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jection operator) by Nambu in the first of Refs. 17.
~9L. Clavelli and P. Ramond, Phys. Rev. D 3, 988

(1971);P. Campagna, S. Fubini, E. Napolitano, and
S. Sciuto, Nuovo Cimento 2A, 911 (1971).

This is what happens to the first daughter trajectory
for boson-boson systems in the case of unit intercept
because then their vertices can be expressed as perfect
differentials. L. Clavelli and P. Ramond (unpublished
report).

2~To the extent that this diagram represents a Regge
exchange it should be gauge-invariant by itself. The
author thanks Professor M. Jacob for pointing this out.
See, in this context, J. S. Ball and M. Jacob, Nuovo
Cimento 54A, 620 (1968), and D. Horn and M. Jacob,
ibid. 56A, 83 (1968).

22It should be noted that the theories of Ref. 16 arrive
at nontrivial form factors for the ground-state meson.
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We assume that the partial-wave amplitude of the scattering of two scalar bosons, in the t
channel, has n complex-conjugate pairs of Pomeranchukon singularities of the form n(t) =1
+a~t. We consider the cases where the complex singularities appear in an additive way and
in a multiplieative way in the partial-wave amplitude. We obtain for the scattering amplitude
an asymptotic expansion of the form

n

F (s, t) Pay(t) (Ins) g(z),

where g(z) is an entire function of the argument z =~tins. We discuss properties of the
forward spike in the differential cross section, and the properties of the amplitude in con-
nection with the Froissart bound and the violation of the Pomeranchuk theorem.

We consider the two-body scalar-boson collision
1+2- 3+4. There is a single scattering amplitude
F(s, t), and the crossing symmetry gives E(-s+ie)
=F*(s+ic). We construct the symmetrical ampli-
tude E,(s, t) = 2(F, +F,) and the antisymmetrical
amplitude F, (s, t) = 2(F, F,), where -E,(s, t) and

F,(s, i) are the scattering amplitude for the pro-
cesses 1+2- 3+4 and 1+3- 2 +4, respectively.
The crossing then gives

E,(se™)=E,*(s),

E,(se'") = F,*(s) . -

Oet+ Z y

so as the energy increases the integrated elastic
cross section and the total cross section remain
bounded. The forward spike of the scattering is
defined by its width [k(s)] ' and height (do/dt), ,
which are exhibited by the parametrization do/dt
= (do/dt), ,e' '. We shall also—use the asymptotic
phase of the amplitude which is defined by the ratio
ReE'(s, 0)/ImF'(s, 0).

The high-energy scattering amplitude is con-
structed in the usual way by means of the Sommer-
feld-Watson transformation:

The optical theorem relates the total cross section
0~ to the imaginary part of the forward elastic am-
plitude; thus we have

ImF&(s, 0) =2ks'"or(s), i= 1, 2

where c~ is bounded by the Proissart bound. ' By
definition we have

F'(s, t) „2. t s' ]'(j)a'(j, t) dj,
1

Cg

where $ (j) is the usual signature factor

1+e '"
sin(wj)

'

(4)

1 t IF(s, t) I'dt
16@ 2, s s-4m'

16v )4„2,dt

The unitarity relation provides that

(2)

('(j ) is purely imaginary at t= 0 and $ (j) exhib-
its a right-signature pole at j=1, so we shall use

~ 2 1
( (j)-~- —.

r j-1
a (j, t) is the partial-wave amplitude in the t
channel which can have all singularities allowed
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by the unitarity relation, namely poles and cuts.
Let us consider the analytic properties of the

function [a'(j, t)] ' in the (j, t) manifold near the
point (1, 0). We shall use the same procedure as
in Ref. 2. The position of the singularity of the
amplitude in the angular momentum plane is given
by the equation [a (j, t)] '=Oat j=n(t), and we
investigate the structure of this singularity in the
neighborhood of the point (1, 0). We assume that
[a (j, t)) ' is regular in the neighborhood of (t = 0,
j=1); by expanding it in a Taylor series about
t=0, we obtain

+ ., [a', (0)] ' [n(t) —1]'+ ~ ~ ~

8$

Now we require the vanishing of the first deriva-
tive in j of this function. If we do that (as we are
free to do) then we obtain from the above expan-
sion n(t) = I + av t . The a parameter is given by
the square root of the ratio

a t ' g 0

The singular structure of n(t }is clearly a conse-
quence of the analyticity of [a'(I, t)] '. The Regge
trajectory n(t) is singular and exhibits near the
point (1, 0) a Riemann-sheet structure of the form
n(t) = 1+~+i, so in the physical s channel (t& 0},
n(t} is a double-valued function, and we have two
Pomeranchukon trajectories which cross at t= 0,
and t=0 is a branch point for both. This result
suggests that Regge poles have left-hand branch
cuts in t from t=0 to t=-~.

The above rough unconditional assumption about
the j derivative of [a (j, t)] ' can only be justified
by using the fact that such a similar singular
structure has been deduced by using specific dy-
namic models. ' In these models the consequences
of the collision of a Regge pole with a Mandelstam
branch cut are investigated. The main result of
such a collision is the formation of a complex con-
jugate pair in the physical complex j plane, to-
gether with a left-hand cut in t in the Regge trajec-

tory, of a square-root character.
The partial-wave amplitude a'( j, t) also contains

cuts, and it is believed that at least some of these
cuts can be thought of as generated by Regge poles.
The location of the branch point n, (t) of such cuts
in the j plane can be written

n, (t) = max[n, (t,) + n, (t,) —1],

in terms of two poles n, (t,) and n, (t, ) which cause
it, and the Regge cut will inherit the Riemann-
sheet structure from the Regge poles which cause
it; therefore a pair of Pomeranchukon trajectories
has the property that it will intersect the cut at
t= 0. Then the cut itself together with another
Pomeranchukon should by the same argument be
expected to generate another cut with branch point
at

n', (t) = max[n, (t ') +a ~(t ")—1] .

The latter cut has even a smaller slope than the
first one, and at t=0 it satisfies n,'(c) =n, (0). If
such an argument is repeated as we combine cuts
and poles, then at t=0 we find a degeneracy be-
tween the Pomeranchukon cut and the Pomeran-
chukon pole with a condensation of an infinite num-
ber of complex singularities of the form j= 1+ ta)(-t
at j=1 and t=0.

We consider, in this paper, the exchange of n
complex Pomeranchukon singularities in the t
channel of a two-body scalar collision. The Pom-
eranchukon singularities are parametrized in the
physical region of the s channel as n, (t) = I ota)t-t.
Let P (Wt) be the Pomeranchukon residue which is
analytic on the negative-t axis. We know that re-
lation (3) together with the order and the nature of
the singularity in the partial wave, in the forward
direction, are in general enough for the determi-
nation of the properties of the forward spike in
which we are interested (shrinking, zeros, oscil-
lations, and asymptotic phase of the amplitude).
Therefore a complete understanding of a diffrac-
tion scattering depends on the summation of all
these singularities.

%'e consider first the case of complex conjugate
pairs of singularities which appear in an additive
way in the partial-wave amplitude. Using (4) we
have in terms of Bessel functions with large argu-
ments

)) I
ImE'(s, t),„„„„,p'(t)s.

,
vwz [&,(z) —&,(z)], (5a)

n-1
H ~,( z) (( (z) I' e (" **) (eez)z (z)(ooz ,'e))&o ee '"&')z'z(z)(oot-le)), ''„„], (5o)=
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n 1/2
ReF (s, t) ~,——p (t) 8++ '(lns)" ' —

~

e'"t'H~z(z)+g, (lns) ' — e'"t'Hz(z),
»=1 »=1

(5c)
where

H~y(z) =J,(z) +i Y,(z), H' (z) = Z,(z) —i Y,(z) .

J,(z) and Y,(z) are Bessel functions of argument z =au-t lns which have at large lns the asymptotic behav-
ior

J&(z) = — [P(y, z) cosx —Q(y, z) sinx],

2 1/2

Yz(z) = — [P(y, z) cosx+ Q(y, z) sinx],

where

x= z -(-,'y+-,')w, Q(y, z)-g (-1)'
2 „„,P(y, z)-g (-1)"» (y, 2~+1)» (»2&)

0=0 0=0

From (1) and (5a) we deduce an asymptotic expansion for the total cross section

,
(

)(lns)"
(n —1)!

The Froissart bound is saturated when three complex pairs of Pomeranchukon singularities are exchanged
in the t channel. Equations (5a) and (5c) lead to an asymptotic phase for the antisymmetrical amplitude
which increases logarithmically with the energy, so that in the forward direction the forward spike is
dominated by the real part and, therefore, the Pomeranchuk theorem does not hold. ' Using the constraint
(2) we can see from (5a) and (5c) that the width of the forward peak depends upon the energy and upon the
number of Pomeranchukon trajectories exchanged in the t channel. The dependence of the diffractive cone
expected is k(s)-(lns)"". For n= 1 in the forward direction, this amplitude coincides exactly with the
Finkelstein model and has the same properties (shrinking, zeros, oscillations, asymptotic phase). Con-
trary to the negative signature amplitude the symmetrical amplitude has a phase which decreases loga-
rithmically with the energy. In the forward direction, therefore, the imaginary part dominates on the
real part, and for this amplitude the Pomeranchuk theorem is fulfilled. For n= 1 this amplitude coin-
cides exactly with the amplitude given by Sugawara and Arafune". For this amplitude the unitarity con-
straint (3), with the definition (2), (5a), and (5b), leads to an energy-independent diffraction spike. This
result does not agree with axiomatic results of Eden and Kaiser, ' who found that the behavior of the sym-
metrical amplitude is very similar to that of the antisymmetrical amplitude. Consequently we can con-
clude that n complex conjugate pairs of Pomeranchukon singularities which enter in the partial-wave am-
plitude of negative (positive) signature, in an additive manner, do (do not) lead to a violation of the Pom-
eranchuk theorem.

Let us now consider the case where Pomeranchukon singularities enter in the partial-wave amplitude in

a multiplicative way. Using the properties of the Mellin integrals, we have

ImF (s, t)-vP'(t)s Q (lns)" 'A»~we [J',(z) —Y,(z)]++ (lns)» 'A,'», (x)~we [J,(z)+ Yo(z)]
& even hoed

(6a)

yt 0-1
ReF'(s, t) - s p'(t) g g, (lns)' ' (cot—,'wj) t-~„— e"t'Ho'(z)

n 0 —2 B m'"
m=0

(6b)

n 1/2 z "'
ReF (s, t)- —P (t) g ', (lns)» ' — e"AH,'(z)+g 1,(lns)' '

2
e "~4H»o(z)+Es

- »=l » =1

From (1) and (6a) we deduce an asymptotic expansion for the total cross section:
('6c)
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The Froissart bound imposes n=2 and therefore
only the exchange of two complex conjugate pairs
of Pomeranchukon singularities is allowed. In this
case, the total cross section for the symmetrical
process for large s is o'r = P'(0) lns and the as-
ymptotic phase grows logarithmically with the en-
ergy. Therefore the Pomeranchuk theorem does
not hold. Such a component in 0~ which rises as
1ns with s wi. ll give a rapid growth in o~ at asymp-
totic energies, and therefore this term must be
coupled very weakly at the total cross section in
order to provide an explanation for the flatness of
the Serpukhov data in the 35-65 GeV range.

To summarize:
(1}An asymptotic expansion of the form

F(s, t) ~ Q a,(lns)" g(s)@ace;g(p
A=a

has been deduced for the scattering amplitude by
using the exchange of n complex conjugate pairs of
Pomeranchuk singularities in the t channel of a
two-body scalar-boson scattering amplitude. [g(z}
is an entire function of the parameter s =~t Ins. ]
As Casella" has pointed out to us, for additive
singularities, in the limit of a weak dependence of

the Pomeranchukon residue, the symmetrical and
the antisymmetrical amplitude can, for arbitrary
large s, be put in the form

F'(s, t) =E'(s, 0) g(z) .

(2) The Froissart bound removes the degener-
acy on the number of singularities which occurs in
the partial-wave amplitude in the forward direc-
tion.

(3) The additive singularities lead to a class of
antisymmetrical amplitudes which give a Pomer-
anchuk violation, while multiplicative singularities
lead to a class of symmetrical amplitudes which
give rise to the violation of the Pomeranchuk theo-
rem.

(4} For three complex Pomeranchukon singulari-
ties we obtain o = (lns)', and a vanishing asymp-
totic phase. Similar results have been obtained in
other ways. Finkelstein and Zachariasen" predict
by using the multiperipheral model or =(lns)' and
a purely absorptive amplitude. Andreev" also ob-
tains or =(lns)' and a vanishing asymptotic phase.
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