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The formalism is given for a partial-wave analysis of a low-mass two-body subsystem pro-
duced via a double-Regge amplitude at small momentum transfer. This method is applied to

the Reggeized Deck amplitude for the reaction mN pmN in the p-m. mass region of the A en-

hancement. At lower mass values the results are less sensitive to the exact form of the pion

Regge trajectory, and about 75-80% of the cross section in the A& region is given by a 1 $-
wave p-x state. This amplitude is largely real and the Argand diagrams for the partial waves

do not show resonant structure. However, phenomenologically it is difficult to distinguish be-
tween the Berger amplitude and an A &-resonance production amplitude. The spin-parity de-
composition in the A2 mass region is also discussed.

I. INTRODUCTION

It is well known that the double peripheral model

and, in particular, the double-Regge model predict
invariant-mass-squared distributions aa/ss, which

are peaked at small invariant mass. For example,
in the reaction wN -pnN a distribution ao/as~,
strongly peaked at small values of the p-n invariant

energy squared s~, was obtained by Deck, ' who

considered elementary pion exchange and diffrac-
tion scattering. Berger' has repeated Deck's cal-
culation with Reggeized pion exchange and diffrac-
tion scattering represented by a flat Pomeranchon
exchange. The general features of the data for
production of a low-mass p-n. state are reproduced

by Berger's amplitude, apart from A, production
at lower incident pion energies.

Extending the concept of duality from two-body
processes' to production amplitudes, Chew and

Pignotti4 argued that the low-mass enhancement

from the Deck effect should be interprt:ted as
predicting the existence of a p-m resonance, i.e.,
the A, resonance. It has since been realized that
m exchange, being mainly real, cannot be semi-
locally dual to a resonance-dominated description
of the A, bump, which gives a mainly imaginary
amplitude. In order to satisfy the finite-energy
sum rule (FESR), the A, resonance would have to
be narrow or weakly produced compared with the

observed 3n mass distribution. We note that, in

the successful application' of FESR using the
imaginary part of m exchange for p photoproduction,

the Reggeized Drell term yields a much broader

cross section than the experimental 2z mass dis-
tribution and is about eight times smaller at the p
peak.

Here we wish to study the structure of the double-

Regge amplitude at low subenergy in more detail.
In particular we want to compare the partial-wave
decomposition with that expected for resonance
production.

We are interested in double-Regge-exchange
graphs, which contribute significantly in the re-
gion where one particular two-particle subsystem
i.s produced with low invariant mass at small
momentum transfer squared, say t, . For these
graphs, the momentum-transfer-squared variable

t, can be considered as replacing the mass of an

external particle in a quasi-two-body reaction. In
Sec. II the formalism for performing a partial-
wave analysis of the corresponding double-Regge
amplitude, in the center of mass of the two-body
subsystem, is developed in detail.

The p-w subsystem in the process nN -pnN is
treated as a particular case in Sec. III. A short
account of this work has already been published. '
We only consider the single Reggeized Deck graph,
which is known to give a good average fit to the

data. We use the asymptotic form of the amplitude

available in the literature' with the conventional

Regge phase. For other reactions, the multi-
Veneziano model" or the Chan-goskiewicz-
Allison (CgA) multi-Regge model and its exten-
sions' are more successful. Some multiperipheral
bootstrap calculations and estimates on cross
sections for production processes" "also assume

that the multi-Regge model approximately holds in
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the whole of phase space. It is, therefore, im-
portant to study in what detail the multi-Regge
amplitude represents the production dynamics at
small invariant subenergies.

In Sec. IV we discuss the results of our partial-
wave analysis for the Deck process nN-pnN. It
is found that the system produced in the A, mass
region is predominantly produced in a 1' S-wave
state. This could also be expected in the case of
dominant resonance production. The Reggeized
Deck amplitude is largely real (i.e., nonabsorptive)
in this mass interval and the Argand diagrams for
the most important partial waves do not show
evidence for resonant structure. However, phenom-
enologically, it is difficult to determine the be-
havior of the phase of the 1' S-wave at the A,
mass. So, at present, it is not possible to say
whether the Berger amplitude or a dominantly
resonant amplitude is the correct physical de-
scription. We also consider the partial-wave struc-
ture at higher invariant masses, including the A,
region.

Pt

P2 c

Pb =P3

FIG. 1. The double-Regge graph corresponding to the
direct-channel process a + 5 1+2 +3.

cosh2$"

-2'(sl —t2 ma ) (ml ma ti}(m2 tl ta)

[~(t„m.2, m, ')~(t„ t„m,')J'~ 2

(2.3)

in the s-channel physical region. The expansion
variables are the two boost parameters 2&" and
2/23 given by

II. SPIN STRUCTURE OF THE
DOUBLE-REGGE AMPLITUDE

cosh2g"

-2t2(s2 —t, —mb') —(m3' —m~' —t, )(m, ' —tg t2)

[X(t„m,', m, 2)Z(t„ t„m,')]'~ 2

In this section we present the formalism to per-
form a partial-wave analysis of the two-particle
(1, 2) subsystem for a double-Regge expansion of
the three-body production process

where

(2.4)

a+5-1+2+3 (2.1}
&(x, y, z) = x'+y'+z' —2xy —2yz —2zx (2.5)

s=(p. +p&}', s, =(p, +p.)', s. =(p. +p.)',

t, = (p, -p, )', and t, = (p, —p, )'.
(2.2)

shown in Fig. 1. The spin-parity decomposition is
made in the Gottfried-Jackson" frame for the sub-
system.

For the process (2.1}, we denote the four-momen-
tum, mass, spin, and parity of particle i by p, ,
m;, J;, and g~, respectively, and choose the set
of five invariants

and &u is the Toiler angle"" (-m&~&a) For.
later discussion we list the Toiler angle v, which
is a double-valued function of the invariants
&u = +(s, s„s„t„ t,), among the arguments of the
amplitude. The helicity labels A.„A.„A,, for parti-
cles a, 1, and 2 refer to the s, brick-wall frame"
in which P, —P, is along the ~ axis, and the helicitiy
labels p,, and p. , for particles 5 and 3 refer to the
s, brick-wall frame, in which P, —p, is along the
8 axis.

Crossing symmetry may be used" to introduce
the O(2, 1) helicity amplitude

Following Bali, Chew, and Pignotti, '4 we make a
double O(2, 1) expansion of the three-particle pro-
duction amplitude (2.6)

fp X. X. X p ( l 11 29 lt 2P +) which can be identified with an appropriate analytic
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continuation of the crossed-t, -and-t -channel
helicity amplitude of Wick." The spinor lowering
operator C corresponds to a rotation by m:

~~~( }= (-1) (2.7)

Our helicity phase conventions are chosen to agree

with those of Ref. 1V. In particular, when we
cross this O(2, 1)helicity amplitude to the s,
center-of-mass system, we obtain the usual True-
man and %1ck crossing matrix fox' particles Q

and 2.
The O(2, 1) harmonic expansion of f gives

(2.8)

which can be identified with an appropriate analytic continuation of the crossed-channel expansion of Ref.
1V. When both &" and &23 are -large, the asymptotic behavior is governed by the leading singularities in

j, and j,. We assume these singularities are boson Regge-pole trajectories c.,(t,) and o.,(t2), having signa-
tures ~, and ~, and'physical states of parity I', and P„respectively, to obtain the asymptotic factorized
double-Regge amplitude'4'"

f&&p&y2 y I (s& s» s» t» t» (d)

(2.9)h
& & (t )pg& &

(t )k& &(t» t )exp(tp&o)dp & & & (cosh2$ )d 2& &
(cosh2$ )

=n, (t)n. (t) p{l[- (~.-~, +~. P+—v.)9y , .(t-)y, ,;,(t)y, (t*t }[(' '")i J [( . . )i J".
(2.10)

fp, p~~n, x,i, (s~ s» s» t» t» ~}
~ —+ goo2

~ —+ $002

hajj, dj,E„"„"~
&, 1 (t„ t,)d~'~ 1 „~( co sh2&")e xp(ap&o)d, 'p„„-(cosh2(23),Pi Pb ~3

2 2

In this expression, the quantities (s, ~ ~ }and

(s ) are the numerators of the cosh2$" and.
cosh2&23 variables and are explicitly

(s~' ' ' ) = s~ —t2 m

vertex functions for the coupling of the Begge pole
c.(t) to the particles m and n and for the coupling
of two Regge poles o.,(t,) and o.,(t2) to particle r

+-,'t, '.(m, '- m.'- t, )(m, ' —t, - t, ),

(s, ~ )=s, —t, —m, '

+ —,'t, '(m, '- m, —t,)(m, ' —t, —t,).

(2.11}

(2.12}

y~.~.(t}=&-.y-~. -~„(t) (2.14)

y~ (t„ t„ (u) = N„„ y ~ (t„ t„ -(u}. (2.15)

Here the normalities associated with the vertices
are given by

q, (t) = [T, + exp(-tv+, .)]/sinn+, . (2.13)

for the trajectories a, and e,. Note that we also
exhibit explicitly the asymptotic phase from the
O(2, 1) representation functions in our Regge
amplitude (2.10).

The parity transformation properties' ' ' of the

The corresponding denominators are absorbed into
the vertex functions y;,. and y~ and the parameter
s, is an arbitrary scale factor. We retain (s ) &

rather than s, "~, since the former is most often
used in Reggeized double-peripheral-model cal-
culations' involving pion exchange. The compli-
cated question of kinematic singularities" and
nonasymptotic corrections is not discussed hex e.
We assume that the phase of the multi-Hegge
amplitude is given by the product of the conven-
tional signature factors"

(2.16)

X„„.,= (-I)"qf~,Z,~~.
We want to make a partial-wave analysis of the

(1, 2) subsystem, at small values of the squared
subenergy s, for fixed total energy squared s and
fixed small values of the momentum transfer
squared t, . So we apply crossing symmetry to
transform the O(2, 1) helicity amplitude to the sys-
tem where the helicities of particles a, 1, and 2

are referred to the center-of-mass frame of
particles 1 and 2. However we retain the O(2, 1)
helicity labels for particles b and 3. The cross-
ing matrix" for particles a, 1, and 2 can be cal-
culated by treating the crossed process as a quasi-
two-body reaction (see Fig. 2)

(2.16)
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(b+ 3j

FIG. 2. The quasi-two-body reaction a +1 (b +3) +2.

using the phase conventions of Jacob and Wick."
The corresponding Wigner rotations associated
with particles 5 and 3 give a phase factor
exp[i(pb —p, b)g], where g-0 asymptotically and is
neglected in the following analysis. Hence we ob-
tain the s, center-of-mass helicity amplitudes

1& 2& 1& 2}

FIG. 3. The reaction a+5 1+2+3 in the (1,2) sub-
system rest frame. 8 is the Jackson angle between par-
ticles a and 1 in the (1,2) rest frame, and Q is the
Treiman- Yang angle.

(tl + m2 t2)(sl + m2 —ml ) 2m2

[Z(t„ t m ')X(s m ' m ')]'"
(2.22}

=, Z d~:V.(X.) d~", ~, (X1)d"' (X.)
Xa,X.~, V2

where we take 0&x, &n,

a=m, -t, -m, +m, , (2.23)

Xexp[ $7l(Xb+Xl +X2 Jl)]fp 2 gl li 1 y

(2.19)

where we have neglected a possible constant heli-
city-independent crossing phase factor.

No analytic continuation is involved in this ex-
pression. We have associated the conventional
"particle two" phase factor with particle 2, and
the scattering angle 8 [see Eq. (2.26)] for particle
1 satisfies 0 ~ 8 ~ n. . The crossing angles g, are
given" in terms of the invariants for the quasi-
two-body process (2.18) by

(tl + ma —ml')(s, + m, ' —t2) —2 m, 'A

[x(t„m,2, m, 2)z(s„m,2, t,)]'"
(2.20)

(tl mg + ml )(Sl + ml m2 ) 2ml
[~(t„m ' m 2)z(s„m, ', m ')]'~'

(2.21)

(P.xp.) (Pbxpb)
IP XplllpbXpsl p + p =0

N(S Sl S2, tl t2)

[D,(s„ t„ t, )D, (s, s„ t2)]'~2
'

(2.24)

(2.25}

Expressions for N& D„and D, are given in the
Appendix, Egs. (AS)-(A7). The sign of sing is
not determined by the invariants and is directly
related to that of the Toiler angle a& in Eq. (2.10).
The Jackson angle 8 can also be expressed in
terms of invariants by

and A, (x, y, z) is defined in Eq. (2.5).
The s, center-of-mass system introduced above

is related to the (1, 2) Jackson frame" shown in
Fig. 2 by the Treiman-Yang rotation P" "about
the z. axis (i.e., the direction of motion of particle
a). We remark here that the Treiman-Yang angle

P is different from the Toiler angle e mentioned
earlier and is given by

cos8= pa 'pi
lip, l p, + p, =p

sl + sl(2t, —t2 —m ' —ml' - m2 ) + (m ' —t2)(ml' —m2 )
[x(s„ t„m, )z (s2„, mm2, ')]'"

(2.26)

(2.27)

We now make Wigner projections in the Jackson frame onto states of the (1, 2) subsystem with definite
angular momentum J' and parity P.""lf neither A., nor A2 is zero, the amplitudes of angular momentum

J, with component M along the direction of motion of particle a, and the normality N = (-1) I' =+1 are
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JNk
pb~sX2X. k (S& S~y i2)

1 2r
=[(2J+I)/Sw]'~' dcos8 dpexp[i(A. , -M)p][d~~„(8)H„-,„~,~, ~,+N»d~ ~ (8)H„-„~ ~, ~ ].

-1 0

(2.28)

Here A»=X, -X,~0 and N»=(-1)~&'~2 ~&qfq2~, where V, =-,' if particle 1 is afermion and V, =0 for a
boson. Since we neglect baryon exchange, particle 2 must be a boson. If X, =X2 =0 it is only possible to
form states of normality N = N», the two terms in Eq. (2.28) become equal, and we have to multiply by an
extra factor of 2 ' ' to obtain the correct normalization,

1 27r

a„-,„;,","~ (s, s„ t, ) = [(2J +I}/4v]'~' dcosg dP exp[i(X, —M)Q]d~o(8}H„-,„« ~ .
-1 0

(2.29)

In the following section we shall assume that the double-Regge amplitude is an even function of the Toiler
angle &u (in fact we shall follow the common procedure of neglecting all dependence of y~ on the angle &u).

This is of course a dynamical assumption which remains to be tested; for A2 =0 it is readily seen from Eq.
(2.15) that this corresponds to neglecting couplings with normality change. at the middle vertex.

Equivalently it follows that our amplitude H is an even function of sing, the Treiman-Yang angle of Eq.
(2.24). In Eqs. (2.28)-(2.29) we integrate over the physical region of the invariants s, and t, twice, corres-
ponding to positive and negative values of sing. For amplitudes even in sing, these two parts of the inter-
gration become equal and we have

max max
s2

a~„"'~ ~ ~ (s, s„ f, ) =[(2J + I)/2v]'~' dt, ds,J(s, s„s„t„ f, ) cos(M -A.,)P

(2.31)

"[ ~~ (~} p, p, ~,~, ~,+N»C ~ (e)Ht-„x -x g ] (2 3o)

Again for A., =A.2 =0 we have to multiply by an extra factor of 2 ' ' to obtain the correct normalization,

t max z max

a„-,„"',"", (s, s„ t ) =l(2m+I)/rl'' J dt f '

ds,z(ss„s„ t , t) f os(M„-z.)y d„,(e)e
t1 S2

a-'"' =+~-1~"N a-' "'
~P~t'3 ~2 X1,O a ~ ~&t"3 X.2 X.1,0

where N, „=(-1)~' "' +,T-
The cross section for fixed values of the helici-

ties2~ A. , and p,, is given in terms of the helicity
partial-wave amplitudes by

(2.32)

Q2O

I ~P~PS/2$&, )I zl s
2 J, M' ~

where

[~(~,, m, ', ~ )]'~'
2'(2n}'s, X(s, m, ', m ') '

(2.33)

(2.34)

The amplitudes defined in Eqs. (2.28)-(2.31) can
be readily transformed from the helicity basis
into partial waves of definite orbital angular mo-
mentum L and resultant spin S." If the (1, 2) sub-
system does not interact with the third final-state
particle 3, one expects" the physical partial-wave

Expressions for cosP and cose in terms of invari-
ants are given in Eqs. (2.25)-(2.2V), while those
for tP'", tP'", s, '", s, ", and the Jacobian J'(s, s„
s„ t„ t,) are given in the Appendix [Eqs. (AS}-(A12)].
For A., =O the double-Regge amplitude, Eq. (2.10),
gives helicity partial-wave amplitudes which satisfy

amplitudes for the reaction (2.1) to have the same
phase dependence on the variable s, as the (1, 2)
elastic scattering amplitude, provided the square
of the energy s, is such that the inelasticity is
small. In particular, if a resonant (1, 2}final
state is dominant, then the corresponding partial-
wave amplitude should be proportional to the
Watson factor" "

exp(i5) sin5/(q„) "
and give anticlockwise loops in an Argand diagram.
Here 5 is the resonant phase shift, L is the orbital
angular momentum associated with the partial wave,
and q» is the momentum of particle 1(2) in the s,
center-of-mass system. If all the partial waves
for a given spin-parity, J~, are dominated by
resonance production at some value of the squared
subenergy s„ then factorization implies that the
ratios of the various partial waves with the allowed
(I,, S) values are the same for all values of the
spin component M.

III. APPLICATION TO THE REACTION mN~ pmN

The double-Regge amplitudes expected to contrib-
ute to the processes
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n'P- p'm'p or p'n'p (3.1)

p+, 0

p,{P)

P,(p)

P

(b) ( b')

P

(or the analogous w -initiated reactions) and a
spin-parity analysis for the p-w subsystem are
described in this section. Experimentally, data
are only available on the p' final state. In partic-
ular we are interested in the A mass region

0.9 & (s,)'~' & l.5 GeV

for small squared momentum transfers t, to the
proton.

At high total invariant energy squared s the
double-Regge graphs shown in Fig. 4 can contrib-
ute to the reactions (3.1). Double baryon ex-
change is improbable and therefore has been

omitted. In the Dalitz plot the graphs of Fig. 4
contribute as shown in Fig. 5. Only the graphs
in Figs. 4(a), 4(b), and 4(b') are of interest to
us because only these contribute significantly at
small invariant energies squared s, of the sub-
system.

%e use the high-energy form of the double-
Regge amplitude and do not discuss here the
complicated question of kinematic singularities"
and nonasymptotic corrections. Also we shall
assume that the dependence of the middle vertex
y~ (f„ t„co}on the angle ~ may be neglected.

Pion exchange dominates the p-n subsystem at
small momentum transfer squared t, to the p
meson and corresponds to helicity A., =0 in the s,
brick-wall frame (i.e., the sense-sense ampli-
tude at the physical pion-exchange pole). Indeed,
experimentally the p meson is produced strongly
aligned with a spin state M =0 along the beam in
the p rest frame. As in quasi-two-body processes,
observed deviations of the spin density matrix
from the value poo 1 indicate the presence of
other amplitudes. For values of

~ f, ~

= 0.2 GeV' to
1 GeV', A, exchange may be quite important.
Also, graphs of the type where the p meson is
produced at the middle vertex [see Figs. 4(b},
4(b')] will contribute when s, is small. In fitting
the data these contributions should not in general
be neglected, particularly since the t, squared-
momentum-transfer distributions in many-body
processes are much broader than in two-body
processes (mainly due to phase-space differences').

For graphs of the type where the pion is pro-
duced at the middle vertex [see Fig. 4(a)], the as-
sumption that the amplitude is an even function of
sin&o requires [see Eq. (2.15)] that the normalities
of the trajectories n, and e, be opposite. " To

(c) (c)
CL

O
+

PO P

S

FIG. 4. Double-Regge-pole exchange diagrams which
contribute to the reaction xp —pep.

FIG. 5. Regions of the Dalitz plot where the graphs in
Fig. 4 are expected to contribute.
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populate states with A., = 0, we require the trajec-
tory n, to have unnatural parity. For the ampli-
tudes with A,, =~ 1, n, can have either normality.
In the case of type 4(b), 4(b') graphs, the trajec-
tory n, must have natural parity to obtain a non-
zero coupling to two pions. The "middle" particle
is now the p meson and, for X, =0, we require the
trajectories n, and u, to have the same normality.

We have little information on the magnitude and
phase [and helicity structure for type 4(b), 4(b')
graphs] of the other double-Hegge graphs relative

to the pion-exchange process. To illustrate our
method we confine ourselves to the traditional
pion-exchange (Heggeized Deck) term, which is
dominant at small t„combined with diffraction
scattering. In fact, Berger' has obtained a good
average fit to data at 8 (Hef. 28), 13, and 20
(Hef. 29}GeV/c in a wide range of 8, values
around the A mass enhancement, with a Reggeized
pion (o., = c(,}and an effectively flat Pomeranchon
(n2 = n~) exchanged [see Fig. 4(a}]. The amplitude
used is

fX = 0(8, 8~) 82) t&s t2)
, 8, —t -2m„'-(m '2- m, ' —t, )(t, +t, —m ')/2ti exp(2at2)[&(82, m)d', m2')]' '

= [I+exp(-ivn„)j[1+ n, (t, )j
so sinn& jt, j

(3.2)

o.,(t, ) = (t, —m, 2)n, ', (3 3)

with a slope z„' = 1 GeV ',and a curved trajectory
of the Pignotti type (ii)

(3 4)

give similar results. ' With the linear trajectory
(i), the Berger amplitude (3.2) develops "ghosts"
at n„(t,) =-2, -3, -4, etc. However, pion ex-
change is only expected to be dominant for small
t, and, following Berger, ' a cutoff is applied for
large values of lt, l (i.e., lt, l

&0.9'1 GeV'} when using
trajectory (i). Differences introduced between the
results of our spin-parity analysis for trajectories
(i) and (ii), respectively, due to different behavior
at larger lt, l

values, gives some indication of the
uncertainty involved in this simple Reggeized

It has no explicit dependence on sin~, and we have
introduced the Regge signature factor" ""for the
pion trajectory n„(t,) in the t, channel. Here 8, =1
GeV' and a= 8 GeV ' at P„b = 8 GeV/c. Dependence
on the nucleon helicities P,, and p. „which is fac-
torizable and mainly nonf lip for small t„has been
omitted.

For small t, values a linear pion trajectory (i)

Deck model of the process nN -paN. It should
be remarked that the double-Regge amplitude is
not determined by a direct fit to the region of the
Dalitz plot where all the final-state two-particle
subenergies are relatively large, but is essentially
chosen to fit the events with s, - 2.5 GeV' ~ s, .
However, for small t„ the Reggeized pion is not far
off the mass shell, and the double-Regge parame-
ters are reasonably well fixed by the p decay
width and vN elastic scattering (as in the original
Deck model). Including other exchanges, such as
I" and p, in the t, channel, in addition to the
Pomeranchon, will alter the dynamical dependence
on s, at subasymptotic energies. Here we follow
Berger and neglect such effects. It should also be
pointed out that the phase of the amplitude has not
been tested at all experimentally.

Inserting the amplitude (3.2) into E(I. (2.19}and

using E(ls. (2.28)-(2.29), we find the p-)T helicity
partial waves of definite normality N, which we

abbreviate as a~~" "(8, 8„ t, ), in the p-n. Jackson
frame. For A, , =0 only states of abnormal parity
N = (-1)~P = -1 can be formed, whereas for X, = 1
both parities can contribute. Explicitly, we have

t max max

a&dd- (8 8 t )—, dt, t d82J(8) 8,) 82, t~s t2) COSM (t)ddt(())0dp()(gy)f 1=0( s ls 2) ls 2}
k&=p & .1& mill mill

p 0 (3.6)

and

/2 tj s"' (, S )=(
+ d)dss)(, s„s„,S„S ) sos Md(d, (S) s d„',(S))d',,(X,)f-, -,(s, s„s„)„S).

t min smiii
1

(3.6}
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It follows from Eq. (2.32}that

(3.7)

TABLE I. The percentage contributions of the partial-
wave amplitudes AL (s, s&, t2) to the cross section (2.33)
obtained with the trajectories (i) and (ii) for P&,b =8 GeV/c,
t2 =-0.1 GeV, and s& = 0.85, 1.15, and 1.65 GeV .

The partial waves A~~"(s, s„ t, ) of definite orbital
angular momentum t., with L=J + 1 for abnormal-
parity and L=J for normal-parity states, are
given by2~

J+1 g~ JX/2 j. /2

0

(3 6)

A
J'M J'Af+
L=eT 1

(3.9)

(3.10)

IV. DISCUSSION AND CONCLUSIONS

Here we discuss the results obtained in the pre-
vious section. The Deck effect, ' or elementary
one-pion-exchange diffraction scattering, has been
known for some time to give an enhancement at
small s, for the reaction (3.1). Berger' has shown
that the Reggeized-pion version of this model leads
to a substantial decrease in the calculated width of
the low-mass p-n enhancement. The predicted
peak position of 1100 MeV and width of 350 MeV
are fairly independent of the incident pion energy.
This model reproduces quite well the shape, includ-
ing the position of the A, peak, of the whole A
enhancement"" apart from the A, peak at lower

The partial waves have been evaluated numerical-
ly, for s = 15.9 GeV' (P.„b.= 8 GeV/c) and t, = -0.1
GeV', at various values of s, in the region of the
A mass enhancement. The percentage contribu-
tions of the partial waves A~~s(s, s„ t,) to the cross
section a'o/at, as, are given in Table I for both
trajectories (i) and (ii}, at invariant p-s subener-
gies squared sy '0 85& 1 15& .and 1 65 GeV'. In
Figs. 6 and 7, we plot the real and imaginary
parts of the important helicity partial waves
a~~" "(s, s„ t, ) for trajectories (i) (continuous
line) and (ii) (broken line) as a function of s, .
Along the curves, the s, variation is marked in
steps of s, = 0.1 GeV', from s, = 0.85 GeV' to 2.45
GeV' (i.e., m~, from threshold up to 1.56 GeV).
The sizeable L =J -1 orbital angular momentum
amplitudes A~~" with J =1 and 2 are shown in Fig.
8. We have also plotted Argand diagrams of the
quantities (qo„) "A~~" in Fig. 9, for the important
partial waves. This procedure is only meaningful
at small values of s„where (q, ) "A~~" has the
same threshold behavior (q~, )' "as the corre-
sponding elastic p-m phase shift, but it is not, of
course, bounded by the unitarity circle familiar
in elastic scattering phase-shift analysis.

g (GeV ) 0.85
(i) (ii)

1.15
(i) (ii)

1.65
(i) (ii)

(Aoo[2

~Azo~o

A'o
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[Aoo[o

2(A" f'

Aoo

J&2
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0.6 0.6

0.6 &0.1

0.0 0.0

&0.1 &0,1 &0.1 &0.1

&0.1 &0.1

&0.1 &0.1

0.0 0.0

1.1 1.1
0.3 0.1

0.3 0.2

0.2 &0.1

0.0 0.0

43 40 41 38
83 19 309 60

&0.1 &0.1 &0.1 &0.1 &0.1 &0.1

1.1 1.1 3.1 3.2

&0.1 &0.1 &0.1 &0.1
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0.6 0.3
0.0 0.0

1.9 0.7

0.1 0.1 &0.1 0.1 &0.1 &0.1

3.2 3.0 6.0 4.8 19.3 7.4

incident pion energies. Empirically, Pomeranchon
exchange does not appear to contribute at a11 to
such processes, "and we should therefore not ex-
pect the A, to be contained in the Reggeized Deck
amplitude. However, the question of the energy
dependence of A, and A, production has yet to be
settled definitely. "'" Clearly, careful partial-
wave analyses of the 3n production data" at var-
ious energies are required, Also a study of the
KE decay mode of the A, resonance will not suffer
from the large diffractive production of unnatural-
parity p-n states.

Though its predictions of the various angular
correlations have not been tested in detail, the
Berger amplitude reproduces the available ex-
perimental distributions quite mell. '4 In particular
it gives nonisotropic Treiman-Yang angular dis-
tributions, in contrast to the elementary one-pion-
exchange model. ""The absolute normalization of
the cross section predicted by the Reggeized Deck
amplitude is about 30/~ smaller than that observed
experimentally. There also appears to be some
backward-forward asymmetry in the decay of the
p', indicating the presence of a scalar m-m back-
ground, "'"'"'"possibly associated with an A,
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FIG. 6. Argand diagrams of the important helicity partial-wave amplitudes a& ' (s, s&, t2) with J=0 and J=1, at Phb
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tory (i) [Pignotti trajectory (ii)]. Along the curves the s& variation is marked in steps of s& =0.1 GeV from 0.85 GeV
to 2.45 GeV . The position of the A& peak at s& =1.15 GeV (m3~ =1.07 GeV) is marked with an arrow.
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daughter sta.te, with J = 0 a,nd decaying into
c -m. The application of the double-Regge model
at subasymptotic energies has been quite success-
ful for a number of one-pion-exchange diffractive
scattering reactions. ' "'" Chew and Pignotti'
have suggested that the duality' ""between f-
channel and s-channel processes might justify
this success, and that the double-Regge model
should give a reasonably good semilocal average
description of the data at all subenergies. In these
three-body applications it is necessary to use

~ f„.~' and not simply the absorptive part of the
amplitude Imf~ . Application of duality to the full
amplitude in two-body reactions is sometimes,
but by no means always, successful. "'" Evidence
for Reggeization of the pion is difficult to establish
from two-body data, where absorptive corrections
often appear to be important and the energy de-
pendence is similar to elementary pion exchange.
The low mass of the pion causes a nearby pole in
the momentum transfer squared t, and is therefore
"peripheral" at all energies. This is the situation
where the use of the Regge representation at low

s, has the most chance of success. Although the
use of the double-Regge amplitude (3.2) cannot be
entirely justified from our experience with two-
body amplitudes, it has so far given good agree-
ment with data and is probably quite reasonable at
small t, values.

There has been much discussion as to whether
the A, should be considered a resonance, generally
classified" "as the isovector member of an axial-
vector nonet with J"~= 1", or purely a kinematic
effect. A variety of theoretical predictions4'4' for
the properties of an A, resonance is given in the
literature. In some papers, S-wave and D-wave

A, couplings are interpreted as nonderivative and
derivative couplings, respectively. For pure
S-wave coupling, this identification is almost
exact. The general connection of the usual orbital
angular momentum notation of Eqs. (3.6)-(3.8),
for J =1, with the tensor couplings"

(4.1)

is given by

(4.2)

(4.3)

Here g„ is the production amplitude for the 1'
particle having spin component M, and Pp = (E~, p p)

is referred to the A, rest frame.
The experimental situation"'""~ '"~ is some-

what complicated. The p-n states produced in the
A, mass region have usually been interpreted as
mainly 1' S-wave states, having spin component
M =0 along the beam direction, but the presence

of significant amounts of D-wave or 2 states has
been reported. " However, recent sophisticated
data analyses" indicate the 1' component of the A
bump to be almost pure S-wave. There is some
evidence for neutral A, production, "' ' which
appears not to be adequately explained by a simple
charge-exchange Deck effect. On the other hand a
recent study of the reaction n-n- n-n-p, where
the meson system has isospin 2, finds consistency
with the charge-exchange Deck effect.4' A, pro-
duction has been reported in processes where the
usual Deck mechanism cannot contribute, "'"but
as yet the evidence for nondiffractive A, produc-
tion is not compelling. "

Chew and Pignotti' have interpreted the low-
invariant-mass p-w enhancement required by the
Reggeized Deck amplitude as a prediction of the
existence of an Ay resonance. However, pion
exchange gives a predominantly real (i.e., non-
absorptive) amplitude in the s, variable, while an
A, resonance would give a mainly imaginary
amplitude. Thus the interpretation, in a finite-
energy sum-rule sense, of the Reggeized Deck
amplitude as resonance-dominated at the A, mass
is invalid. We will now use the results of Sec. III
to compare the spin-parity content of the Berger
amplitude with that expected for a resonating A,
meson.

As can be seen in Table I, the results for both
trajectories are similar from threshold up to the
A, mass and, in the p-~ Jackson frame, the A~'

partial wave is dominant. At the A, mass, s,
= 1.15 GeV', 75-80% of the cross section is due to
this J"=1'S-wave state with I=0, in agreement
with previous estimates. "" The regions of
(s„ t, ) phase space which contribute are shown in
Figs. 10(a) and 10(b), for s, = 0.9 and 1.1 GeV',
respectively. The assumption of pion-exchange
dominance in the t, channel does not seem too
unreasonable in these regions, "though it becomes
less justified for larger t, values, or for values of
sy above the A, mass . Nondiffractive mÃ scatter-
ing could contribute quite significantly for P» = 8
GeV/c and provide some non-S-wave states, which
would go away as the incident momentum increased.
The Berger amplitude analyzed here only includes
Pomeranchon exchange, which is expected to per-
sist at all momenta. The nonvanishing M WO

partial waves are due to the Reggeization of the
pion and reflect the nonisotropic Treiman- Yang
distributions. We remark here that the amplitudes
A~~", for production of p-z states with definite J
and L, still almost conserve t, -channel helicity
and definitely violate s-channel helicity conserva-
tion. "'"

Dominance of the cross section by a J~=1' p-n
state is clearly consistent with an averaged de-
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scription of Ay x esonanee production. Since no
appreciable D-wave or M+0 amplitudes are pres-
ent, it is not possible to make a practical test of
the factorization property required by x esonance
production, mentioned at the end of Sec. II and
embodied in Eqs. (4.2) and (4.3). Hence the only
way to distinguish between the Heggeized Deck
amplitude and dominant A, resonance production
is by studying the relative phases of the various
partial waves and their s, dependence.

%'e now consider the s, dependence of the p-n
partial-wave states, with J & 2, which contribute
significantly between threshold and 2.5 Gev'. In
Figs. 6-8, we show Argand diagrams of the im-
portant helicity and orbital partial waves. Due to
the closeness of the pion pole at t, = m„', the
Heggeized Deck amplitude falls off very rapidly
with increasing f, and the partial-wave integrations
are weighted at small t,. So, the resulting phase
variation with s, is not stxong, and the partial
waves do not show fully developed Schmid loops"
corresponding to a linearly ris'ing trajectory of
resonances in the p-m' channel. Introducing the

threshold factor (4s,) ", as in Fig. 9, gives extra
structure in the partial waves A~, but an inter-
px'etRtion of the x'esulting curvature in terms of
resonant behavior, with appreciable inelasticity
and background, is not convincing. In particular,
there is no evidence for local resonant behavior in
the dominant A's' wave at the A, mass.

Phenomenologically it is very diffi. cult to deter-
mine the phase variation of the 8-wave p-n ampli-
tude at the A, mass, since there is no other im-
portant amplitude present to provide a reference
phase. The only other appreciable amplitude
seems" to come from the 8-wave decay of the
J~=O 3n state into ~-m, which is responsible for
the backward-forward asymmetry mentioned
earlier. However, there might be an A, daughter
state causing this amplitude to resonate also.

Although a detailed partial-wave analysis has
not yet solved the puzzle of the A„ it has been
very successful3' in studying the 2' partial wave
at the A, mass, for incident bea.m momenta below
l0 GeV/c. The s, dependence of the magnitude and
phase of the partial wave clearly shows the exis-
tence of an A, resonance. It is of some interest
to extend this analysis to higher beam momenta in
order to determine the s dependence of A, pro-
duction"'", as seen via its p-m decay mode. A
similar careful analysis is required, since there
is a large diffractive p-n background in other syin-
yarity states. We have given the partial-wave de-
compositions of the Berger amplitude at the A,
mass» sip~ =1.3 Ge7» to indicRte the p-3' states»
which might be diffractively produced in this re-
gion.

The region of integration increases with s„and
different amplitudes A~" are obtained with the
trajectories (i) and (ii). The partial wave A~s be-
comes important for the stx'aight-line trajectory
and is equal in magnitude to As'0 at sx =1.'l5 Ge
However, in the A, , region, 4' the S wave still
provides over half of the cross section. Qn the
other hand, the Pignotti trajectory causes the As"
wave to dominate strongly the whole A enhance-
ment, s, 2 GeV'» and makes A~ the next lax'gest
a,mylitude. As expected, all these states have
predominantly unnatural parity. The difference in
the results, obtained with the two trajectories,
reflect the ambiguity in the Deck amplitude and
the large effect other exchanges could have as s,
increases.

In conclusion, it is at present difficult to dis-
tinguish, phenomenologically, between the Beg-
geized Deck amplitude and dominant A, resonance
production. Dual-resonance models do not solve
this problem 8 It has been suggested that a search
for structure in the s, dependence of the slope of
the t@ momentum-transfer-squared distribution
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could be helpful. " Empirically the relative
amounts of 0, 1', 2, and 1 p-w partial waves
are in reasonable agreement" with that predicted
by the Beggeized Deck model. There is conflicting
evidence regarding the success of the charge-ex-
change Deck effect. 47'~' The most satisfactory
confirmation for the existence of an A., resonance
would be convincing evidence for A, producti. on in
some process where the usual Deck mechanism
cannot operate.
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APPENDIX

The cosine of the Treiman-Yang angle P (see Fig. 4) is

cost=(p. &&p, ) (p~&&p3)[lp. &&p. l Ip. &&p. l] 'It, .p, =.
= N(s, s» s~, t» t2)[D~(s» t~, tm)D2(s, s~, t2)] ~ t2.

Evaluating the determinants N, D„and D, we obtain

N(sy s» sg& t» t2) G2(s& s» t» t2) s2G~ (sg t2)

where

8G, (s„ t, ) =X(s„ t„m,')

(Al)

(A2)

(A3)

8G,(s, s„ t„ t, ) = m, '[(s, —s){t,—t, + s, —m, ') —m, '(s, —t, + m, ') —m, '(m, '+ m, ' —t, )]

—t,[(s, —s) (t2 —s, + m, ') + (m„' —t2) (t2 —s, —m, ') + 2m, 'ms']

+ (s —m, ')[(m,' —t,)(t, —t, + s, —m, ') + m, '(s, —t, ) + m, '(m, ' —t, ) —m, '(m, '+ m, ')]

—(t, —m, ')[(s, —s)(m, ' —t, —m.') + (m.'+ m, ' —t, )(m,' —t, ) + 2m. 'm, '] . (A5)

Also, we have

4D, (s„ t„ t, ) = -t, 's, + t,[2m, 't, + m, '(s, —m, '+ m, ') + (t, —s,)(s, —m, ' —m, ')]
—m, (s, —t, —m, ')' —m, '(m, a+ m, ')' —m, '(s, —m,' —m, ')'

+ (m, '+ m, ')(s, —t, —m, ')(s, —m, ' —m, ') + 4m, 'm, 'm, ' (A6)

4D, (s, s„ t,) = (t, —m,' —m, ')(s, + m,' —t, —s)(s —m, ' —m, ')
—m, '(s —m, ' —m, ')' —m, '(m, '+ m, ' —t,)' —m, '(m, '+ s, —s —t,)'+ 4m, 'm, 'm, '. (AV)

The maximal and minimal values for t, can be found from the condition -1 ~ cos8 ~ 1, where cos 8 is
given in Eg. (2.'26). This gives

tm™n=(+[a(s, m, m, t )x{s„m,', m, ')]'~' —s,'+ s, (t + m, '+ m, '+ m ') —(m, ' —t2)(m, ' —m, '))/(2s, ) . (A8)

Note that t, corresponds to 8 =0 and ~, '" & t, . Similarly the maximal and minimal values of s, can be
obtained from Eg. (A2) and the condition -1 & cosQ & 1, which gives

=(+[D,(s„ t„ t, )D, (s, s„ t,)]'t'+ G,(s, s„ t„ t, )]/G, (s„t, ) .

Figure 10 shows the integration region in Eye. (2.28)-(2.29) for a few values of the parameters s, s„and
t, for the reaction mN -pe¹

The Jacobian in the integrand of Eg. (2.30) is
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J(s, s„s„t„ t2) = e(cos8, Q)/B(s„ t, )

=-,'s, [Z(s„m,', m, ')(-a, )] 't',
where the Gram determinant 64 is given by

(-~,) = 4(D,a, —X2)/~(s„m. 2, t, ). (A11)

(A10) The function X(x, y, z) ie defined in Eq. (2.5).
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From a numerical survey of the dual-resonance model {DRM), it is found that (i) scaling
in the central region is approached much more slowly than in the fragmentation regions due
partially to kinematics, - and partially to the overlap of the two fragmentation regions; (ii)
the triple-Hegge limit of the model remains a good approximation over most of the frag-
mentation region, if it is multiplied by a simple modulating factor. The physical origin of
such a factor deserves theoretical attention. (iii) If the exchange picture is taken seriously,
one should expect wrong-signature-nonsense-zero dips in reactions such as 7t. +p 7t + X
for x~ 0.2. The phenomenological implications of the DRM are also discussed.

I. INTRODUCTION

In the past, dual-resonance models (DRM) have
provided valuable insights into the structure of
scattering amplitudes due to constraints of cross-
ing symmetry, Regge behavior, and narrow-reso-
nance behavior. These insights have been of both
a theoretical and phenomenological character. '
Most recently, attention has been centex'ed on the
qualitative application of dual models to inclusive
reactions. DeTar, Kang, Tan, and Weis (DKTW)~

have shown that this model contains many nice the-
oretical properties, such as limiting behavior in
the central and fragmentation regions, triple-
Regge asymptotic behavior, and a universal cutoff

-4n%' 2in transverse momentum of the form e 4"+j- . A

next step would be to study .the quantitative appli-
cations to data.

Some work of this kind has been done alx eady, s

and raises many interesting questions concerning
the shapes of inclusive distributions one might ob-
tain in the model. To answer such questions, and
to investigate further the yhenomenological impli-
cations, we present in this paper a thorough nu-
merical survey of inclusive shapes in the DRM.

- Before proceeding to the numeri. cal study, let us
fix st bxiefly summarize inclusive reaction termi-
nology. 4 The reaction

where X represents "anything, " can be described
in tex'ms of the invariants


