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Nonplanar Helicity-Pole Couplings: Duality and the Feynman Graph. I

David Gordon
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%e study, in the spirit of Gribov's Reggeon calculus, a particular nonplanar elastic six-
point amplitude which contributes to the helicity-pole limit (s, M ~, s jM ~, and t
fixed) of the single-particle distribution. %'e find "third double-spectral function" effects
analogous to those rvhich appear in 2-2 amplitudes. In particular @re find (1) nonsense-
triple-Regge-vrrong-signature fixed poles, and (2) the triple-Pomeranchukon vertex to be
finite at t=0 if the slope of the trajectory is nonzero and its intercept unity. In addition, we
conjecture an asymptotic link bebveen the high-energy Regge limits of Q theory amplitudes
and the high-energy Regge behavior of dual-tree and dual-loop amplitudes.

I. INTRODUCTION

It has been a tradition in particle physics, rang-
ing over many years, to discuss both the analytic-
ity and high-energy properties of a Feynman graph
or some iterative sum of graphs in Q' theory As.
various "new" developments appeared, the Q' the-
ory was interrogated. One may simply cite, for
example, the attempts to "prove'* Mandelstam
analyticity, ' Regge behavior, ' and more recently
eikonalization. ' Certainly the simplicity of the P'
theory, as compared with the more complex field
theories such as quantum electrodynamics or the
0' model, makes this Q choice a bit irresistible.

In fact quite recently we' have again appealed' to
P' theory to investigate a beautiful new develop-
ment due to Mueller, ' which relates the single-par-
ticle distribution to a well-defined discontinuity of
an elastic six-point function. In Ref. 4 we re-
stricted ourselves to a particular sum of planar Q'

Feynman graphs to study, in the strong-coupling
regime, the helicity-pole limit" of the single-par-
ticle distribution. (See Fig. 1.) Here we shaH in-
vestigate the same limit, yet now looking at a non-

planar set of graphs. ' (See Fig. 2.) We obtain new

results such as the nonvanishing of the triple-Pom-
eranchukon vertex at t=0, n~(0) =1, and n~' e0.
In addition we see some "oM" puzzles analogous to
"third double-spectral function"' effects appearing
in two-to-two amplitudes and which relate to the

spurious singularities discussed in Ref. 4.
We have subtitled our paper "Duality and the

Feynman Graph, " in spite of the fact that none of
the graphs considered here are dual, i.e., they do
not have Regge behavior for any channel one can
reach via crossing, nor is the amplitude identically
equal to the sum over the x esonances of the ampli-
tude in a given crossed channel. As will be more
fully discussed in a subsequent paper, "Pionization
Limit for the Single-Particle Distribution: Duality

and the Feynman Graph. II," in an asymptotic
sense there appears to be a fascinating connection
between the Q' results and the dual model. We
shall discuss this asymptotic link in Sec. V.

Before concluding our introductory remarks, we

should remind the reader of a long-standing dilem-
ma of the Q' model, especiaHy since one of our
central themes will be abstracting from the theory
properties of the dual model. To wit: the theory
has no vacuum state. 'o Perhaps in some deep
sense the vexing tachyon dilemma of the conven-
tional dual-resonance model is somehow a reflec-
tion of the sickness of the Q' theory Yet c.ertainly
our efforts are ultimately directed toward nature-
and thus the set of graphs considered here can never
literally be taken as a "truth. " Hopefully what one
ean learn by means of abstracting definite charac-
teristics may not be too distant from that "truth. "

In Sec. II we define the model, in Sec. III we take
the helicity-pole limit, in Sec. IV we discuss the
cancellation of spurious singularities, in Sec. V we
exhibit some puzzles, and in the Appendix we re-
view briefly the Veneziano transform, ""which we
find quite helpful in obtaining our asymptotic re-
sults.
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FIG. 1. The planar three-Heggeon graph.
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FIG. 2. The nonplanar three-Reggeon graph, for the model calculation considered here. (Note the obvious presence
of the left- and right-hand M2 singularities. )

IL THE MODEL

(2.la)

(2.1b)

and that amplitude associated with the zero momentum in the elastic limit,

Our model is based on the diagram of Fig. 2, where for the moment we imagine the three black boxes to
correspond to ladder graphs of P' theory. Later in Sec. V we shall discuss a more general scheme. We
adopt the Regge properties associated with these graphs, and thus have for the uns~gnaj'ere& "t"-channel
trajectory amplitudes

2]cg
R',"= . ' ' P")(0', (P, -P, -k)', f),sine+,

[ yt l)2

cog�'

~(R) P(2)(j'p/2 (p p Pl)2 f/ )sine+,

—[(k —0' —p)'] ".
p((k-n')', (k-0'+p, —p,'-p, +p,')', ~2), (2.1c)

u, = u, (0)+f(&), n, = n, (0)+f(t'), „=n(n0) f(+a'), and a'=-(p-p')',
and at the appropriate time we shall go to the elastic limit in which case all primes on the external momen-
ta may be dropped and f(6')-0.

As in Ref. 4 we shall regard e„, n„and o., as adjustable parameters. Since we are also anticipating
the helicity-pole limit, M'-~, s/M'-~, t fixed, Egs. (2.1a)-(2.1c) are appropriate approximations.

The 3-3 amplitude, 5g, is given by the equation,

(k-k')'+ p, ' (0- 0'+p, —p, +p,'-p,')'+ p, ' (2 2)

To facilitate the 440 d4k' integrations we make use' of a spectxal representation for the integrand based
on the following identity:

-( s) 1 ", s'&s', . (-1& n& 0),sin'17@ S J 0 .S —S - 26 (2.3)

for u„, u„and n, in the open interval -1 to 0 (later we will analytically continue to the physically inter-
esting region of positive u„and n,)"and obtain the resulting expression,
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5g-Jt d kd O' II dp dp„dp, , dm„'dm„'dm, 'p(p„, p„, . . . , p, ', p, '; i, i')

eJ ~yl

[(p, —k)'+ m, '][(k'+p,')'+ m„'][(k —k' —p)'+ m, ']

(~'+ v.,')(&"+ u, ') [(p, -p. -~)'+ v.,'][92-p|+&)2+ p„']

[(k- k'}'+ P,, '][(k- 0'+P1 -P, +P,'-P', )'+ y, , '] ' (2.4)

The sextuple spectral function p absorbs the free-particle propagation functionlyx and provides for the off-
mass-shell behavior of the Regge residues, P&'), P&~), and P. As was the case in Ref. 4, we shall see that
the superconvergence properties of p play a central role in obtaining the familiar (M')"~(s/M')2" d energy
dependence of the helicity-pole limit (s ~, s/M ~, t fixed).

Our calculation is now reduced to computing an equivalent Feynman graph corresponding to Fig. 3. For
simplicity we have assumed that aH external particles are massless. We have checked the calculation for
the massive case and found that the external-mass effects play no essential role for the asymptotic proper-
ties discussed here. ~~ It is to our advantage to compute the graph by means of the Symanzik rules, '5 since
they explicit1y display the Mandelstam channels present in the graph. A straightforward yet tedious com-
putation yields

Poe )d) oO y OO 3
ytt-y, dtx, *dtx„*dtx, ')I ' ~ ' - n dx, dy, dx, ii p (x, +y, +x,.)-1)

0 "0 40 3 3 3 0 4051

"D(s, z;M. , M„', i, i) 'm. ' 'm. '"'(m }""

where the kinematic variables are defined by the relations

z = -(p +p,)', s' '= -V '+pl)',

t = V, -p.)-', t' = V' -p.')-',

M: =-V+p, -p.}2, M.'=-V'-p, +p.}',

(2.5)

and where 1, is given by the following relation:

II dPg, dP) dPd P(Px 1 Px 1 ~ ~ 1 Pd yPd ify i) 1t 2 j 1

9=p"'(u.,', u.,', t)p"'(v, *, v,,', i')p"(~ '
v ').

We note an important symmetry of p which follows trivially from our graph (see Fig. 3.) in the elastic
limit:

p"'(~. ', u. ') =p"'(u.,', ~. '),
and thus

p"'(~. ', u. ', &) =p"'(~, ', ~„;,&).
2 1

p=p undex the exchange y2 xa xx yx and zx zs ~

%e shall make use of this symmetry in Secs. III and IV. D is given" by the equation

tt —xx x, Py, +x x y, gx, )+dd, x,(x y, —xy, —y x, —xy)+dd„xxy,

(2.6')

3 2 3 2 I

+& x,x, y, +Qz;+Qy, +x,y,z, —,x,y, (z, +z,) +f y,y, x, +Qz, +gx, +xymz, —,xy, (z, +z,)
c=l 4=1 f, = j.

-C m„'x, +m, 'y, +m, 'z, + P (p„'x, + (((,, 'y, + g, 'z, } (2.'1)
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and C by the relation
p2

-k+p~-pp
xp

k + pp-p(

Vp

3 3 3 2

c=x, pz; py; +y, p, +Qx)
i=1 i=l i=1

2 2 2 2

+z, r, x, + r, y,. x, r y,. + r, z.
)i=1 i=1 i=1 i=1

2 2

x, pz, er„y, ) y, z, +y,z, .
i=1

(2.8)

P)

k-k+ p( -pp+ pp-pi I

-k+p &,

x~
k-k-p" 3 &g"k'+

p
'
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FIG. 3. The reduced equivalent nonplanar
three-Reggeon graph.

It is understood that each internal squared mass has implicitly associated Feynman's -i~.
We have found it enormously useful, in both performing m integrations and taking the high-energy limit

by means of the Veneziano transform, to reexpress Eq. (2.5) in terms of the Nambu-Schwinger" repre-
sentation. We thus obtain"

dm„'dm, 'dm, '(m, ')"t(m, ')" & '(m, ')"~ Q dx, dy, dz, C ' exp(D/C) .
+0 i=1

Using the relation

(2.9)

4 0

dxx' 'e *~=P 'I'(a), (2.10)

we easily perform the m2 integrations which yields the equation

OR-1 (c., +1)r(a, , + l)r(n„+1)f, '

I g dx, dy, dz, C 'x, t 'y,. "~ 'z " 'exp "3 &3 '3D m„'=m '=m '=0
0 ~0 i=1 C

(2.11)
III. THE ASYMPTOTIC LIMIT

W'e go to the asymptotic limit in two steps: We first take the s, s'- limit and then the M,2- ~ limit.
As can be seen upon inserting the kinematic relation

M ' = -M 2+t+ t' -~28 S (3.1)

into Eq. (2.7) the final limit will be the more subtle since clearly the coefficient of the M, term in Eq.
(2.11) is not positive definite in the domain of integration. We proceed to the s, s infinite limit.

Using the techniques developed in Refs. 11 and 12, and sketched in the Appendix, we multiple-transform
OR in Eq. (2.11) on s and s' obtaining the expression

Oo Qo 3
OR(m, , t, t'; T„~,.) = r(a, +1)r(n, , +1)r(n„+1)1,) ) g dx,.dy, .dz,.x,"- ~-~y, .-, -i. ..",, -.„,

0 0 i=1

x(x, +x, +x )'~'(y, yy, +y, )'sC ' 's 's'P 'sP, 's'

3 3
x eye(yy/C)ezp -z, e: ' x, py, . +y, px,.

)i=1 i=1

(3.2)

where D, F„and 7, are given by

D =D(s = s ' =0),

~, , =z~,y, px,. c-'~,
and (3 3)

S.=Z~z, x, py, . C-'~,
y=a

with I' defined by the equation
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. 1 —e"
x (3.3')

We remark that the 8 functions are well behaved throughout the entire range of integration. Moreover,
as can be easily seen, when their arguments approach infinity, the T, and T, , dependence vanishes from the
integrand in Eq. (3.2). Thus all singularities in T, and T, can only appear through the first six terms of
the integrand of Eq. (3.2).

Transforming 3R in Eq. (3.2) back and taking s and s to minus infinity we find the following approximate
asymptotic expression, viz. ,

st(ttt, ', tt )-(, 's) I dt dtr(-y, .)r(-t, )(-y),"( y )"-r '(ty, +1)r(ty„yl)r(tt. yl)l d, (3.4)

where 8 is given by,

feo f 3
S = J' Jl Q dx, dy, dz, x,.'s . s .'y, 's' s' 'z, 's'"s' "p

0 0 i=1

3 7~f 3 7g 3 3
gy; r, y; s,"s,.""c ' '* "'exp(5/c)exp -y,c ' x, py, . +y, py, .

)
(y.y)

i=1 i=1 i=1 i=1

We remark that the apparent singularities at r„T, = -1, -2, . . . originating from the terms (y, + y, + y, }'s
and (x, + x, +x,)'s' will be precisely canceled due to the superconvergence properties of the spectral func-
tion p. The integrand 5 in each case, respectively, wi11 be either independent of the mass pairs
(p, , ', p, , '},(g„', p, „'}or produce powers of g' at the singular points. As was discussed in Ref. 4, at least
for Q' theory, the required superconvergence property indeed keeps pace with singularities generated from
the two terms (y, +y, +y,)' and (x, +x, +x,)'s' in Eq. (3.5). A similar argument applies to potential singu-
larities arising when C -0.

We are thus left with the singularities originating in ~, and 7, appearing when x„y„and z3 approach
zero. We pick up the residues of the leading ones" when x, and y, —0, to wit:

v, =n, when x, -0,
when y, -0,

and obtain (we now set a, = n, ,) the following relation,

(3.6)

(3.7}

where g is defined by the integral

fao f OO 3

(s = J' J~ g dx, dy, gd.z, z.,'"s " '[.(x, +x,)(y, +y,)j &C ' 2"t exp(D/C),
0 0 i=1 i=1

(3.8)

and where C and D are given by the equations

2 2 2 2 2 2
C=zs Q x,. + gy, +x, P y,.+ g; +x g z. + P y,. +y,z)+yaza

i=1 i=1 i=1 i=1 i=l i=1

and

(3.9)

3 2 3 2

D=M, 'z, (x y)™„'z,(x y)+t x x, gz;+ gy; +y y, g z;+ p x; —C g (p.„.'x;+ pyt 'y;+(((s'z;).

(3.10)

We note that singularities which would appear when the factors C, (x, + x,), and (y, + y, ) approach zero in
Eq. (3.8) are fake, thanks again to superconvergence.

In turning our attention to the rather subtle limit PI,'- ~, a bit more care is required with respect to our
transform technique. The two central issues involved are (a) its very existence, and (b) an amusing sym-
metry of our amplitude which in the elastic limit even-signaturizes the amplitude in the 4 channel,

With regard to point (b) we observe that

(3.11}
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This result can be seen by noting that sending M,' into M„ is equivalent to interchanging y, —x, and x, —y„
yet apart from the C function and the coefficient of C in Eq. (3.10), the remaining integrand is invariant
under this transformation, However, thanks to the symmetry of p, Eq. (2.6'), C and the coefficient of C in
Eq. (3.10) remain unchanged if in addition we interchange z„z,. Thus the combined transformation

(3.12)

results in Eq. (3.11)."
With respect to point (a), we shall observe that the transform exists in the domain M, & 0, x,y, & x,y, and

M, '&0, x,y, &x,y, . We are thus invited to reexpress Eq. (3.8) as

g g(+)+ 8(-)

goo
2 3

IId, dy, II d, 8(P)A,
Q i=l i=1

(3.14a)

g & & = ~ " II dx, dy,. II dz,.e (-P)A,
0 i=1 ' i=l

(3.14b)

(3,15)

and 8 the integrand of 8. We note that due to the above 6 functions Eq. (3.14a) will have the right-hand cut
and Eq. (3.14b) the left-hand cut."

We further define a symmetrical pair of asymptotic variables by the equations

M =M'S S

(3.16)

and transform separately g &'~ and 8& ~, to wit:

P —1)+i ~j&'&{7, t) = . dm, '8&'a(m, 2+1, ~+1) (0& q& 1),
27l $4

t' » j'+i~
g~-&(T', t) = . dm„'g~-&a(m„'+1, ~'+1) (0&q'&1).

27tg 4 ~t

Upon performing the dM, 2 and deaf„2 integrations we obtain the following transformed amplitudes:
2 3

3ft~'(7, t) = gf, J' ~ II dx,.dy, II dz, e(p) ~
p~' &,

""~
i=l

x [(x +x.)(y, +y.)]"~&„-"C ' '"~ 'exp(D/C)exp(-x, C-'j p j), (3.19a)

x [(x + x )(y + y )]"& 6'- ~ "C ' '"
~
"exp(D/C) exp(-z, C '

~ p ~ ),
where D is given by the expression

3 2 3 2 A 2D=t xx, Qz, +Pyq +y, y~ gz, +Px, +z,(xy +xy) -CQ(p„, x;+p,„.'y;+p, , 'z;)
i=l i=1 i=l

(3.19b)

(3.20)
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and g is given by the relation

(-s)"~(-s')" ~

~( 1)
Sin 7TQ~

Recalling Eq. (3.3') F„-2 and F„-2 are both given by the expression

6'; 2= ~~ n =I"(z.~ 'I pl) .

We observe that there are important poles in the 7 variable in both ~+ and 3g at
7

~ ~ ~=n„—2n, —n, n=0, 1, 2, . . .
T'

(3.21)

(3.22)

(3.23)

when z, -0 and require no special discussion. However, we will return to them shortly to obtain the helic-
ity-pole limit. The poles which seem to appear when P-0 at

7
= —n, n=1, 2, 3, . . .

Tl (3.24)

require a more delicate discussion.
Note that at the tip of the cut in the Nambu-Schwinger parameter space (x, =x, =y, =y, =0) the singulari-

ties at 7 = -n are canceled due to the superconvergence properties of the spectral function, yet of course
the singularities will remain for finite x» x» y» and y2.

Before transforming 8!' back in Eq. (3.17) and b!!in Eq. (3.18), it is useful to rewrite IpI'8(p) and
IpI'8(-p) in terms of generalized functions":

and

( )n-z6(n-z)(p)
P, -=IPI'8(P) = („1),( „)+I"-"n (3.25a)

P-: IPI 8( P)=( 1)t( P )++: (3.25b)

where E'„and F „are regular at T, 7'=-n.
The generalized functions permit a simple evaluation of the residues of the poles at v, v =-n in Eqs.

(3.19a) and (3.19b). Those at the even negative integers are zero since apart from the factor 6!" '!(P) the
remaining function is even24 in P, and hence when integrated over P gives zero.

We thus obtain, for odd n,

2 3
Res%'(T= —n, t) =BI, gdx, g dz, [(x, +x,)(y, +y, )]"&z, ""

~

and

ResK (T' =-n, t) =XI,
4p

. ..„(-) (-)" ' '" "( )
(n —1)!

foo 3
~ ~

J~ Q dx,. Qdr, .I(x, +x,)(y, +y,)] tz, n""~ ~n '
o f=z

g(& &)(a
(D)

(3.26a)

(3.26b)

Equations (3.26a) and (3.26b) lead to the following asymptotic results:

and

3R&~ -ZI, Q (—M,') "Res%'(r= -n, t)1"(n)
n(odd)=1

(3.27a)

3!t' !Z~!I, P (M, ') "ResSR (T' = -n, t)I'(n),
n(odd)= l

(3.27b)

which we recognize as a string of fixed poles at nonsense-wrong-signature points. Here is our first "third
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double-spectral-function effect" as was mentioned in the Introduction. Moreover, we note that because ~,2

is associated with integral powers, 3R~ and It:~ cannot contribute to the M,' or hf„' discontinuity, and
clearly not, to the asymptotic behavior of the. inclusive single-. particle cross section. Furthermore, as may
be easily seen, the sum, SRizl+Ri„l, is identically zero. Thus the full amplitude has no fixed-power be-

The fixed poles, nevertheless, make their presence known as was the case for the 2-2 amplitudes
in modifying the structure -of the Regge residue function from that which was obtained for the planar ease.
This will become evident as we now turn to the singularities which are generated when z, vanishes in Eqs.
(3.19a) and (3.19b).

Upon evaluating the residue of the leading" singularity generated when z, -0, in Eqs. (3.19a) and (3.19b),
we find the following asymptotic behavior for their contribution to 3g~'~ and 5g& ~:

(3.28a.)

SK" - (-M 2)" '"tl'(2n, —n„) I,I,sin'ma, (3.28b)

co P oo 2

I =J ''' ' gdxdydzp" 2 t(C ) 2: [(x+x)(y yy)j t
0 . O. i=1 '3-'

2 2 2 2 M 2

l
xexp f xx, gz, +py, +y,y, pz,. +px, —C~,,—,g(p„x, +p, „'y, ~p, 2z) (C )-&~

(3.28c)

We note that in Eq. (3.28a) Rl„'l will have the right-hand M' cut, and in Eq. (3.28b) SR'' will have the
left-hand M3 cut.

We can now trivially take, e.g., the M discontinuity across the right-hand cut and continue s above the
right-hand complex s-plane cut and s' below the complex s-plane cut and obtain

s '"~ (M.')"~ 1
M,' sin'xe, I'(I+ n„—2a, ) '

x ~ ~ ~ Q dx, dy, dz, p," '"t[(x,+x,)(y, +y,)j"~(C, =,) ' ""
0 0:i=1

2 2

~
g =0 i=l i=1

(3.29)

which is, of course, . directly proportional to the single-particle distribution, and is moreover the familiar
hei, icity-pole limit. '

We observe that if we decree 0., and a„ to be the Pomeranchgkon trajectories, the vanishing, of the tri-
ple-Pomex'anchukon vex'tex Rt t =0) l.e.s the zero obta1ned pl'evlously 1n Refs', 4 and 26 wlH, no longel hold
due to the factor P,"~ '"~ which is singular when o.„—2n, = -1. Furthermore, it is amusing to note that we
will still have a vanish&zg result when the exponent 0.„—2n, is a negative even integer for precisely the
same reason that 3g~z~ and 3g&~~ had only wrong-signature fixed poles.

We remark that the potential singularities due, to the terms [(x,+x,)(y, +y, )]"& and C "& will be canceled
due to the superconvergence properties of I,.

Finally, it is appropriate to mention at this stage the extexnal masses which were taken to zero for rea-
sons of simplicity of presentation. WB have seen that the asymptotic limit of the absorptive parts of both
~~ and %~„~ arose from singularities in the 7 variables when x„y„and eventually z, were taken to zero.
Qne can easily check that every external-mass factox wiH have either x„y„or z, as an over-all multi-
plieative factor, and thus for the helicity-pole limit the external-mass factors would eventual. ly vanish from
the final answer.
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IV. THE CANCELLATION OF SPURIOUS POLES

As is quite evident from Eqs. (3.28a) and (3.28b),
9g„' and R~ in fact appear to have spurious singu-
larities at

2e, —n„=0, -1, -2, . . . .
Using the relation

(4.1}

we rewrite 3R~ and Sg~ as

( s)"-t( s')-~~( M,-'}"~ '~~w

sin'wa, sinw(2a, -a„)r(1+a„2a,)-' '

and

(-s)"~(-s')"s(M ')" '"&w
gg(-)

sin'wa, sinw(2a, —a„)r(1+a„-2a,} '

(4.2a}

(4.2b)
and observe that again due to the symmetry of the
amplitude under the transformation

P--P and s, zm, (4 3)

V. PUZZLES AND COMMENTS

As is well known, " "consistency between an
assumed Pomeranchukon-dominated constant total

there are, in fact, no spurious singularities at
2a, —n„= -1, -3, -5, . . . , in the sum 9g~' +9K~

The physical amplitude is, of course, the sum of
Eqs. (4.2a) and (4.2b). However, thanks to the
properties of P, and P [see Eq. (3.25a) and (3.25b}],
the spurious singularities cancel upon summation.¹teaddedin Proof. We thank J. H. Weis for
pointing out that our conclusions reached in the
preceding paragraph are wrong and furthermore
might invalidate the concluding paragraph of, this
section. Equations (3.25a) and (3.25b) were mis-
applied in this context. At issue is the full singu-
larity structure in the v, and r, planes which may
be exposed by examining in detail Eq. (3.2). We
have examined [see Eq. (3.6)]the singularities at v,
= a, and 7,.= n, Clearly there are others which
will play a role in compensating the spurious singu-
larities discussed here. We stress that these re-
marks do not alter any conclusions reached in the
other sections of this paper.

This mechanism of cancellation is quite different
from the planar case, 4 in which there was only a
right-hand cut and the spurious singularities were
canceled by means of a compensation mechanism.
Here, however, both the amplitudes associated
with the right- and left-hand cuts have spurious

poles, and cancellation only occurs upon summa-
tion.

cross section [ap(0) =1] and the nonvanishing of the
triple-Pomeranchukon vertex at t =0 is an im-
possibility. Thus under the above assumptions,
our final result, Eq. (3.29}, is clearly incomplete.
Certainly the simplest resolution (aside from de-
creeing that the unknown spectral function itself
has an over-all zero at f =0} is to let the Pomeran-
chukon intercept lie below one by a small amount

q. In this case g would be perhaps a quite funda-
mental, positive parameter as is the case in the
schizophrenic Pomeranchukon model of Chew and

Snyder. " Our graph might represent some smaH
additional term to be considered within their
framework.

At present, direct experimental evidence of a
deviation from unity for the Pomeranchukon inter-
cept is nonexistent. We feel a confrontation with
this puzzle at this time is not at all an academic
exercise. In fact, quite recently Abarbanel and
Green" have addressed themselves to this issue by
considering effects generated by inserting a single
Regge cut in the vacuum channel (a„) of the elastic
six-point amplitude. We certainly share with them
the attitude that Regge cuts must play a central
role in the resolution of the puzzle (which for them
involved "proving" that the residue of the non-
sense-wrong-signature fixed pole vanishes at t
=0}, yet we find their argumentation incomplete.
At issue is the frightening collision of singularities
at 1=0, viz. , the fixed-pole, three-Pomeranchukon
trajectories, and a three-fold infinity of Regge
cuts. It appears to us that a systematic approach
to the disentanglement of these singularities is re-
quired. Such -a program has been carried out re-
cently in a fascinating sequence of papers by Bron-
zan" and by Bronzan and Hui, "and earlier, using
quite different techniques, by Gribov'4 and by
Gribov and Migdal" for the elastic 2-2 amplitude.
An investigation in the same spirit might now be
appropriate for the elastic 3-3 amplitude.

In Sec. II we promised to suggest a somewhat
more general model calculation than the one per-
formed here. We have always had in mind the Q'

theory, that is to say, the black boxes represented
an iterative sum of ladder graphs, and the spectral
function the solution to the Q' Bethe-Salpeter equa-
tion. Recently, Scherk'6 has discovered that a
well-defined zero-slope limit of the dual-resonance
perturbation expansion reduces to the Feynman-
Dyson expansion of Q' theory. " Furthermore,
he noted that the Pomeranchukon singularity van-
ishes in the limit. In the dual model the Pomeran-
chukon has an identifiable mathematical represen-
tation, ' related to the experimentally sound"
Freund-Harari4 hypothesis. It appears that none
of the P' ladders can ever actually represent the
Pomeranchukon in the sense suggested by Freund
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and Harari.
We are thus led to take the black boxes (in the

spirit of Gribov) to actually represent the Pomer-
anchukon, and consequently are left at this stage
with truly unknown spectral functions whose super-
convergence properties must be assumed~~ in or-
der to obtain the helicity-pole limit at f =0, a~(0)

Moreover, as will be discussed in a subse-
quent paper, "Pionization Limit for the Single-
Particle Distribution: Duality and the Feynman
Graph. II,"our initial assumption of incorpox'ating
the free propagation functions for the scalar par-
ticles of the Q' graph into the spectral function ap-
pears to us too restrictive. We feel a somewhat
more realistic model shouM include a far richer
spectrum of particle states propagating along the
lines labeled x„x„y„y„andz„z„ in the

graph of Fig. 3. This appears quite important if
we are to compute other limits of the single-par-
ticle spectrum, such as for example, the asymp-
totic transverse-momentum distribution in the
pionization limit.

We conclude with a conjecture (which in view of
the recent work of Scherk" might possibly be not
too difficult to prove), concerning an asymptotic
link between Q' theory and the conventional dual
model. We have observed that Regge bmits (ob-
tained from sums of ladders)" of plaza~ P' dia-
grams calculated in the strong-coupling regime
have the form

(5.1)

where R symbolizes the Regge asymptotic power,
I' a known function which is identical to that ob-
tained from the dual tree model, X the spectral
function4'(i. e., the solution of the Bethe-Salpeter
equation), and j indicates either a kind of convo-
lution involving EX, ox indeed fox some limits
there may be no convolution at all. For example,
in Ref. 4 E was given by 1 '(1+a„-2a, )
x sin '(va, ).444'

We further conjecture that a form similar to Eq.
(5.1) holds for the Regge limits of nonplanar Q'
configurations (such as discussed here ), i.e.,

FIG. 4. A nonplanar dual amplitude
(see See. V of text}.

given in Fig. 4. We note in passing that this graph
has already been considered in Ref. 48 as an im-
portant contribution to the fragmentation limit of
the single-particle distribution.

We began our paper with remarks concerning the
interrogation of the Q' theory with regard to vari-
ous "new" developments, which appeared from
time to time, in our gradual attempts toward a
fundamental understanding of that vexing yet beau-
tiful aspect of natuxe —the wox'ld of hadrons. As
we have seen, the link between the P' theory and
the dual-resonance model is indeed nontrivial.
Moreover, the latter model appears to us to be a
far more realistic representation of the experi-
mental facts of the hadronic world. Hence, in the
future we hope that the conventional dual-resonance
model mill be put, more frequently than is done at
present, to that same important chore —the testing
out of new ideas.

Note added: It has been pointed out to us that a
similar model calculation of the same noriplanar
graph (see Fig. 2) using quite different mathemati-
cal methods has been performed by Mueller and
Trueman. ~~ Their conclusions with regard to the
nonvanishing (vanishing) of the helicity-pole vertex
function at, a„—2ag = -1, (-2), -3, (-4), . . . are iden-
tical to ours.

o nonplanar (5.2)
ACKNOKI. EDGMEN'f 3

where E' is essentially identical to the residue
function obtained from the Regge limit of lowest-
order dual loop or sum of loops~ 4 which asymp-
totically has the same Mandelstam channel as the
reduced equivalent p' graph (e.g. , Fig. 3) and 8'
is the Regge power associated with the non-Pomer-
anchukon contribution to the limit. One of the pos-
sible lowest-order dual loop diagrams which is
appbcable here (there are certainly others) is

We thank J. B. Bx onzan and our co11.aborators in
Ref. 4, Shau-Jin Chang, F. E. Low, and S, B. Trei-
man, for stimulating discussions. We have also
enjoyed both the constant encouragement and help-
ful advice of S. D. Ellis and A, Sanda. Finally, we
are grateful to 8. Fubini for sparking our interest
in the question: What has the dual-resonance mod-
el abstracted from the Feynman graphP
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APPENDIX

In 1969 Veneziano proposed' the beta-function
transform to study the J'-plane analyticity structure
of the four-point dual amplitude (at that time the
dual n-point functions were in their infancy). More
recently we'2 have generalized the transform in a
rather straightforward manner into a multiple
transform, and have found that the multiple trans-
form of the n-point dual amplitude is again an n-
point dual amplitude with well-defined shifts in the
trajectory intercepts associated with the transform
variables and consequently permitting a rather
simple evaluation of Regge asymptotic limits.

It had not occurred to us that an object so closely
indentified with the dual model should prove useful
in other areas, such as taking the asymptotic limit
of Feynman graphs. Yet, as we hope to have con-
vinced the reader, it is indeed useful and in some
respects perhaps one of the simplest transform
devices to make use of in taking rather involved
asymptotic limits.

Clearly the transform, which we shall define be-
low, needs a far more thorough mathematical in-
vestigation than exists to date. Moreover, since
after all its kernel is,basically a kind of analytic
continuation of the reciprocal of a binomial coeffi-
cient, we feel that the transform may find use in
areas far afield from dual models, Feynman dia-
grams, inclusive amplitudes, etc. Below we shaB
define the transform, and inverse-transform, and
as a trivial example of its applicability apply it to
find the asymptotic limit (s- ~, f fixed) of the Q'

box diagram. Finally, we shall define the multiple
transform.

The transformed function V is given by"

S

FIG. 5. The Q3 box diagram (see Appendix).

totic variable of interest, , and x denotes collective-
ly those variables which are kept fixed.

We observe from Eq. (A2) that when -s-~ we
have the asymptotic result

lim V(s, x)- . dr V(r, x)(-s)'I'(-r), (A3)
~Bazoo 2~~ ~ 6 i oo

and thus the burden of finding the asymptotic re-
sult rests on the singularity structure in the T

variable of V.
For the purposes of finding the asymptotic limit

of a Feynman graph, it proves useful to make use
of the Nambu-Schwinger representation of the.
graph, and the following integral representation of
the beta function:

B(x, y)= dre ""(1—e ")" '
Jo (A4)

We consider the Feynman amplitude, M~, for the
box diagram and for simplicity set the external
masses to zero (see Fig. 5):

~ few yl+j OQ

V(r, x) = .
'

dsV(s, x)B(T+1,s+1) (0&g& 1),
2%2 4

(Ai)

e ~ ~8
0

/+00 4

g da, C 'exp(D/C),
"0 i=1

(A5)

and we invert V(t, x) by

V(s, x) = . dr V(T, x)B( T, -s) (0-& e&1).
2Fg 4

(A2)

B(x, y) is the Euler beta function, s the asymp-

where D and C are defined by the equations

4
tt= «« tt««t — g «tt«t, '),C,

i=I

C=g u, .

Using Eg. (A1} we have

(A6a)

(A6b)

2o.,e,t-C ~~njmj
m(7, t)= " Qdac 'exp—

0 "0 i=I

/+i OQ OO Q2Qf4
x . ds dr e' r — e "(1—e")'.

272 J C
(A'l)

We evaluate the integral
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] " "+& Q2 Q4
dS8

2m'g ~ ~ )„C
by means of a Wick-like rotation, i.e., we define s=+i~ s~, and obtain

(A8)

The integration in Eq. (A'I) now becomes trivial and we have

-0. e /C AjQ3 C~ ~t-C ~em'
M =. ~ ~ J( nda, .c ' '(a, a,)'e "~~ . . exp

-2-7' T -n n /C -8 2 4

(A9)

(A10)

We see from Eq. (A10) that the leading 7 singularity is a double pole at

(All)
w'hen + and @4~0.

Inverting Qe by means of Eq. (A2) and picking up the residue of the double pole, we obtain the leading
asymptotic term

Q~(xai —C((xgtll~ + &3tll~ )lim - do.~dof3C 'exp
-s ~ "o "o C

where C is given by

C Qvg + A3 ~

{A12)

This is, of course, a cumbersome method —to say the very least- to obtain the result depicted in Eq.
(A12). We believe its utility is borne out when there are several asymptotic variables to be dealt with.
Thus we define the multiple transform'2 and make use of it in Sec. III. To wit: For n asymptotic variables
s„.. . , s„ the multiple transform is defined by

I)n+&

V(T„ra~. . . , T~iX) =„
NFg

qn,

and the inverse is defined by

~ 'n+&

V(s~, sm, . . . , s„;X) =
2Pl 0

n

+-I)&+)~ n II

ff tfs, V(s„s2, . . . , s„;X) Q B(7,+ 1, s,. + 1)
gg-4'o f= j. i=1

(0&q, &l; i=1, . . . , n), (A14)

~gj+f co ff'''
J rrd, V( „., ", .;X) rrII(- „—.,)

(0& e, &1; i=1, . . . , n), (A15)

where again X denotes collectively the vax iables which are to be held fixed. Care must be taken when one
uses (A15) where kinematic constraints require ratios of asymptotic variables to approach a limit (when
the limit is unity, things can become quite tricky). If a discontinuity is to be taken, one first takes the
discontinuity and then imposes the kineinatic constraint. For the purpose of this paper, this word of cau-
tion really never arises, but it has been noted ' that for the two-particle distribution such subtleties do in-
deed appear.

~See, e.g. , R. J. Eden, P. V. Landshoff, D. I. Olive,
and J. C. Polkinghorne, The Analytic 8-Matrix (Cam-
bridge Univ. Press, Cambridge, England, 1966).

~R. J. Eden et a/. , The Analytic S-Matrix, Ref. 1, and
references cited therein.

38ee, e.g. , G. Tiktopoulos and S. B. Treiman, Phys.
Rev. D 3, 1037 (1971);E. Eichten and R. Jackiw, ibid. 4,
439 (1971), and references cited therein.

48hau-Jin Chang, David Gordon, F. E. Low, and 8, B.
Treiman, Phys. Rev. D 4, 3055 (1971);see also J. D.
Dorren, Nucl. Phys. 836, 541 (1972), for the weak-cou-
pling-limit calculation of the planar diagram.

~We believe our calculation need not be restricted to
the ladder graphs of Q' theory, i.e. , the essential
requirements are that the black boxes have Regge be-
havior and the spectral functions satisfy a well-defined
set of superconvergence conditions.

6A. H. Mueller, , Phys. Rev. D 2, 2963 (1970).
7C. E. DeTar, C. E. Jones, F. E. Low, C.-I Tan, J. H.

Weis, and J. . E. Young, Phys. Hev. Letters 26, 675
(1971);C. E. Jones, F. E. Low, and J. E. Young, Phys.
Rev. D 4, 2358 (1971).

8%'e use the term helicity-pole limit to mean s —~,
M~ ~, s/M2 ~, and t fixed. This is not to be con-
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fused with the quite different triple-Regge limit in whi. ch
a nonforward six-point amplitude has six channel vari-
ables taken to infinity. For an interesting discussion con-
cerning the relation between these two limits see C. E.
DeTar and J. H. Weis, Phys. Rev. D 4, 3141 (1971).

SWe have chosen a particularly manageable subset of
nonplanar graphs. There are certainly more involved
nonplanar graphs such as those containing cuts in 25
Mandelstam channels (the maximal number) for the non-
forward amplitude. We have no idea what nem features
might or might not emerge upon considering such com-
plex graphs.

~ W. Thirring, Helv. Phys. Acta 26, 33 (1953);we thank
T. D. Lee and S. B. Treiman for pointing out this refer-
ence.

~~G. Veneziano, in Egndamental Interactions at High
Energy I, based on the proceedings of the 1969 Coral
Gables Conference on Fundamental Interactions at High

Energy, edited by T. Gudehus, G. Kaiser, and A. Perl-
mutter (Gordon and Breach, New York, 1969), p. 113.

~D. Gordon, Nuovo Cimento 6A, 107 (1971).
~3As discussed in Ref. 4, continuation below —1 in n„

and n, is prohibited since we would obtain contributions
from the nonleading pieces (the Regge daughters) in the
Regge black boxes.

~4See the last paragraph of Sec. III. Strictly speaking,
at t=0 we should retain some external Inasses for other-
wise there would be no separation of the left- and right-
hand M2 cuts at t =0.

5K. Symanzik, Progr. Theoret. Phys. (Kyoto) 20, 690
(1958). We thank B. Hasslacher and D. K. Sinclair for
discussions concerning the Symanzik rules.

6%6 have not included in the D function the two-particle
-{p -p')2 channel, nor any three-particle channel which
yields a vanishing contribution to the elastic limit.

~~Y. Nambu, Nuovo Cimento 25, 1292 (1962), and see,
e.g, , J. Schwinger, Phys. Rev. 82, 664 (1951).

~~We thank S. D. Ellis and S. B. Treiman for discussions
concerning the transition from the Feynman to the Nambu-
Schwinger representation. See also R. J. Eden et al. ,
Ref. 1, p. 152. The actual representation we make use of
18 RnRlogous to the LRplRce replesentRtlon Rs opposed
to the Fourier version of the amplitude.

SAn evaluation of the z3 0 contribution, which is a bit
more subtle leads directly to an M2-independent result,
i.e. , the amplitude, gR, behaves like s in the elastic
limit. A very similar phenomenon occurs for the planar
graph considered in Ref. 4.

20These symmetries can be seen quite easily by inspect-
ing the graph depicted in Fig. 3, with, however, the lines
x3 and y& contracted.

2~We thank A. Sanda for several discussions concerning
the separation of left- and right-hand M cuts. We refer
the reader to an interesting discussion by A. Sanda,
Phys. Rev. D (to be published), on the analyticity prop-
erties of the six-point amplitude, which relates to the
helicity-pole limit.

It is amusing to note that the vanishing of the discon-
tinuity across the tip of the cut in the Nambu-Schwinger
parameter space is somewhat analogous in many respects
to the well-known tip of the cut theorem of J. B. Bronzan
and C. E. Jones, Phys. Rev. 160, 1494 (1967), where,
of course, at issue there was the analytic structure of an
isolated J-plane cut.

I. M. Gel'fand and G. E. Shilov, Generalized I"uncli ops
(Academic, New York, 1964), Vol. I, pp. 48-50. We
thank B. Lee for interesting discussions on ge'neralized
function theory.

The symmetry in p follows from our discussion of the
symmetry: Q(M, 2) = g (M„2).

25Retaining nonleading terms here appears inconsistent
with our assumption that the Regge boxes are governed
by the leading Regge singularity (see Ref. 13).

26D. Gordon and G. Veneziano, Phys. Rev. D 3, 2116
(1971); M. A. Virasoro, ibid. 3, 2834 {1971);C. E.
DeTar, K. Kang, C.-I Tan, and J. H. Weis, ibid. 4,
425 (1971);R. C. Brower and R. E. Waltz, Nuovo Ci-
mento (to be published); C. E. DeTar Rnd J. Weis, Phys.
Rev. D4, 3141 (1971).

27C. E. DeTar, D. Z. Freedman, and G. Veneziano,
Phys. Rev. D 4, 906 {1971).

28H. D. Abarbanel, G. F. Chew, M. L. Goldberger,
and L. M. Saunders, Phys. Rev. Letters 26, 937 (1971);
Phys. Rev. D 4, 2958 (1971).

29Although the results quoted are not explicity stated
in the sum rules (identical to those of Ref. 27) of T. T.
Chou and C. ¹ Yang, Phys. Rev. Letters 25, 1072 (1970),
we believe they must be implicitly present. We further
remark that a general formulation of the inclusive sum
rules has been recently given by E. Predazzi and
G. Veneziano, Lett. Nuovo Cimento 2, 749 (1971);see
also S.-H. H. Tye, i@d. 2, 1271 (1971).

30G. F. Chew and D. Snyder, Phys. Rev. D 3, 420 (1971).
See H. D. Abarbant;1, G. F. Chew, M. L. Goldberger,
and I.. M. Saunders, Ref. 28, for a discussion of the
schizophrenic Pomeranchukon in the context of the helic-
ity-pole limit.

3~H. D. I. Abarbanel and M. B. Green, Phys. Letters
38B, 90 (1972).

32J. B. Bronzan, Phys. Rev. D 4, 1097 (1971),
J. B. Bronzan and C. S. Hui, Phys. Rev. D 5, 964

(1972).
34V. N. Gribov, Zh. Eksperim. i Teor. Fiz. 53, 654

(1971) tSoviet Phys. JETP 26, 414 (1968)].
5V. N. Gribov and A. A. Migdal, Zh. Eksperirn. i Teor.

Fiz. 55, 1498 (1968) [Soviet Phys. JETP 28, 784 {1969)];
Yadern. Fiz. 8, 1002 (1968); 8, 1213 (1968) [Soviet J.
Nucl. Phys. 8, 583 (1969);8, 703 (1969)].
3~J. Scherk, Nucl. Phys. B31, 222 (1971).
37The fact that this result arises in our opinion is truly

amazing owing to the quite different combinatorial as-
pects of the dual perturbation expansion and the Feynman-
I3yson expansion.

~8The position of the pomeranchukon intercept is in fact,
dual-model-dependent, i.e. , different dual factorizable,
Rnd possibly ghost-free models yield different results.
Fol R detailed discussion of the POI116ranchukon of the
dual model and its relation to the Freund-Harari con-
jecture we refer the interested reader to G. Veneziano,
in Proceedings of the International Conference on Duality
and Symmetry in Hadron Physics, -edited by E. Gutsman
(Weizmann Science Press of Israel, Jerusalem, 1971),
p. 179.

39H. Harari and Y. Zarmi, Phys. Rev. 187, 2230 (1969),
and H. Harari, Ann. Phys. (¹Y.) 63, 432 (1971).

40P. G. O. Freund, Phys. Rev. Letters 20, 235 (1968),
and H. Harari, ibid. 20, 1395 {1968).

4~Presumably t-channel unitarity should provide some
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information on this question.
When we refer to ladders, we do not include ladder

graphs in which, e.g. , 2 or more ladders are welded to-
gether at their sides and with their rungs alternating.

43X, in fact, includes a bit more than the spectral func-
tion; indeed, we also include the computable cut structure
that emerges at the junction of the three Regge black
boxes.

44See I. T. Drummond, P.V. Landshoff, and W. J.
Zakrzewski, Nucl. Phys. B11, 383 {1969), Eq. (3.13), for
an example of the convoluted form.

4~One can indeed argue that the product of a known func-
tion times an unknown function, whose only property
we make use of is its superconvergence behavior, could
yield anything one desires. We are, of course, assuming
that the spectral functions are not so perverse as to can-
cel the effects generated from the known functions. If
one believed in such a happenstance then one can ignore
Ref. 4 and the conclusions of this paper.

4~We note here the significant new development in dual-

loop theory (Ref. 47) by V. Alessandrini, D. Amati, and
B. Morel, Nuovo Cimento 7A, 797 (1972), in which the
asymptotic limits of the orientable nonplanar box dia-

grams have been rigorously calculated and found to be
convergent in the right-half complex s plane. Thus we
feel an asymptotic evaluation of, e.g. , the graphs dis-
cussed in Ref. 48, and a test of our second conjecture
should be possible in the near future.

478ee for example, C. Lovelace, Phys. Letters 32B, 703
(1970); V. Alessandrini and D. Amati, Nuovo Cimento 4A,
793 (1971};M. Kaku and Loh-ping Yu, Phys. Rev. D 3,
2992 (1971);3, 3007 (1971);3, 3020 (1971),and A. D.
Karpf, Institute fiir Theoretische Physik, Univ. Freiburg,
Germany, Reports No. 71-805 and No. 71-806 (unpub-
lished).

4 D. Gordon and G. Veneziano, Ref. 26; see in addition
G. Veneziano, Lett. Nuovo Cimento 1, 681 {1971),and
for a confrontation of the experimental data, S.-H. H.
Tye and G. Veneziano, Phys. Letters 38B, 30 (1972),
which tends to support our seven-component generaliza-
tion of the Freund-Harari conjecture.

49A. H. Mueller and T. L. Trueman, following paper,
Phys. Rev. D 5, 2115 (1972).

M. Ademollo and E. Del Giudice, Nuovo Cimento
63A, 639 (1969).

G. Veneziano, private communication.
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Recently zeros have been found at 0.~(G) = 2n(t) —1, 2n(t) -2, ... in the triple-Regge ver-
tex involving O,l, (0)-0,(t)-e(t). Such zeros were found both in a dual-resonance model and
in certain classes of Feynman graphs. We have examined this question in a model of non-
planar Feynman graphs and found zeros at u&(0) = 2n(t) —2, 2n{t) -4, ... but not at +~{0)
= 2n(t) —1, 2e(t) -3, .... In particular, the zero involving the triple-Pomeranchukon cou-
pling at t = 0 is not present.

I. INTRODUCTION

The question of the size of the Pomeranchukon-
Pomeranchukon-Pomeranchukon coupling (the tri-
ple-Pomeranchukon vertex) is intimately connect-
ed with the problem of the self-consistency of a
factorizable Pomeranchuk trajectory at, or near,
J= 1. This problem seems to have occurred first
in the calculations of Kajantie and Finkelstein' who

showed that a multiperipheral diagram including
many Pomeranchukon exchanges [with the vacuum
trajectory intercept nv(0) = 1] gives a total cross
section which increases with energy. This same

effect is evident in the models of Chew-Pignotti
and Chew-Frazer' ' where it was found that unlim-
ited exchange of a Pomeranchuk trajectory can be
consistent only if nv(0) & 1. As 1 —nv(0) goes to
zero the Pomeranchukon must decouple from all
other particles and trajectories. This led natural-
ly to the idea that 1 —nv(0) might be different from
zero. '

While the above arguments seemed to contain
much truth they always referred to calculations
within the multiperipheral and multi-Regge models.
However, a model-independent statement arose
which seemed to express the difficulty involved in


