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We compare the efficacy of several approximate methods for dealing with multiple-scat-
tering processes by applying these methods to a simple, soluble model. The model consists
of the scattering of a particle by a pair of like particles with motion of all particles con-
strained to one dimension. Two cases are considered: (1) the target particles have a fixed
separation and (2) the target particles are in a deuteron-like bound state with each other.
The interaction of the incident particle with each target particle is the same and is chosen
to be a zero-range potential. The potential binding the two target particles in case 2 is
equal to this same zero-range inte'raction. The methods compared are the Born approxi-
mation for the T matrix, the impulse approximation for the T matrix, the WEB approxima-
tion, the Glauber approximation, second-order multiple-scattering theory for the T matrix,
Born approximation for the K matrix, impulse approximation for the K matrix, and second-
order multiple-scattering theory for the K matrix. For the fixed-separation case the K-
matrix formalisms work much better than the T-matrix formalisms including Glauber theo-
ry. Second-order multiple-scattering theory is superior to Glauber theory for fixed sep-.
aration. For case 2 the aforementioned approximate methods are used in conjunction with
the adiabatic approximation. Comparison of the calculated transmission probabilities with
the exact transmission probability shows the Glauber theory doing much better than any of
the other approximate methods. The success of the Glauber theory results from its sup-
pression of a second-order term in the multiple-scattering expansion which is inadequately
damped by the adiabatic approximation.

I. INTRODUCTION

The Glauber theory' for the scattering of a high-
energy particle by a many-body target has proved
to be very successful in predicting high-energy
scattering cross sections. In order to gain some
added insight into the reasons for the success of
the Glauber theory we have applied it to a simple,
soluble one-dimensional scattering model. For
comparison we have applied other approximate
scattering theories to the same model.

The scattering model consists of a particle con-
strained to move along a straight line on which are
located two identical scattering centers separated
by a distance b. The interaction of the incident
particle with each scattering center (or target par-
ticle) is given by a zero-range potential. The
probabilities for transmission and reflection are
analogous to the differential cross sections for
forward and backward scattering in three dimen-
sions. Two cases are considered: (1) the target-
particle separation b is assumed to be fixed, and

(2) the target-particle separation b is assumed to

vary in time in accordance with an exponential
form factor. Case 2 corresponds to the two tar-
get particles being in a bound state created by a
zero-range potential interaction between them.

Approximate expressions for the transmission
and reflection probabilities are constructed by

means of taking the Born approximation, the im-
pulse approximation, and the second-order mul-
tiple-scattering approximation for either the T
matrix or the K matrix. In addition, the WKB
approximation and the Glauber approximation for
the T matrix are used.

For the case where the target-particle separa-
tion is held fixed we find that all the K-matrix
methods give results superior to all the T-matrix
methods. Also the second-order multiple-scatter-
ing approximations do better than the others. The
Glauber theory does rather poorly. For this case
multiple scatterings involving one or more back-
ward scatterings play a &on-negligible part. The
K-matrix methods seem to be very successful in
handling this kind of an effect.

For the case where the two target particles are
in a deuteron-like bound state the aforementioned
approximate methods are inserted into an adia-
batic-approximation treatment of the problem.
The approximate transmission probabilities are
compared to the exact result for this one-dimen-
sional three-body problem. The Glauber theory
proves to be superior to any of the other approxi-
mate methods. The reason for this result appears
to be the Glauber-theory neglect of a second-order
term in the multiple-scattering approximation
which is insufficiently damped in the adiabatic-
approximation treatment.

2088



COMPARISON OF APPROXIMATE METHODS FOR MULTIPLE. . . 2089

II. ONE-DIMENSIONAL SCATTERING'THEORY

Suppose we have a particle constrained to move
along a straight line. This particle can move free-
ly except for its interaction with a finite-range
scatterer. The Schrodinger equation for this sys-
tem is

d„,+w(x)+k')((x)=0, (la)

In Sec. II we present the model and present a
version of formal scattering theory appropriate
to the peculiar geometry of the model. The der-
ivation of the formalism is contained in Appendix
A. The scattering by single and double zeio-
range potentials is described in Sec. III, and the
Born approximation is introduced. Section IV is
devoted to the WEB and Glauber approximations.
Then in Sec. V we present the Watson multiple-
scattering expansion which is derived in Appendix
B. From this we get the impulse approximation
in first order and the "second-order multiple-
scattering approximation" by retaining the first-
and second-order terms. In Sec. VI we show how
the previous results must be modified to account
for a time-varying target-particle separation.
The results of numerical calculations are pre-
sented in Sec. VII, and Sec. VIII is devoted to some
concluding remarks.

, + w(x) + k' G(x, y)" = 5(x —y) .
dx (4c)

Here T(x, y) is the T matrix and G(x, y)(') is the
"outgoing-wave" or "retarded" Green's function.

The relationship between the scattering ampli-
tudes and the K matrix can be presented in the
form of a pair of linear algebraic equations.

f, (1 —iK„)+f (-1—K„)=K„+iK„,
f (1+K„)+f (1- iK„)=K„+iK„,

00 oo

K„=— dx dy sinkx K(x,y) cosky,
kg „ ~ oo

(5a)

(5b)

(5c)

Oo goo

K„=— dx dy cos kx K(x,y) sinky,
~ oo 4~oo

(5d)

K(x, y) = w(x)6(x -y) —w(x)G(x, y)~"w(y), (5e)

(
d

, + w(x) + ).")G(x y)" = ll(x —y) . (5f)

G(x, y)"-e'" for x&y, c (6a)

Here K(x, y) is the K matrix and G(x, y}'" is the
"standing wave" or "principal value" Green' s
function.

G~' and G~" are solutions of the same differen-
tial equation but display different asymptotic be-
haviors. For the outgoing-wave Green' s function
we require

w(x}=0 for [x~&c. (lb) and

y=e'"+f e '" (x&-c)

=e'"+f,e'~ (x&c).

(»)

(2b)

We require the asymptotic behavior of the wave
function to be appropriate to a scattering process.

G(x, y)~' -e '~ for x&y, -c. (6b}

and

G(x, y)(') -coskx for x&y, c (Va)

For the standing-wave Green's function we require

Then the conservation of flux imposes the follow-
ing requirement on the scattering amplitudes:

I 1+f, I'+If I'=1.

G(x, y)&o) -sinkx for x&y, -c.
The Green's functions are symmetric.

(7b)

oo p Oo

f, =—
( dx, dy e""T(x,y)e"~,

2kg (4a)

T(x, y) = w(x)5(x y) —w(x)G—(x, y)
' w(y), (4b)

This model has been used by Kujawski' to test
Glauber theory.

The task of scattering theory is to provide ex-
pressions for the scattering amplitudes f„ in terms
of the scattering potential w(x) and the energy k'.
These expressions are derived in Appendix A.
Their structure is somewhat different from what
we find in the three-dimensional case. We derive
two relations for f, —a T-matrix expression and a
K-matrix expression.

The T-matrix expression is

G(x, y) = G(y, x) . (6)

III. SCATTERING BY SINGLE AND DOUBLE
ZERO-RANGE POTENTIALS. EXACT

AMPLITUDES AND BORN -APPROXIMATION

AMPLITUDES

The Born approximation consists in neglecting
terms that are higher than first order in powers
of the interaction potential. Thus K(x, y} = T(x,y)
= w(x)6(x-y) is the Born-approximation K matrix
and T matrix.

Now let us consider the simple case where m is
a zero-range interaction; that is,

w, (x) = -v5(x —a) . (9a)

In this case it is easy to construct the solutions of
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the Schrodinger equation, Eq. (1), and show that
the scattering amplitudes are

f(1) A p(1) ABi22aJ

A = -iy/(1+2y), y= v/2k.

(9b)

(9c)

Now if we use the Born approximation for the T
matrix we find

flTB 2y f1TB 2yei22a (10)

Note that for a= 0 the Born approximation for the
K matrix matches the exact result.

Next let us address ourselves to the case of
scattering by two identical zero-range potentials.
We take the scattering potential to be

w, (x) = —vb(x ——,'b) —vb(x+ ,'b) . — (12a)

By constructing the solution to the Schrodinger
equation and examining its asymptotic form one
can find the following expressions for the scatter-
ing amplitudes:

f&2& = (2A+ A'+ A'B')/(1 —A'B')

f(2) (AB-1 + AB+ 2A2B)/(] A2B2)

ei Ab

(12b)

(12c)

(12d)

whereas if we use the Born approximation for the
E matrix we find

Aei 2'1KB 1KB 11)
1 —Asin2ka ' 1 —iAsin2ka '

2A+ A'+ A' cos2kb
1 - A cos2kb (14a)

interpreted on the basis of a very simple multiple-
scattering representation of the scattering process.
The factor A is contributed by each scattering
while the factor B is a phase factor contributed by
each additional length of path b traveled by the
scattered particle. In the numerator of the trans-
mission amplitude f", ~ we can identify four terms
corresponding to the four elementary single- and
double-scattering processes contributing to trans-
mission. Similarly, in the numerator of the ex-
pression for the reflection amplitude f&'~ there
are four terms that can be identified with four dis-
tinct single- and double-scattering processes lead-
ing to reflection. The denominator (1-A2B2} '
=g,"(A'B')" produces a sequence of multiple-
scattering contributions from each of the four
single- and double-scattering terms. In Figs. 1
and 2 are displayed diagramatic representations
of all the terms of the multiple-scattering expan-
sion up through third order.

When we make the Born approximation for the
T matrix in the double zero-range potential case
we find

f TB= 22y, -f2TB=-2iycoskb.

The Born approximation for the K matrix yields
the following amplitudes:

The various terms in these expressions can be 2A cos kb + 2A'(cos kb —sin'kb}
1 —A' cos2kb (14b)

AB

A B

A B

A(AB ) Ae (Ae)

A(AB )
Ae{A e)

FIG. 1. Diagrams depicting terms in the multiple-
scattering series for transmission processes. This is
for a particle in one dimension scattering from two

fixed scattering centers. All processes up to through

third order are included.

FIG. 2. Diagrams depicting terms in the multiple-
scattering series for reflection processes. This is for
a particle in one dimension scattering from two fixed
scattering centers. All processes up to through third
order are included.
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IV. THE WKB APPROXIMATION AND

GLAUBER THEORY

f1TW e(22a(e-f) 1} (18b)

The T matrix may be regarded as the product of
the interaction potential 2()(x) with the wave matrix
Q(x, y).

T(x, y) = u (x)Q(x, y), (16a)

q(x) = dy Q(x, y) e'"' . (16) .

The wave-matrix concept is thus useful for gener-
ating an expression for the T matrix from an ap-
proximate wave function.

The high-energy limit [k2» ~(x)] of the WEB ap-
proximation' for the wave function of our particle
moving in one dimension is

( X

P= e"*exp — dy w(y)) .
2k&

(1Sa)

Q(x, y) = 5(x -y) —G(x, y)"2()(y) . (15b)

The wave matrix has the property that when it
operates on the incident wave e'"" the result is
the corresponding exact solution of the Schrodinger
equation, Eq. (1}.

Ordinarily, one would not expect the %KB approx-
imation to work very well for a singular potential,
but the result shown in Eq. (18) does not look too
bad. At any rate, in the high-energy limit it
agrees with the Born approximation.

Now let us repeat the WKB calculation for the
double zero-range potential ease, Eq. (12). The
result is found to be

f2TW 21x + fe2

f' w=2r coskb+7'e'"'

I'=e '&-1.

(19a)

(19b)

(19c)

We note that the quantity I' is just the WKB ap-
proximation for the interaction with one of the
scattering potentials. The exact expression for
the interaction with a single-scattering center is
just the quantity A given by Eq. (9c}. The Glauber
theory results from replacing the WKB single-
interaction expression by the exact single-inter-
action expression in the WKB expression for the
transition amplitude for the complex system. Thus
I' is replaced by A in Eq. (19).

Thus the wave matrix in the WKB approximation
is just

f', = 2A+ A',

f = AB '+ AB+ A B

(20a)

(20b)
Idp X

Q(x, y} --e(x-y}exp —
} dew(x)),2k'

and the T matrix is

(1'tb)

f1 TW (e-ey 1) (18a)

2 ~ x

T(x, y) =w(x)e(x-y)exp —,' d w( )) . (}ye)2k' „
When this expression is used in Eq. (4) to cal-

culate the transition amplitudes for the single
zero-range potential case, Eq. (9), we find

Comparison of the Glauber theory, Eq. (20),
with the exact result, Eq. (12), reveals that
Glauber theory contains the two first-order terms
of the multiple-scattering series and one of the
two second-order terms. The Glauber theory is
characterized by the neglect of all contributions
to the multiple-scattering series for the trans-
mission amplitude which contain any backscatter-
ings; for the reflection amplitude all terms of the
multiple-scattering series are dropped which con-
tain more than one backscattering.

V. THE SECOND-ORDER MULTIPLE-SCATTERING APPROXIMATION

AND THE IMPULSE APPROXIMATION

The multiple-scattering expansion for the double zero-range potential case is derived in Appendix B.
There it is shown that the 7'matrix and K matrix have the form

X(xy y) = [5(x—2ib)5(y —2b) p, + 5(x+ —,'b)|)(y + —,'b) p2

—6(x+-.'b)6(y —'b)P~P, —6(x--'b)b(y+.'b)P, ZP-]Q(Z'-P, P,)', (21a)

g=G (—'b, —'b), —

P, = -v[1 - vG, (-,'b, ,'b)] ', —

P2=-v[1 —vG, (=,'b, =,'b)] "

Xis the T matrix if G0=G~', where

(21b)

(21c)

(21d)

eikx) e-ikx(
G,(x, x')" =

21k

and Iis the K matrix if G, = G,', where

cos k'x s ink'x
GO(+p + j -k'
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2+1 2A+ 2A2 cos2kb
+

& —A' cos2kg

2A coskb+ 2A' coskb
1-A' cos2kb

(25a}

(25b)

If both single-scattering and double-scattering
terms are retained in the multiple-scattering ex-
pansion, the result is the second-order multiple-
scattering approximation. The transition ampli-
tudes that result from the second-order multiple-
scattering approximation to the T matrix are

f ~=2 A+A+A B

f2r" = 2A cos kb + 2A'B .

(26a)

(26b)

Truncation of the multiple-scattering expansion
to include only terms first order in P, the single-
scattering terms, constitutes the impulse approx-
imation. The transition amplitudes resulting from
the impulse approximation to the T matrix are

f2TI 2A f2TI AB-1+AB

The transition amplitudes resulting from the im-
pulse approximation to the K matrix are

This type of approximation results from using an
approximate form for G,

' in the second-order
multiple-scattering approximation for the T ma-
trix. The unperturbed Green's function G,

' de-
fined in EIl. (22) may be written

5q(x'- x)

G,(x, x')~')= — d(k(
27Tg ~ k —q +ZE

qe'
2II (k' —q')'+ e'

(k' q')'ee')

eqe"*' *', , -iek(k'-q'))

1 Iq(„e „) H cosk(x- x }
q2

(28)

where e is a positive infinitesimal and P denotes
principle value. The second term on the right-
hand side is called the "on-the-energy-shell part
of the Green's function" which we denote by

If the same approximation is made for the K ma-
trix, we find the transition amplitudes to be

,kp. ) cosk(x- x ) (29)

2E~ 2A+ A + A Q1-A2B'-A2sin2kk+ Q
'

2A cos kb+ 2A'B —Q
1 —A'B' —A' sin2kk+ Q

'

2A4 sin4kb
(1+A)'+A'sin2kb '

(2Vb)

(2'7c)

There is a third type of second-order multiple-
scattering approximation that is sometimes used.

If G,
' is replaced by Go~') in the second-order

multiple-scattering approximation for the T ma-
trix, the transition amplitudes are found to be

f2 ++ = 2A + 2A2 cos2kg

f' = 2A coskb+2A' coskb.

(30a)

(30b)

For the cases we subjected to numerical evalua-
tion we found that

~ f 2r~+1~' was very nearly
etiual in value to ~f', "+1~'.

VI. APPLICATION TO THE SYMMETRIC ONE-DIMENSIONAL THREE-BODY PROBLEM

Consider a system consisting of three identical, distinguishable particles constrained to move along a
straight line. Suppose the particles interact pairwise via a zero-range potential. Then the Schrodinger
equation for the system is

g2 ( g2 g2 g2
B+

~
2+,+, +A[6(r, -r2)+6(r2 —r, )+6(r, -r, )J (I/(rl, r„r2) =0.

2M (Brq &1~ or3

Now introduce a new set of coordinates

(31)

«= (2}'"(rl—z(r2+ r2)1,

y = (-,')'/'(r, —r,),

x = (-2')'/2(r, + r2+ r2) .

Then E(l. (31)becomes

(P 82 2 p 2
+ k+ s +

e
+ 6(3 )+31/2 6 x 31/2 31/2 6 31/2

(32a)

(32b)

(32c)



COMPARISON OF APPROXIMATE METHODS FOR MULTIPLE. . . 2093

K' = 2ME/Ii'

a =2MA/k'.

(SSb)

Henceforth we wi11 ignore the center-of-mass co-
ordinate z.

Suppose particle 1 is incident on a bound state
of particles 2 and 8. Then the wave function for
the incident beam is

y, (x, y) =e' -'2ae '~'~~',

k =K+ —'a
(34a)

(34b)

This problem has been solved exactly by McGuire4
who finds that the transmission probability is
Ii+ f, l', w~ere

f, =4A/(2- A),

A = 2y/(i-+ 2y),

y = v/2k = a/kS'" .

(35a)

(35b)

(35c)

v = 2a/32"

2 y/31/2

(36b)

(36c)

Then, according to the adiabatic approximation,
one averages the T matrix or K matrix over the
various possible values of the separation 5 using
the square of the bound-state wave function as a
weighting factor:

He finds there is no reflection and no breakup.
Those particles which are not transmitted partic-
ipate in a knock-out process in which the incident
particle exchanges roles with one of the bound
particles.

We will make an analysis of this problem based
on the adiabatic approximation. The adiabatic
approximation prescribes that one first solves the
problem as if the separation of the two bound par-
ticles were fixed. Thus we must solve the Schro-
dinger equation

),"+4, +v(n(x- S)+5(x+ S)I)((x)=0, (38a)

tion amplitudes that result from applying the adia-
batic approximation to the approximate T matrices
for the double zero-range potential problem are
presented in Table I. The adiabatic approximation
for the K matrix is presented in Table II. Table
III contains the elements of the K matrix for the
fixed scattering case.

VII. NUMERICAL COMPARISON

Although most of the quantities we have dis-
cussed can be presented in simple algebraic form,
it is stiQ difficult to assess how well the approxi-

TABLE I. Transition amplitudes resulting from aver-
aging the T matrix over a variation in the separation in
the double zero-range potential with an exponential
weighting factor.

Born approximation

fSTB—

fsTB — 2i~C

Impulse approximation

fsTI —2A

fsTI -2ACi

WKB approximation

fsnv 2I +I
~srw

Glauber approximation

fsr@ =2A+A2

STc =2AC, + A'E

Second-order multiple-scattering approximation with G0
on the energy shell

fsTE 2A+A2 + A2C

fs» =. 2AC, +2A2C

Second-order multiple-scattering approximation

X' (x, y) =— dbe-s"s/4X(2)(b x y)
3v

Jp
(3'la) fs™= 2A+ A'+ A'E

fs™=2AC& +2A28

X=T or K. (37b)

It might be said that this is the scattering from a
pair of fixed particles whose separation varies in
time in accordance with an exponential weight fac-
tor.

We have carried out the "smearing procedure"
indicated by E(i. (SV) on the 7' matrices and K ma-
trices provided by the various methods described
in the previous sections of this article for the
double zero-range potential case. The resulting
transition amplitudes are identified by a super-
script S replacing the superscript 2. The transi-

Exact T matrix

f = Q [(2A+A)A "Z +A"+ E ]
n= 0

fS Q {A2n+lg + {A+PA2) A2n@
n=0

A=-iq(X+iq) '

y= v/2k =a/k3'"

E =C +iS = +
e zen

n
=

n n =n2+n2 n2+n2
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TABLE II. Elements of the K matrix resulting from
averaging the K matrix over a variation in the separa-
tion in the double zero-range potential with an exponen-
tial weighting factor.

Born approximation

X~~= -2 y(1+C1)

Xss = 2y(1-C1)
X'~=0cs

Impulse approximation
n

SSI 2+ g g +2n
n=0m=0

&& ~~2n-2m +4~2n-2m+ 2 2 2n-2m-2~

XSI 2~ Q Q ~2n
n=0 m=0 m

2n -2m P 2n -2m+1 2 2n —2m -1)

m n

n=1 m=0

=2- (2-e„)(-1) "(2n)./[m. (2n -m). ]

Second-order multiple-scattering approximation

'2n~SN — 2~ Q g ~2n
n=0 m=0

1 1
2n —2m + Y C2n-2m+ 1 +

2 C2n-2m —1)

52n-2m+2+ 2 2n-2m+2+4 2n 2m~

oo

~SN — 2~ g +~2n
n =0m=0

X (C2n m 2 C2n 2m+1 7'C2n 2m-1)

oo n

+2y Q
n=0 m=0

mate transition probabilities conform to the exact
values. Therefore we have evaluated these quan-
tities numerically for a particular case. We have
chosen the strength v of the zero-range potential
to be such that two particles of mass 1 amu inter-
acting via such a potential would have a bound
state at -2.2 MeV. The masses of the particles
have all been set equal to 1 amu.

The transmission probability for the case of the
two zero-range scattering centers in one dimen-
sion having a separation of b = 1.128 F is plotted
in Fig. 3. All the approximate transmission prob-
abilities converge to the correct value at suffi-
ciently large values of the energy. Below 100 MeV
the Born approximation for the T matrix is ex-
tremely bad. The impulse approximation for the
T matrix and the WEB approximation are poor at
low energies but become very good above 50 MeV.
The Glauber theory is fair below 100 MeV. The
Born approximation for the K matrix, the impulse
approximation for the K matrix, and the second-
order multiple-scattering approximation for the
T matrix are fair below 50 MeV and excellent
above that energy. The second-order rpultiple-
scattering approximation for the K matrix is the
only approximation that works well at all energies
for this case.

TABLE III. Elements of the K matrix for the double
zero-range potential scattering problem.

Born approximation

X2+ = -2 y(1+ coskb)

=-2y(1 —coskb)/(] -y2 sin2kb)

X =2y sinkb/(1-y sin kb)

Impulse approximation

X' = —2y(1+coskb)/(1-y' sin kb)

X2I 2 ~(].—coskb) /(1 —.+ 2 sjn2kb)

X =2y sinkb/(1-y sin kb)

Second-order multiple-scattering approximation

SN
"

2n

n= m=0

1 1X ($2n 2m+1 2 2n+2m+2 Y 2n —2m)
X + = -2 y(1+ coskb)/(1 -y sinkb)

X += -2 y(1 —coskb)/(1+y sinkb)

X2+= 2p 2 sinkb/(] —p2 sin2kb)

Exact

"(-])m+"(2n +1) 1/tm t(2n +1 —m)!](
2n

e zen
C +zS +

cv +n A +n

(1+coskb)(1-y sin kb)X =-2y (1-y sinkb)(1 —2' sin kb)

X~2~= -2 q
(1 —coskb) (1 —y2 Sin2kb)

ss &(1+p sinkb)(1 —2&2 sin2kb)

X|2&=2y sinkb/(1-2y sin2kb)
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It appears that for treating the scattering of a
particle from two fixed scattering centers the K-
matrix methods work better than the 7-matrix
methods. Among the various approximations used,
the second-order multiple-scattering approxima-
tion seems to work the best.

In Fig. 4 we plot the transmission probability
for a particle in one-dimension scattering from
two like particles in a bound state. The three
particles are distinguishable, have mass of 1 amu
each, and interact with each other via identical
zero-range potentials of strength such as to bind
a pair of the particles by -2.2 MeV. Plotted is
the exact transmission probability together with
transmission probabilities derived from inserting
into the adiabatic approximation the transmission
amplitude for scattering from two fixed scatterers.
For the fixed scatterer amplitude we tried the
Glauber approximation, the %KB approximation,
and the exact fixed scatterer amplitude. In addi-
tion we used the Born approximation, the impulse
approximation, and the second-order multiple-

scattering approximation for the K matrix and the
T matrix, respectively. The result of using the
exact fixed scatterer amplitude in the adiabatic
approximation is labeled "adiabatic. "

It is remarkable that the Glauber theory works
quite well even at very low energies. This is sur-
prising because (a) the Glauber approximation does
poorly for the fixed scatterer case and (b) the in-
sertion of the exact fixed scatterer amplitude into
the adiabatic approximation gives a poor result.

VIII. DISCUSSION

We find that the Glauber approximation of ne-
glecting backscattering works relatively poorly
for the one-dimensional scattering from two fixed
scattering centers. However, when the Glauber
approximation for the one-dimensional fixed scat-
terer problem is inserted into the adiabatic ap-
proximation for scattering by a bound state of two
particles in one dimension one gets a very good
result for the transmission probability. The re-
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FIG. 3. Transmission probability for a particle in one dimension scattering from a pair of identical zero-range

potentials as a function of the kinetic energy in the lab frame. The strength of each zero-range potential is such as
to bind a particle of mass 0.5 amu mth a binding energy of -2.2 MeV. The incident particle has a mass of 1 amu.
The approximate calculations used the Glauber theory, the %KB approximation, the Born approximation for the
X matrix and for the T matrix, and the second-order multiple-scattering approximation for the E matrix and the
T matrix, respectively.

suit is in fact superior to what is found if the
exact two-fixed-scattering-center amplitude is
inserted into the adiabatic approximation.

Another numerical verification of the effective-
ness of the Glauber theory is provided by Franchi-
otti and Osborn' who consider the scattering in
three dimensions of a particle from two fixed over-
lapping Yukawa potentials.

The remarkable efficacy of Glauber theory has
been discussed by Osborn, ' Harrington, ' and by
Queen. ' These authors suggest that in neglecting
the second-order backscattering term Glauber
theory is in fact taking into account the contribu-
tions of the higher-order terms in the multiple-
scattering series which are neglected. Our re-
sults do not appear to be consistent with this view.
For the fixed scatterer system the transmission

amplitude is

fI2I = 2A+ A'+ A'B'+ 2A'B'+0(A')

= (2A+ A'+ A'B2)/(1 —A'B') .
The Glauber approximation to this is

The two differ in order A'. In our numerical tests
we have found that the Glauber theory gives a
rather poor result for the fixed scatterer case.
Thus we find nothing to support the idea that the

neglect of the second-order backscattering term
can be justified by taking into account contribu-
tions from higher-order terms in the multiple-
scatterlng series.

On the other hand, when we insert the Glauber
amplitude into the adiabatic approximation for
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scattering by a pair of particles in a bound state
we find the transmission amplitude to be

f src (fRTc) 2A+A2

as compared to the exact transmission amplitude

f, =2A+ A'+ 2A' +O(A4). (41)

f =( ft'l) =2A+A'+A'E +O(A )

=2A+A' ——'A'+O(A ) . (42)

The discrepancy between this expression and the
exact result is somewhat greater than that for the
Glauber-theory expression: -~SA'+O(A4) as com-

The difference now occurs only in third order in
A. In our numerical tests ~f src~' becomes tluite
nearly etlual to

~f, ~' above 20 MeV incident en-
ergy

If the exact transmission amplitude for two fixed
scatterers is inserted into the adiabatic approxi-
mation for scattering by a pair of bound particles,
one finds

pared to —,'A'+O(A'). In our numerical calculation
this increased discrepancy has a marked effect:
j f s+~

' does not approach closely the value of
~ f+ )'

until the incident energy reaches 100 MeV.
It appears from our results that the adiabatic

approximation is a much less effective procedure
than has been heretofore supposed. Neither is the
Glauber theory a very effective approach to the
fixed scattering center problem. But inserting the
Glauber approximation into the adiabatic approxi-
mation gives a very good result. There must be
a compensation of errors effect at work here.

From the multiple-scattering expansion for the
fixed-scatterer problem we have seen that each
backscattering picks up a phase factor gP = e"~'
while no such factor is introduced for a forward
scattering. We can see that for a collection of
bound scatterers the backscattering contributions
must be considerably damped by destructive in-
terference as a result of the time variation of the
separations of the scatterers. The damping of
backscattering introduced by the adiabatic approx-
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imation is plainly inadequate. The weakness of
the adiabatic approximation in damping the back-
scattering contributions is compensated for by us-
ing the Glauber approximation vrhich neglects
backscattering entirely.

Schrodinger equation for this system is

d, +w(x)+a') ((x)=O,

ce(x) = 0, j x j & c .

(cia)

(Alb)

Let the asymptotic behavior of (j) be appropriate to
a scattering process:

The authox's ax'e grateful to P. B. Kantox',
L. L. Foldy, and C. M. Shakin for their helpful
discussions of the subject matter f th'1s paper.

y(x) = e'""+f e '~ (x& -c) (A2a)

APPENDIX A: FORMAL SCATTERING THEORY

IN ONE DIMENSION

Consider a parti. cle free to .move along a stx-aight
line, Suppose there is some finite-range scatter-
ing potential m(x) located near the origin. The

(A2b)= e""+f, e'~ (x& e) .

We seek the relationship between the transition
ampiitudes f, and f and the scattering potential
so and the energy O'. The procedure we foQovr
vrill be that of the extended 8-matrix theory. '

Let ~ x n=&+„( ), n-l, 2, . . .) be a complete, ortho-
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normal set of functions on the interval -c & x & c,
where c&c.

(A6). The result is two linear equations for f,
and f .

4-C
dxy„(x)y. (x) = 6„„, (ASa} f,Z„+f Z, =z, ,

fZ, +fZ =z

(A8a)

(A8b)

ge. ( )y. (y)=6( -y).
n=l

(ASb) Z„=e'" -e'" — -ik G -c, c,dc (A8c)

(A4)
n=l

Using Eqs. (Al) and (A4) we find

~ C d"~ .~.-~. „„.~)

On that interval P(x) may be represented by an ex-
pansion in terms of the Q„'s.

y(x) =g A„y„(x).
Z +=e ——sk G -c, c

Z =e'" -e'" —-iu G -c, -c,
C

Z+ „=-e™——'Ek' G c, -c
C

(A8d)

(Age)

(A8f)

pC d
dxy k'+w(x)+d, p„

~-c dx

oo
t

C d2g A dxQ k'+ w(x)+
m=1 "-c

Q A [k'+w+D'] „
m= 1

d d
dx " n dx

It follows thai

y(x) = g A.y„(x)

(A5)

z, =-Z„+e '"' —+ik G -c, c,
C

(A8g)

-sacz =-Z, =-e '"+e '"' —+it G(-c, -c).c

(A8h)

(A9)
m= 1 n= 1

Equation (A8} is equivalent to the Peierls-Wigner
form of R-matrix theory. " For our purposes it
proves convenient to modify these expressions
somewhat.

Define the unperturbed Green's function to be

G.(y, x) = g P e.[(&'+D')-'l..e.(x).

where

m= 1

(A6a}

Then one can easily establish the relationship

G(y, x) = G,(y, x) —)I de G,(y, z)w(z) G(z, x),

(A10a)

which in operator notation reads

g [k'+w+D'], [(k'+w+D') ']„„=6,„. (A6b)
m=1

This expression may be rewritten to read

G= Gp —Gpl)G.

Another relation which can be derived is

G = Gp —GzuGp.

(Alob)

(A10c)

d d4(x)= 4(y)—G(y x) —G(y x}—4(y)
dp C

Combining Eqs. (A10b) and (A10c) gives

G Gp GpXGp ~ (A 1la)

where

(A7a)

G(y, x) = g Q y„(y)[(k'+ w+D') ']„y„(x),
m=1 n=l

(A7b)

and is valid for
~
x ( & c.

We choose the P„'s to satisfy homogeneous
boundary conditions at +c. Then the Green's func-
tion G(y, x) will be symmetric. By means of the
Green's function we have established a relation-
ship between the asymptotic behavior of g and the
dynamics of the system in the interaction region.

Now we set x =ac and combine Eqs. (A2) and

X(x, y)=w(x)5(x-y) —w(x)G(x, y)w(y). (Allb)

We will substitute Eq. (A11) into Eq. (A8) and find
an expression for f, in terms of X rather than G.
The relationship given in Eq. (A8) relates f, to
the values and derivatives of G(x, y} for x and y
being in the asymptotic region. By expressing the
f, 's in terms of X instead of directly in terms G,
we end up being required to calculate an average
of G over the interaction region rather than the
value and derivative of G at c and c.

To carry out our program we need an explicit,
simple representation of G, . Actually, G and Gp

depend on the boundary conditions satisfied by the
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Q„'s at x=+c, and these boundary conditions may
be chosen arbitrari1y. We will consider only two
of the infinity of possibilities. One choice corre-
sponds to what are called "outgoing wave" or
"causal" boundary conditions: X=K -24(jr' . (B1b)

pending on whether G is G(') or G('). The quantity
w(x, y) is just w(x)6(x- y). Our operator notation
will consist in writing an equation like Eq. (B1a)
in the form

e ikey& ~-Ikey(
G,(x, x')=G, (x, x')'&=

21k
(A12a) From the definition of G, Eqs. (4c) and (5f), we

can write

X(x, x') -=X(x, x')~') = T (x, x') . (A12b)

For this choice we will call X~' =- 7 the T matrix.
The other choice corresponds to what are called
"standing wave" or "principal value" boundary
conditions:

or

G = (D'+ w + k') '. (B2b)

d2 -1
O(x, y)=(I!(x—y), +M(X, y)+0'll(x —y)

(B2a)

,)&»
coskx, sinkx,

-k

X(x, x') =- X(x, x')(» = K(x, x') .

(A18a)

(Alsb)
(D2+ k2)-&

Note that

(B3)

Now define the unperturbed Green's function.

For this choice we will call X~'~ -=K the K matrix.
Substitution of Eq. (A11) into Eq. (A8) using the

definitions of Eq. (A12) gives

p Oo

f, =—
i dx dye'~T(x, y)e""',

2k~ „ (A14a}

T(x, y) =w(x)6(x-y) —w(x}G(x, y)('Jw(y}, (A14b)

G(x, y)&'& = G,(x, y)&'& —
~ dzG, (x,z)t'&w(z)G(z, y)&') .

G '=G ' se0 (B4a)

G =Go —Gom}G.

Substituting Eq. (B4b) into Eq. (B1b) gives

X= zv —seG, X

(B4b)

so that by operating on both sides of Eq. (B4a) with

G, and G we find

(A14c)

On the other hand, if the definitions of Eq. (A18)
are used in Eqs. (A8) and (A11), we find

=(1+WG,)-'w.

For our two-potential case we can write

w(x, y) = w, (x, y) + w, (x, y)

(B5)

f, (1- iK„)+f (-1-K„)= K„+iK„,
f+(1+K„)+f (1-iK„)=-K„+iK„,

] goo pOO

K„=—
~

dx~ dysinkxK(x, y)sinky,

K„=— dx dy coskxK(x, y) cosky,
1

CC

(A15a)

(A15b)

(A15c)

(A15d)

K(x, y) = w(x)6(x-y) —w(x)G(x, y)"'w(y), (A15e)

(B7a)

(B7b)X) = W) —W~GO(Xg+X2) .
Equation (BVb) may be rearranged in the following
manner:

= -ve(x- ,'b)5(x- y) -v5(x+-,'b)5—(x-y) .
(B6)

We make a corresponding decomposition of the X
matrix.

X=X~+X2)

G(x, y)(o& = G (x, y)& ) —
Jt

dzG (x, z)&'&w(z)G(z, y)'" .

(A15f)

(1 + w~GO)Xi = w~ —wyGO(X X~)

X,.=x, -x;G()(X-X;),

(B8)

(B9a)

APPENDIX B: THE MULTIPLE-SCATTERING

EXPANSION

To derive the multiple-scattering expansion we
will employ an operator notation. Let us repre-
sent Eqs. (4b) and (5e) by

&(~, 7)=~(~, y)-Jid*'f&7 W%v )&(v ~ ')~(dv')',
(Bla)

where X is either the T matrix or the K matrix de-

x, =(1+w,.G,) 'w,.

= ZU,. —Qi)GOX) . (B9b)

The quantity x& may be recognized as the X ma-
trix for the case where all the terms on the right-
hand side of Eq. (B6) vanish except w, . Thus x~ is
the exact solution of the one-potential problem.
The Watson multiple-scattering formalism" for
our two-potential problem may be summarized
now as follows:
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X=X~+X2,

X, =x,—x~G+2,

X2 = x2 —x2G+I .

(810a)

(810b)

(810c)

Successive iteration yields the multiple-scattering
expansion.

X(», y)=5(x--.b)5(y-kb)Pi(1 g-PuPi) '

+5(x+—', b)5(y+ —,'b)P (1-gP,gP, ) '

5—(x+-.'b)5(y --.'b)P. gP, (1 g—P, gP, )-'

-5(x- 'b)-5(y+ 'b)-p, gp, (1 —gp, gp, ) ',
(814a)

X xy + x2 x/Gpx2 X2Gpxg + x/Gpx2Gpxg

+ x2Gpx~Gpx2 + ~ (811)

The zero-range interaction we use may be writ-
ten in the form

g = G, (—,'b, -2b) = Go(- —,'b, —,'b),

P, = —v[1 —vG, (-,'b, —,'b)]

P, =-v[1- vG, ( ,'b, --2-b)]

(814b)

(814c)

(814d)

wj(x, y) =-v5(x- a,.)5(y —a,.}. (812)

x,(x, y) =5(x- a,)p,.5(y —a,.),

P,.= -v/[1 —vG, (a,, a,.)].
Substitution of Eq. (813) into Eq. (811)allows us
to sum the multiple-scattering expansion.

(813a)

(813b)

From this form it is easy to verify that the solu-
tion to Eq. (89b) is (815a)

while for the X =K case we have

y( p) cos kx& sinkx&
p xp x (815b)

Substituting these expressions into Eq. (15) gives

To evaluate these expressions explicitly we need
G, . For the X= T case we have

elks) e-ikx(
G, (x, x'}~'~ =

21k'

7'(x, y) = [5(x——,'b)5(y ——,'b)+ 5(x+ ,'b)5(y+——,'b)] 2fkA(1 —B'A') '
—[5(x+ ,'b)5(y —-',—b)+5(x——,'b)5(y+-', b)]2ikA'B(1 —B'A') ',

K(x y)= ' . ' +
5(x —~b)5(y- 2b) 5(x+ ~b)5(y+ 2b) (-2ky)(1-2y sin kb)

1+y sinkb 1-y sinkb 1 -y2 sjn2kb

}]
(2ky sinkb)(1 —2y' sin'kb)

1 —y' sin2kb

y = v/2k,

A=-iy/(l. +i@),
ei A'5

(816a)

(816b)

(816c)

(816d)

(816e)

Substitution of Eq. (816a) into Eq. (4a) and the subStitution of Eq. (816b) into Eqs. (5a)-(5d) both produce
the exact result of Eq. (12).
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