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Following an earlier suggestion that local duality be applicable to high-energy wide-angle
scattering, a duality equation for amplitudes is presented and discussed. Solutions are
found in both equal- and unequal-mass cases.

I

I. INTRODUCTION

At present, one of our best hopes of understand-
ing the strong interaction of elementary particles
at high energy lies in the general approach of Reg-
ge theory. The literature abounds with various
fits of forward- and backward-angle high-energy
data. And, of course, the subject has been well-
developed theoretically since Regge's original ob-
servation.

Early pion-nucleon scattering Regge-theory fits
to experimental data were performed essentially
beyond the region of resonances. Thus, the theory
was applied asymptotically, where the simple s
form was expected to be most valid. More recent
work, suggested that the theory is valid at lower
energies in the sense that the extrapolated asymp-
totig fit should equal lower-energy resonant curves
on the average. Though still questioned by theo-
rists, this concept of local, i.e.. Dolen-Horn-
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Schmid, duality has wide acceptance.
Shortly after the discovery of the concept, it

was proposed' that local duality-, in this same
sense, have a place in our attempts to understand
high-energy large-angle scattering using Regge
theory. We certainly have no real theory of such
strong-interaction processes', even though a vari-
ety of models has been constructed in efforts to
gain some insight into what is happening. Because
of the nature of the energy dependence that it gives,
and its successes in phenomenological analyses, it
is, indeed, quite tempting to think that at ].east
part of the amplitudes in this region contain Reg-
ge-pole terms. In fact, Pinsky's paper' showed
that recent differential cross-section measure-
ments of proton-proton scattering are character-
ized by the Regge form quite well. The earlier
work of Abarbanel et al. ' illustrates one way in
which they could enter.

It is the purpose of this paper to consider further
the possibility that local duality is applicable to a
Regge-theory approach to high-energy large-angle
scattering. Regge-theory amplitudes have a defi-
nite mathematical form, after all, and it is of in-
terest to explore how well it lends itself theoreti-
cally to the requirement of duality. It is ampli-
tudes, rather than cross sections, that we shall
examine, and throughout the paper, it is locally
averaged Dolen-Horn-Schmid duality which is un-
der study. We shall conclude that it is applicable
in principle, though many unsolved questions re-
main.

II. ANALYTICAL STUDY

Thus, let us confine our attention to high ener-
gies, beyond any resonances, and to intermediate
scattering angles where the forward and backward
peaks run into each other. Therefore, the duality
under consideration is that between two Regge-
theory sums. Though similar, this is quite a dif-
ferent matter from resonance-Regge -theory dual-
ity, and it is most strongly emphasized that no

resonance considerations are relevant here. ' No

statement of the kind "Regge pole a is dual with

resonance b" is meant or implied in the present
work. Only the asymptotic presence of Regge
poles in the direct channel is examined.

Let us briefly review what is involved. Conven-
tional Mandelstam variables and Regge-theory
functions will be employed throughout the discus-
sion. Consider, for example, a scattering process
occurring in the direct (s) channel at high energy.
Its forward peak may be thought to be inQuenced

by Regge-pole exchanges from one (the t) crossed
channel, its backward peak by those from another
(the u) crossed channel. In the region between the

peaks, therefore, it is expected that the part of the
amplitude which is made up of Regge poles in-
volves those from both the t and u channels. We
consider further the idea that the separate contri-
butions to an amplitude from the two crossed chan-
nels be regarded as dual to each other, and pro-
ceed to explore this possibility mathematically. It
means some restriction of the form of the terms,
and it is appealing.

A. Equal-Mass Reaction

There is one kind of reaction in which this idea
has a simple, natural place, namely the elastic
scattering of two identical particles. Thus, we
also consider elastic proton-proton scattering in
the region around 90' in the center-of-mass sys-
tem. The experimental cross section must be
symmetric about 90', which is a minimum point,
and various mathematical forms" have been sug-
gested to represent the scattering data. We sup-
pose that Regge poles contribute here, at least in
part, and concentrate our attention upon them.
Though one might well expect Regge cuts to be
present as well, it is naturally proper to confine
consideration to just pole terms at this stage.
Branch-cut contributions will be considered briefly
in the last part of the paper. In this case, local
duality may be fully expressed as

QP, (t)g, (t)s+ ' =QP, (u)$, (u)s&"

in an averaged sense. In this equation, $ is the
conventional signature factor, and the same Regge
poles are on both sides, though associated with two
different crossed channels. It is conceptually sim-
plest to first think of this'as one in energy at a
fixed scattering angle. We shall also consider it
below as having two independent variables, such
that the scattering angle is near 90'. Of course,
the third Mandelstam variable is determined by
these two. Actually, (1) is two equations, because
it is meant to hold in both real and imaginary
parts. We might call such a relationship a bi-
Regge-pole duality equation, because two Regge
sums only are facing each other. Resonances are
not involved in any way. The common value is the
total Regge-pole contribution at some (s, t, u) point,
and the contributions from the two crossed chan-
nels do not interfere. In particular, any t-channel
term does not interfere with its brother from the
u channel of the same name.

What kinds of solutions does such an equation
have, which fit in well with what we already know?
The Regge form is specific, and we shall now

search for ones that obey (1) closely. Basically
speaking, then, we have a mathematical problem
before us, and only the simplest possibilities will



be discussed. Solutions of (1) could be quite com-
plicated, and it is not simple to find them. The
easiest way to obtain further insight is to assume
that the trajectories be regarded as dual also.
This means that a t-channel trajectory naturally
becomes its u-channel brother of the same name,
along the lines in which the original duality sug-
gestion, was made. ' This means the added strin-
gent requirement that

n(t) = n(u)

in the region of interest. This is not necessary,
but simplifies what would otherwise be a difficult
search, and is sensible, because the two crossed
channels contribute the same trajectories. Dual-
ity is a useful concept just "on the average, " so it
is not surprising that (2) cannot hold exactly. (A
direct violation of analyticity would be required. )
However, the form

n(x) = no+ Ex

for x in the region of interest is dual to order e,
and mith increasing absolute value of x. Actually,
x ' has been used here for simplicity only, and any
function which is reasonable enough would seem to
do, too. If we demand that the residues be approx-
imately dual, too, the duality equation will be triv-
ially satisfied, and the entire Regge-pole contri-
bution mill be essentially independent of angle.
The experimental data do have zero slope at the
symmetrical point, of course, but they curve
around it, so all curvature would then necessar-
ily have to be accounted for by other contributing
mechanisms. It seems likely that one Begge-pole
term with strongly varying trajectory and residue
functions cannot satisfy the equation closely, but
this is not completely clear. Perhaps a larger,
but finite, number can. For simplicity, we work
with trajectory functions of the form (3) in the re-
gion of interest. It will presently be seen that such
an equation can be satisfied with just two or three
terms which give curvature, too. The latter is a
priori necessary if such solutions can also make
contact with. experiment without additional terms.

For the purpose of looking fox specific solutions,
let us take the proton-proton duality equation to be
in the form

Q P, (t)$,(t)(s -4M ')&~'~ =+P,(u)g, ( )( M4sM ')&t"

(4)

at a fixed scattexing angle, where M is the proton
mass. %'e are free to do this, and its convenience
will now become clear. In all further work, the
residues will be taken to be real. In this reaction,
the Mandelstam variables relate to each other and

the scattering angle as follows:

t = =,'(s -4M')(1 —cos 6),
u= ——,'(s —4M')(I+cos8) .

(a) Two trajectories of opposite signature:

p, (x) = -p,x, p, (x) = p,x', n, =n, —l.
(b) Two trajectories of the same signature:

p, (x) = —p,x, p, (x) = fp,x', n, = n, —2.
(c) Two leading trajectories of the same signa-

ture and a third having opposite value:

p, (x) = p,x, p, (x) = -2p,x', p, (x) = p,x',
3=O.

The quantities P» v» and a, are arbitrary in these
examples. In (a) and (c) the duality equation (4) is
satisfied to order e, but in (b), just to second pow-
er of the angle. It is suggested that the reader
performs the substitutions and verifies this, as
an aid in understanding the spirit of this approach.
Remember that x is a general variable standing for
either t or u. It will be used in this same way
throughout the discussions below. In general, if
an n,. is near an integral value, an appropriate fac-
tor must be included in its residue to cancel any
singularity arising from its signature factor. At
this point, let us x'eflect somewhat, trying to see
what we are doing in perspective. In an equal-
mass reaction such as this, the duality condition
(1) is really just asking that the total Regge-pole
contribution be symmetrical about the 90 (t = u)
point. These examples accomplish this because
they have only even powers of eos8, as the duality
condition thus requires.

Now that we have seen that the duality equation
has solutions, it is natural to wonder if ones can
be found which can be related to the actual physical
world. The experimental data have sometimes
seemed to require amplitudes of the form"

&-aa ane

for example. For the present discussion, we as-
sume that this cross-section form transfers its
imprint directly to the amplitudes. This is suffi-
cient, simple, and clearly at least somewhat cor-
rect. Another solution shows that a dual sum of
just four Regge poles ean provide this approxi-
mately, for angles restricted to be near enough
90' that

e ~"" =e "(I+-,'akcos'8),

and a restxieted enough energy region that the ex-
ponential may be x'eplaced by a power of momen-
tum. Take trajectories of the form (3) again, and
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p, (x) = --,' p, + ex ',
p, (x)= p, +ex ',
p.(x) = p...
p, (x) = —p,x',

The quantities Po, P» and n, are determined from
the data form (5), and this set of terms satisfies
the duality equation (4) to order e. Notice that the
trajectory order and signatures for the first three
poles above correspond exactly with what is ex-
pected for the three known leading boson Regge
poles on the basis of detailed proton-proton small-
angle fits. This is desirable if it is hoped to iden-
tify these sometime as continuations of the known
poles. Different residue and trajectory forms and/
or more poles will be needed, the wider the angu-
lar range and the closer the approximation to ex-
ponential energy behavior desired.

The results of experiment are not final yet, but
other forms proposed to represent the scattering
data" may be treated similarly. For example,
the more universal form suggested by the experi-
ment of Allaby et al. , '

e-as sine

can be achieved by a similar solution. We stay
close enough to 90' that

e "' = e "(1+~as cos'8), (8)
and a restricted enough energy region to again use
a power of momentum for the exponential. To the
extent that these kinds of ideas are successful in
a localized region around the symmetrical point,
one might daringly try to describe a more appre-
ciable part of the identical forward and backward
peaks by bi-Regge-pole dual amplitudes.

The correctness of duality can only be surmised
from specific numerical studies, of course, but
we can examine its possible consistency in very
general terms. Any form of the experimental
cross section in energy and angle variables must
be symmetrical about 90', i.e., in the interchange
of t and u. We assume again that an amplitude
takes this same form. ' Furthermore, let us as-
sume that only Regge poles and cuts contribute in
this region, or, equivalently, and as might be the
case, that any other contributing mechanism is
symmetrical about 90 . The duality approach sug-
gests that all or part of an amplitude required by
any experimental form may be written directly as
a Regge sum of either t-channel contributions or of
u-channel contributions. Such an attitude then im-
plies, by itself, that these will be locally dual with
each other in the sense of satisfying Eq. (1), inde-
pendent of pole and cut function specifics. For ex-
ample, the form we have been considering here,

(5}, may be written in terms of Mandelstam vari-
ables as

exp{ a[-tu/(s —4M')]'"). (7)

or in terms of just a u-channel one, coming from
the substitution

t=4M' —s -u.
Because the reaction involves equal masses, the
most natural possibility is that the parameters of
the latter have exactly the same form as those of
the former. Then, (4) is satisfied in the manner of
the solutions above with common value (7), re-
gardless of the details of individual pole and cut
terms. We conclude that, in general, the equal-
mass reaction variables allow a consistent duality
interpr etation.

B. Unequal-Mass Reaction and Regge Cuts

Duality between Regge poles as discussed here
may be considered in unequal-mass reactions as
well. For example, consider the region where the
forward and backward peaks meet in pion-nucleon
scattering. The duality condition may then be writ-
ten as

g p„(t)t„(&)"'""=g p., (u) t.,(u)s"«'"'-'"

(8)

for the Regge poles in the invariant Mandelstam
amplitudes. Now, the sums are over two com-
pletely different kinds of Regge poles and, at first
sight, it seems as if the equation may be satisfied
in a number of ways. We confine ourselves to
pointing out one hypothetical example. Take the
duality equation as

gPr (t)(r (t)[ s —(2M +2m ')]~r& '

=Q P„,(u) $,(u)[s —(2M' + 2 m ') ]~«~"~ '"

in correspondence with what was done in the equal-
mass case where (s —4M') was used instead. Tra-
jectories of the form (3}are used again. Then,

pr (x) =
pU (x) = —p~x, signature v

It is to be emphasized that we are localized in a
small region around SO' (t =u) scattering angle.
Let us suppose that a dual description is, indeed,
preferable to an interfering one. We would regard
this form as written out in terms of just a t-chan-
nel contribution, coming from the substitution in
(7) of

u=4M —s —t,
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pr (g) = pu (x) = p~', signature 7-'

1
Qz —Qp

2 2
CMg =Qg

2 1

where Po and o. ~, are free constants, satisfies the
duality equation (9) to order e. This can be readily
verified by eliminating [s —(2M'+2 m, ') I in favor
of (t+-u), and substituting in the residue and tra-
jectory forms. One might tentatively identify the
u-channel terms as the known nucleon and h, poles,
and those of the t channel as one of the Pomeran-
chons and the p. In this solution, a t-channel res-
idue function is directly dual with, i.e., directly
becomes, one of the u channel, but the residue
functions are split apart by —,'. The latter has nat-
urally arisen here, because boson spins are inte-
gral, whereas fermion spins are half-integral.
Because of the complicating presence of a square
root, it is difficult to find a solution in which one
trajectory naturally becomes a different one of the
other channel. In general, the unequal-mass case
is more complicated, and much more effort seems
to be required in order to constxuct examples
which can be connected to experiment.

In principle, full poles involving P (cos8„) or
P~„,'(cose„), instead of the simple asymptotic
form, should be present in the duality equations

(1) and (8). This is an inessential theoretical com-
plication which can be considered later.

Regge cuts could be present in the amplitudes,
too. %e suppose that the cuts fxom the two chan-
nels be added to the respective poles in the dual-
ity ec[uation, or maybe satisfy a separate one of
their own. In the proton-proton scattering case,
the cuts from the two cross channels will be the
same, except for the variable (i.e., crossed chan-
nel) involved, just as the poles were. For defi-
niteness, suppose we have'

for the leading contribution associated with a given
crossed channel, where x is again either t or u,
and y, depends upon the branch cut discontinuity.
If n, and y, have the form (3) in the region of in-
terest, simple dual solutions can probably be
found for cuts, just as they were for poles.
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