PHYSICAL REVIEW D VOLUME 5, NUMBER 8 15 APRIL 1972

Comments and Addenda

The Comments and Addenda section is for short communications which are not of such urgency as to justify publication in Physical
Review Letters and are not appropriate for regular Articles. It includes only the following types of communications: (1) comments on
papers previously published in The Physical Review or Physical Review Letters; (2) addenda to papers previously published in The Physical
Review or Physical Review Letters, in which the additional information can be presented without the need for writing a complete article.
Manuscripts intended for this section should be accompanied by a brief abstract for information-retrieval purposes. Accepted manuscripts
will follow the same publication schedule as articles in this journal, and galleys will be sent to authors.

Equivalence Between the S Matrix and Potential Formalism of K g -K; Decay*

Sudhir Kumar
Department of Physics, University of Notve Dame, Notve Dame, Indiana 46556

(Received 6 October 1971)

It is shown that an S matrix for two overlapping resonances can always be written exactly
in a form derivable from a potential theory of scattering. The overlap between resonant
states and the matrix elements of a Hermitian potential are explicitly constructed in terms

of the parameters of the given S matrix.

Some time ago McGlinn and Polis! attempted to
derive the Bell-Steinberger unitary sum rule 2 di-
rectly from a phenomenological S matrix. The dif-
ficulty ® with such an approach lies in describing
the two resonances (K¢ and K, ) in terms of the
single-particle, strong-interaction states, say K°
and K°. The projection operators occurring in the
K-matrix formalism were used to define the over-
lap of these strong-interaction states, which has
no direct and trivial relation with the overlap de-
fined in the Bell-Steinberger relation, and as a re-
sult a sum rule! different from the Bell-Stein-
berger sum rule was derived. This paper has been
widely and reasonably criticized in the literature.*
It has been shown,® however, that the McGlinn-
Polis S matrix can be cast exactly into a more
commonly used (and fairly general) form given by
Durand and McVoy *:
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where M; =ReM; - i3T';, i=S, L, and g; and i; are
column and row vectors representing decay and
production amplitudes of these above-mentioned
overlapping resonances. We have omitted here the
background scattering term for simplicity and, of
course, without any loss of generality in the main
ideas presented.

It has been shown, interestingly enough, by
Stodolsky ®-and by Gien” independently that given a
Hermitian potential V which connects the states

[on

K° and K° to the continuum states, a potential the-
ory of scattering (without any reference to pertur-
bation theory) dominated by two resonances, name-
ly, the ones represented by |S) and |L), gives an

S matrix of the form
1
) @

Sup(E) =544 —i<oz
where I is a 2X2 complex mass matrix having the
right and left eigenvectors |i) and (i’|, respective-
ly, with the same eigenvalue M; (=S, L), | @)
(=1,...,N) refers to a channel state into which
the resonance |¢) can decay, and the unitarity con-
dition for such an S matrix is nothing but the Bell-
Steinberger sum rule 2 itself,

PO =9),; =2 Vel VIiy G5=S,L). @)

It is actually not very difficult to show that an S
matrix of the above form, i.e., Eq. (2), can be
written in the form of Eq. (1) if one uses the fol-
lowing standard normalization for states®7 |i) and

|2"):
(iléy=@@lé’y =1,
for all4,j=S, L,
@'17)y=0 @#j),

implying
|87) =N (]S) - (L|S)| L), (4a)
|L') =N(| L) - (S| L)|S)), (4b)
where
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and the following identification 2
ga=T, 20| V|3), (5a)
RE=T;7Y206| V] ). (5b)

This means that a phenomenological S matrix such
as Eq. (1) is derivable from a potential theory of
scattering.

In this note we show that even the converse of the
above is true, i.e., given an arbitrary S matrix
dominated by two resonances, e.g., Eq. (1), the
overlap between the two resonant states can be de-
fined such that the Bell-Steinberger sum rule re-
sults, and the matrix elements of a Hermitian po-
tential V can be completely determined® in terms
of the parameters of the given S matrix such that
they have standard relations!® with the particle
decay widths.

One can write down the unitarity conditions for
Eq. (1) exactly as

hs=N[g}-(T,/Ts?ag]], (6a)

h,=N[g] - (Ts/T,)?a*g]], (6b)
where

w=l (F&ELE‘;igigL) @
and

N=(@-|a?), ®)

with the normalization for decay amplitudes

gigs=glg, =1. ©)

Now the identification Eq. (5a) alone is enough to
show Eq. (5b) through the use of Eqs. (4) and (6)
and an identification

a=(S|L). (10)

Equation (10) is the Bell-Steinberger sum rule it-
self, and, by Eq. (7), the overlap (S|L) is com-
pletely defined in terms of the given parameters.
It is not difficult to show now that by putting Eqs.
(5) into Eq. (1) and using the fact that 1=7,|4)@’|,
Eq. (2) follows. In the inverse problem nothing has
been said so far about the existence or nature of V
except that the given parameters g are identified
as the matrix elements (o| V|i) through Eq. (5a).

To analyze the problem clearly, it is perhaps
best to go to an orthonormal basis from the |S), | L)
basis in which the matrix 9 of Eq. (2) is diagonal.
A following change of basis will completely deter-
mine the transformation matrix in terms of the pa-
rameters of the given S matrix:

[Sy=[1/(1+72)02](|1) +7]2)), (11a)
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|Ly=[1/(1 +s2)"2)(|2) +is|1)), (11b)

where 7 and s are real numbers and can be unique-
ly determined in terms of Rea and Ima, which in
turn are known through Eq. (7).

_ ¥+ iS
a_[(l +72)(1+s2)]H?

In this new orthonormal basis S(E) can be written
for example as

(12)
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(13a)

where

1 Mg —irsM; is(M, —Mg)
W= (13b)
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Through Eqs. (11) and (5a) it is possible to write
the matrix elements (| V|1) and (@] V|2) in terms

of g¢ and g; as

(2| V|1
1
e [(1+7 220 M2 % — (1 + s2P/2T, V202,
(14a)
(ol V|2) |
= Trye [P TL g — s (L r P g ).

(14b)

Similarly, using Eqs. (11) in Eqs. (4) and inverting
them to give states (1] and (2| in terms of (S’| and

(L’| and then using Eqgs. (5b) and the unitarity con-
dition Eqgs. (6), one obtains, upon comparison with
Eqgs. (14),

(| V[1)=(1| V]|a)y*, (15a)
(@] V|2)y=(2| V|a)*. (15b)

Equations (15) clearly mean that the operator V
whose matrix elements are the given parameters
g¢ and g7 is Hermitian and in Eq. (13a) the matrix
elements of the left-hand V are complex conjugates
of those of the right-hand V. For consistency it
can be checked through Eqgs. (14) and (15) that Eq.
(13b) satisfies the Bell-Steinberger relation in the
new basis:

i =-p", =26 Vliaxal V], i,j=1,2. (16)

This completes the inverse problem in the sense
that it is possible to determine the matrix elements
of a Hermitian “potential” in terms of the given
parameters of a phenomenological S matrix.

It is worthwhile to note in passing that all of the
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above results are valid even for an S matrix dom-
inated by three resonances, although the algebra
is much more complicated. In fact, the results
are perhaps true even for N resonances. Finally,
inclusion of the background term or final-state in-
teractions does not change the essential part of
our arguments in any way.
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It is shown that the Callan-Gross sum rule can be rederived by the light-cone analysis of

the current commutator.

The Callan-Gross sum rule’! for deep-inelastic
electron-proton scattering was first derived by
using a dispersion relation and the Bjorken-John-
son-Low theorem. It is very interesting to see that
it can also be derived from an entirely different
approach, namely, the analysis of the current
commutator near the light cone. Let us first con-
sider the structure tensor W, of the deep-inelastic
e-p scattering defined by

W,, =211;fe"“"‘d “(P|[J,(x),,0)]|P)

-2

p- p- W
+<Pu_ 2q ‘1;1) (Pu— z—qqy>_l, (1)

where J, is the electromagnetic current and P and
q are the momenta of the proton and virtual photon,
respectively, and an average over the proton spins
is understood.

In the Bjorken scaling limit, we have

le Fl(w) ? (2)

v — oo ;w fixed

W, Fz(w) s (3)

v — oo w fixed

where v=P-q/m, w=-q%/2P+-q, 0<w<1, and m
is the mass of the proton. It has been pointed out
by several authors®® that in the Bjorken scaling
limit one is probing the structure of the current
commutator near the light cone, x2~0. The ma-
trix element of the current commutator near the
light cone has been shown to have the following
singular structure®*:



