the shapes of inclusive distributions one might ob-
tain in the model. To answer such questions, and
to investigate further the yhenomenological impli-
cations, we present in this paper a thorough nu-
merical survey of inclusive shapes in the DRM.

- Before proceeding to the numeri. cal study, let us
fix st bxiefly summarize inclusive reaction termi-
nology. 4 The reaction

where X represents "anything, " can be described
in tex'ms of the invariants
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s =(P.+P,)',
M' =(P.+P, -P,)',
t = (P, -P.)',
u =(P.-P,)'

(1.2}

f(s, M', t)=E, , (ab-c-X) o,",'
C

(1.4)

in these physical regions. (Note that we have in-

(note that s+t+u =M'+m, '+m, '+m, '), or equiv-
alently in terms of s and the c.m. transverse (P~)
and longitudinal (Pi) momenta of particle c. Close-
ly related to the c.m. momentum variables are the
variables z and x:

x = (P,'+ m, ')'",
(1 2)

x=2P,~/Ws .
In the limit that the energy vs becomes large,
there are three physical regions of particular in-
terest to us:

(i) The fragmentation region of b (a) corresponds
to the momenta in the rest frame of particle b (a),
P„being small compared to the total energy. In
terms of the above variables, this means ( t ( ()u))
«s, or, equivalently, x«Ws/2 and x&0 (x&0).

(ii) The central region corresponds to the mo-
menta, P„ in the c.m. frame being small com-
pared to the total energy. In other words, x«Ws/2
and [x[=[2P~/vs )«1. In this limit, tu/s= x', and

[t), )u [, and s are large.
(iii) The triple Regge re-gion of b (a) is a special

case of the fragmentation region corresponding to
s» I'»1 GeV'.

We are interested in studying the invmiant
cross section

a+b+c-a+b+c. (1.5)

One is then left with a simpler task of finding a
realistic three-particle scattering amplitude which
has some of the above properties. At present, the
best such model we know about is the DRM which
has crossing, Regge, and resonance behavior, and
a zero-resonance-width approximation to unitarity.
It is thus a very interesting model with which to
study the functional form of the invariant cross
section, even though the inclusion of spin and a
more exact treatment of unitarity may modify the
results.

In Sec. II the essential features of the DRM are
reviewed. In Sec. III for a specific DRM, formu-
las for the limiting distributions are given in a
form which can be easily evaluated numerically.
Then, in Sec. IV a numerical study of the invariant
cross section is given. Finally, in Sec. V the im-
plications of these results to physical processes
are discussed, including a discussion of how limit-
ing distributions are reached.

eluded o~o' in the usual definition. )
We would like any model for the invariant cross

section f(s, M', t) to have certain general proper-
ties such as (1) crossing, (2) unitarity, (2) spin,
(4) Regge behavior, (5) resonance behavior (in non-
exotic channels). It is particularly hard to con-
struct such a model if one attempts to make sep-
arate models for each of.the exclusive processes
represented by the implicit sum in (1.4) which, at
high energies, ranges over a large number of re-
actions. Fortunately, Mueller' offers an easier
approach by using a type of optical theorem to re-
late the invariant cross section to an appropriate
discontinuity in M' of the forward three-to-three
scattering amplitude

II. THE DUAL-RESONANCE MODEL

In this paper, we shall make use of certain features of the DRM, which we summarize here. ' The DRM
for (1.5} is a linear combination of generalized Veneziano six-point functions. Of the 60 diagrams corre-
sponding to distinct permutations of the six external particles, only 18 give a nonzero contribution to the
discontinuity in the missing mass. Physically, for a permutation to have a nonzero discontinuity, a, b,
and c must couple to a resonance in the missing-mass variable and, hence, must be adjacent. In general,
the remaining 18 permutations vanish in the central and fragmentation (including triple-Regge) regions,
since the Pomeranchukon trajectory is not included in the model. Nevertheless, DKTW have argued that it
is still possible to identify certain of the permutations with limiting behavior for f(s, M, t). For example,
in the fragmentation region of b, the four graphs in Fig. 1 have the leading behavior s"~~'~, where n„(0) is
the trajectory exchanged in the aa channel. All other graphs in this region vanish exponentially in s. If the
total. cross section o',"~' also is assumed to have the same leading behavior s " '~, then the invariant cross
section f(s, M, t) will have a limiting distribution [i.e., f(s, M, t) scales]. Similarly, there is scaling in
the fragmentation region of a if the four graphs in Fig. 1 with a b also have the leading behavior s ~&'~.

This follows if the leading trajectory in channel bb is the same as in aa. If there is scaling in both frag-
mentation regions, DKTW show that there is necessarily scaling in the central region. Here, diagram I,
the diagram common to both fragmentation regions, gives the only nonzero contribution to f(s, M, t).
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Our primary interest is to study the limiting behavior of f and, hence, there is no loss in generality to
consider only the four graphs in Fig. 1. Numbering the external particles from 1 to 6 (e.g., starting with
a and proceeding counterclockwise), each diagram is given by the standard form'

p3. wl

BB= dx, ~ dx, dyx "» '(1-x,) "» 'x ~45 '(1 —x) "56 'y "» '(1 —y) ~» '(1 —x,y) "»+"»+~»
0 ~0 "0

x (1 x y) ~s-c+"56+"25(1-x x y)-&»-&34+&as+&24 (2.1)

Qg) = 6gg(spy) = Qgg(0) +6
sory ) s(y = (Pg +P)~i+ ' ' ' +P)) (2.2)

DKTW have computed the appropriate discontinuities of (2.1) for the various regions to find the invariant
differential cross section f(s, M, t). In the fragmentation region of b (t fixed as s-~) each diagram con-
tributes

(
I ~M2 ~~ (yg2 ~23 ~5g ~45 4.(l-y. -~2}" e(l-y, -~.)y, » 'y "45 '

O-'X3 &~3 &0 0

(y~ +23++34 +24, . gtg3 45 34 35 '

(yg3 (yg3
'

& 34 35 24~

! ~ ~3
~ ~~ ~~

~
~

i3
~

~3
~ ~~ ~~ ~~

~

~ ~~ ~ ~
i

&i2 &sg Qg2 G5g

(2.8}

where a„=o,,~(0). The phases of the factors outside the integral are specified by o.»-s+ic when "2"="5"
and o.5g -8 —ie when "5"="0". Otherwise, the factors are real. This choice of phases ensures that the
correct discontinuities have been taken to obtain the (real and positive) invariant cross section. The in-
variant cross section for the central region is obtained from (2.3) by taking the limit M /s-1 and ) t )

—~
with {I-M'/s)t fixed. Note that in this limit, -(1 —M'/s)t=x'.

Of secondary interest to us is the rate at which the DRM approaches its limiting behavior. To study this
behavior, we make use of the duality of the model. As argued by DKTW, for sufficiently large missing
mass squared, M, the discontinuity of (2.1) will be approximately the residue of the narrow resonance at
[M'], the closest integer to M2. Thus,

s(s.~}""
I'(I+o.„)

' {2.4)

The residue B, is given by a product of beta functions B(x, y) and a finite sum":

Pf ] (I+c's44~~l . (-~2.).. (-x»).„.(- ...— ..) (- ...—..) Z ~ Z {[M.] ), { ), ( , $ ),
m=0 &=0 l =m-n

(-&») i (-o',.). (-a»))
(-&.5 —&56). (-~» ~»4

(2.5)

where (x)„—= I'(x+n)/I'(x), and where

~24 +24+ +34+ +23 y

@25 = -O.25+ @35+O.24
—@34,

~35 * +35. +45 +34 '

The sum (2.5), which contains

(2.6)

'; ([M']+ 1)([M']+2)([M']+2)

terms, provides a convenient method of evaluating numerically the invariant Cross section f(s, M', f) at
finite s, as long as the number of terms in the sum is not too large. When [M'] becomes large, (2.4) ap-
proaches the limiting form:(2. 8).
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a - = a

b= =b c = = b

0 ~ - 0:f~'(: b

b = = e

Q - ~ - a
b = (~) -- b
C = ~ = C

PIG. 1. The four dual-resonance diagrams vrhich

contribute in the fragmentation region of b. Ln the
central region, only diagram I contributes.

III. THE LIMITING DISTRIBUTIONS

%e start by evaluating the limiting distributions
(2.3). The following simplifying assumptions are
made:

(i) o(„(0)= n, g (0)=e„As d. iscussed above, this
choice is necessary in order to obtain scaling in
both the central and fragmentation regions. We
also take z„=i, a choice which makes the compu-
tations easier.

(ii) o.2,(t,~) = n»(t») =0. Note that these numbers

are of the type n, a(m, ') =n,~,(0)+o.'m, ~. To set
this number to zero is equivalent to assuming par-
ticle c lies on the internal trajectory n, ~,.

As shown by DKTW, the invariant cross section
is not sensitive to the numerical value of a„, n2~,
or e35. Physically, this is because the discontinu-
ity is (approximately) equivalent to the residue of
the pole in M' of the six-point amplitude. The
variables t,~, t,t, t,4, and t» (such as t„;, etc.)
are all dual to M' and, hence, the residue, which
can ha e o poles

' th e a ables, 's ly w ak-
ly dependent on their exact values.

%ith these assumptions, the invariant cross sec-
tion f(s, M', t) is

M2 M2

(3.1)

where the reality of f is assured by g» =g», . In
(S.l), n is defined by

o. =- n (t) -=n„(t„-),

and the g, have the form

= A &&& ~ dyj dy2 1-yj —P2 8 1 PX P2 Pj&2 i A&Pj ~ +i/2

&((1-A;y, -B,y, ) ' ~i. (3.3}

For g)t Al B) (x I)/xr for g(I glII& AIg 1 x
and B„=(x —1)/x; and for gg v, A, v =B,v = 1 —x.
Here x is 1-M'/s, a good approximation when
s» ~'/x'.

We now transform (3.3) into a form which can be
conveniently evaluated numerically. %'ith the
change of variables

wna 1 (1 -A;)/A. g+w2(;~
G, (w) =ln (') +—ln

( ')/
'

2(,')

(1-B,)/B;+w,'+ —ln
B, (1-B,)/B, +w,", ' (3.6)

The parameters y;, which are not dependent upon
the invariants s, M2, or t, have the values

(1+[(1-A)(1-B)]'~'}'
i&a l

I -A. A.yy

l&l & -&yg '

Ay j.By2
(1 -A.y, )(1 —By,)

'

(3 4)

y; = -2, o.„-(0)+n„(0)+o.'(2m, '+2m, '), -1-o,„-(0)

(3.V)

for t= I, II, and IV (recall y„, = y„). Finally, the
functions so~',.& are, for each diagram,

Eq. (3.3) reduces to a form in which the wn inte-
gration can be done analyticaQy. Performing this
integration and making use of the connection be-
tweenA, B, and M'/s=l —x, we transform Eq.
(3.3} into"

w ,", =—
i

1+ w+ (I -w) 1 — w
2 ( 1+x 1+x

2 1/2w" =—1+ (1-w)'" 1—2II 2 y+&

1-x '
wayv =

~

1 — wk (1 —w) 1 — w2 1+x 1+x

(3.8)

(3.5)

Before evaluating (3.5) numerically, we check
that the behavior in the triple-Regge limit (x 1)
and the central region (x-0) agree with DKTW. In
the first limit x- 1, the behavior of the integral is
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2x
G, (su)--lm0+ lnx+2 ln(1+x) .1-x (3.9)

Thus, the invariant cross section f has the be-
havior

(1
'

')(1 g
)
(1 x) (1 +x)

X 1 —n lnx+2ln(1+x)2x
1-x

I

(3.10)

for x.-1. The diagrams II, III, and IV serve the
function of introducing the signature of the g-chan-
nel exchange. Note that for xg 1 there is a modu-
lating factor which is unity at the particle pole
n =0, and for 0. & 0 is a decreasing function of x.
As will be shown, a modification of Eq. (3.10) is
a good approximation over. a surprisingly wide
range of x.

In the central region (n- -~ and x-0 with -xe
—= z' fixed), the leading behavior is'determined by
values of the integrand near 1. In this limit, the

g,. become [in units n' = 1 (GeV/c)-']

(3.11)

determined by the behavior of G, (w) for sv -0. For
all four diagrams, as w-0,

Evaluating g, (x, y) numerically, our first result is
that R,(x, y) is approximately unity for 0.1s x ~ 1
(see Fig. 2). Except for e '"R,(x, y), the factors
in (4.2) are identically those of the triple-Regge
limit. The surprising result is that over a large
range in x and y where g, (x, y) varies more than
nine orders of magnitude, the triple-Regge form
is modified only by a simple modulating factor
e ". Although we do not understand clearly why
this should be the only modification, there seems
to be experimental evidence for such a factor."
The physical origins of this factor deserve further
study.

Our next result is that there may be a pro-
nounced dip in the x distribution at x =0 for fixed
y (Fig. 2). In the zero-mass case, this can be un-
derstood by realizing that for fixed P~'(=y), n is
smaller and closer to the first particle pole n =0
when x is near one than when x is near zero. It is

)000

-4K
Ww e-'"

grr- 2s 5 (4x)"
K

gyv s (4x) 1v
Ww e'"

K

(3.12)

(3.13)

IOO

where y,. are given by (3.V). Note that in order to
obtain a limiting distribution for g„ it is crucial
that y, = -2, which follows from the assumption
n,q(0) = n~p(0) Note a.lso that the parameters y»
and y, v determine how quickly the twisted graphs
vanish, as the central region is approached.

IO

IV. NUMERICAL ANALYSES OF THE DRM

In order to study the DRM thoroughly and eco-
nomically, we must first make a judicious choice
of variables. A convenient choice is

x= 1 —M'/s,

y = -xo.(t) .
(4.1)

The variable x has a finite range 0& x&1, and for
practical application, y is similarly limited.
Physically the variable y is P~2 when all the mass-
es and intercepts are zero and the slopes are one.

We begin the study with diagram I which is given

by Eq. (3.5). We define R q(x, y) by

O. I

OA
X

I.O

+2/ x 2pg, (x, y) =(1 —x)""i"e '" —R,(x, y) . (4 2)
FIG. 2. The invariant cross section (1-x)gr(x, y)

tsolid curve, Eq. (3.5)] for y= 0.02 t.lj, .0.12 f2], and
1.02 t'3] . The dashed curve is (1—g)i-2+(t) 8-2y/0, (g)2
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FIG. 3. The in ' ooss section {1-x-x)gl (x, y)
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a r ' 'nvariant c &oncross section
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Ã. 7 = 1.0
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1000 10

I.O

100—

O. l

10—

O. OI

O.OOI

0 0.8 I.O

O. I

0
X

FIG. 5. The invariant cross section f [Eq. (3.1)],
with pg 0 0 and y~ ———0.5 for y = 0.02 [1], 0.12 [2]
and 1.02 [3] .

due to quite different choices for y„and ygv.

V. IMPLICATIONS FOR PHENOMENOLOGY

1.0
X

FIG. 6. The invariant cross section for pp x++ X
at 18 GeV/c assuming N~ —

N& exchange in the t channel,
for P~ = 0.0 [1], 0.05 [2], 0.20 [3], and 0.50 [4] . The
solid curve is computed using Eq. (2.5) at 18 GeV/c
and is compared with the limiting distribution (dashed
curve) g~ (x,a —2) && (1-x), given by Eq. (3.5).
Equation (5.1) is used to define the model for this
physical process.

(5.1)

First we discuss the complications to the DRM
which occur when one attempts to introduce physi-
cal trajectories. If the first particle on the trajec-
tory n has spin J, the problem is (1) to avoid un-

physical states for n &J; (2) to ensure that, for
e =J, the residue has at least the behavior appro-
priate to a spin- J particle; and (3) to ensure that
the amplitude has leading triple-Regge behavior,
namely, f -s2" '. One solution to this problem in

the fragmentation region of b as s-~ is to re-
place a(t) by n(t) —J' in each of thedual amplitudes

g, given by (3.5), and then multiply the result by
(s/M2)2~ ~

Thus, the lowest spin on the parent trajectory is
J', and the residue for n=J depends upon s~, which
is a polynomial of degree J in the cosine variable
dual to t: the highest spin at the pole is J. In the
triple-Regge limit, the factor (M')2~ ensures that
the leading behavior scales to (s/M')'" ' for the
invariant cross section. Of course, any polynomi-
al factor of degree 2J would also give a solution.
Moreover, a more precise approach to this prob-
lem might be to assume only that invariant ampli-
tudes are given by dual functions. In such cases,
still more complicated kinematic factors can re-
sult which depend upon s, M', and t."



SURVEY OF INCLUSIVE DISTRIBUTIONS IN A. . .

IO IO

mp = m+X

m-p = m'+X

I.o— I.O

O.OI—

O.OOI
0 0.2

FIG. 7. The invariant cross section for xp x+ X
at 18 GeV/c assuming p -f exchange in the t channel
fora '=0.0 [1], 0.05 [2], 0.20 [3], and 0.50 [4]. The
solid curve has N~-N& exchange in the@ channel, and
the dashed curve has A~ —6& exchange in the u channel.
These curves are computed using (2.5) arith {5.1) defin-
ing the model for this physical process. For compari-
son, the asymptotic distributions (dash-dot curves)
are also given as in Fig. 6.

x=3I'„/Ws .
In general, x is not equal to I —M'/8 unless

s» z /x'.

(5.2)

(5.3)

For the limiting distributions in Sec. III, thi. s con-
dition was assumed to be satisfied in writing

l

The second point is that the predictions of the
DRM at experimental energies will, in general, be
slightly different from the limiting distributions
described in the previous sections. A common
way to present data is in terms of the c.m. trans-
verse, P~, and longitudinal P„momenta or, equiv-
alently, in terms of P~' and

O.OOI

0.4 0.6 I.O
P2

FIG. 8. The invariant cross section for Vt p xo+ X-
assuming p exchange for x= 0.01 [1], 0.2 [2], and 0.5
[3] . All four diagrams in Fig. 1 are included with
(5.1) and (3.1) defining the model for this process. The
parameters

y&&
= —0.2 and q& = —0.5 are chosen as

representative values of (3.7).

0 0.2

x = I —M'/s. Note that in Fig. 6, the curve for
finite s approaches the limiting distribution when-
ever condltloll (5.3) 18 sa'tlsf led, wlllcll occurs fol'
x~ 0.1-0.2. Thus, we see that scaling in the cen-
tral region is approached more slowly than in the
fragmentation region.

A related point is that the u-channel exchange at
finite energy has a strong effect around the central
region (Fig. I), but not in the 5 fragmentation re-
gion. This effect is similar to the effect induced
by the s behavior of the model.

Our next observation is that the shapes of in-
clusive spectra depend sensitively on the trajec-
tory intercepts and external masses (compare
Figs. 6 and 7). To understand why tllls 18 So 1't

is sufficient to consider limiting distributions.
When 8 is large [condition (5.3)j, then
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t = -x—'/x+ m, '(1 -x) + m, '. (5.4)

x = x/m. . (5.5)

At P,'=0, for the process pp- m'X, x,„ is O.j.5
and t,„=+0.6; whereas, for gp-gX, x,„ is 1 and
f,„=0. Thus, in the former reaction, the nucleon
pole is near the physical region for small x pro-
ducing a sharp maximum there. In the latter re-
action, the p pole is most closely approached at
x=1 and, hence, the maximum is shifted.

It has been pointed out elsewhere" that the above
result is more general than the DRM. In any mod-
el where the dynamics of the invariant cross sec-

As shown in the previous section, we expect the x
distribution to have a maximum near where o.(t) is
closest to J, the nearest pole in the invariant
cross section. This occurs when t reaches its
maximum

q

tm~ = t8~ + Sl~ —2KSlg

for

tion can be understood by means of t-channel
Regge pole exchange, we expect that f(s, M', t)
will depend sensitively upon n(t) and, hence, upon
the external masses and trajectory intercept.

The last point is that, as mentioned earlier,
there can be pronounced VNNZ outside the triple-
Regge region. For s p-ir'+X (Fig. 8), the first
dip occurs for nz =0, corresponding to t =—-0.5. It
would be of tremendous theoretical interest to es-
tablish the presence or absence of such dips since,
in principle, only one known trajectory contributes.
The presence of such dips would be a strong con-
firmation of any simple Regge pole f-channel pic-
ture.
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