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We introduce the electromagnetic interaction of dual models by means of a generalized
minimum-interaction principle. It leads to a conserved current and a gauge-invariant theory.
Unfortunately, the strong gauge conditions are preserved only for on-mass-shell photons,
which leads to unphysical poles in k"k'.

INTRODUCTION

The gravest problem that confronts dual-reso-
nance models is our lack of understanding of their
interactions along conventional physical lines. '
This may be due to the nonperturbative nature' of
the interaction in the usual sense (for instance the
nonanalyticity of the coupling constant in the width
parameter'). Whatever the cause, one must under-
stand how to implement the particle widths in a
way that restores unitarity. On the positive side,
we have a relativistic system which has a built-in
mechanism4 to eliminate the ghosts that arise from
the Lorentz metric. This astounding faculty,
shared by no other hadronic model, clearly sug-
gests its importance if only as a formal tool in the
immediate future. It is for this reason that we
present a study of the interaction of free dual atoms
with external fields. Most of the results are known
in one form or another except for the case of the
electromagnetic field interacting with a dual fermi-
onic atom. We show our theory to have a conserved
current and gauge invariance, and we present ar-
guments for the existence of strong gauge condi-
tions compatible with the interaction. However, it
yields a structureless proton, which we believe to
be a result of the zero-width approximation.

Section I reviews the formalism of free dual sys-
tems, bosonic and fermionic. In Sec. II, we pre-
sent our interaction schemes and discuss the form
factors while Sec. III is essentially a calculation of
the Compton scattering amplitude.

I. FREE DUAL SYSTEMS

We devote this section to a review of the descrip-
tion of hadrons (bosons and fermions) in the zero-
width approximation, i.e., when all the possible
states a hadron can occupy are stable. The theory
is best understood in terms of an analogy with a
relativistic quantum-mechanical system evolving
along a "path" Q„(~). The departure from the con-
ventional description of a point particle is achieved
by generalizing the path functions Q„(v) to include
an infinite number of degrees of freedom which

generate an internal motion periodic in its time
parameter 7. This generalized position operator
is given by

P (7) e ir8& -g p(n) elrsp
n-p

(1.2}

where the generator of internal motions is the
Nambu Hamiltonian'

H~= 2 Q[p" p" +((u, +2nv/T)'q~") q~"'] (1.3)
n=p

and the normal mode coordinates satisfy

[q(&) q(~)] —[p(&) p(~)] —P

[q„'"),p&8 )] = -ig,6„, n, m =0, 1, 2, . . . ;
(1.4)

here g„8=(1, -1, -1, -1) is the Lorentz metric,
while T is the period of the internal motion.

We then postulate that the conventional observa-
bles of the system are just the averages of their
generalized counterparts over the internal space
when &p-0, i.e., when the lowest mode becomes
translational. Define the average of an operator
A(r) by

Thus the position and momentum of the particle are
given by.„=(Q„&,

p„=(P„&,

(1.6a}

(1.6b)

respectively. These are consistent with the com-
mutation relations

[Q„(~)iP„(T')]= i'„6((T—T'-)/T), mod(T)

(1.7)

obtained from Eqs. (1.1) through (1.4). lt then fol-

Q (7)—e iTHll g-q(n) +iTHs
n=p

while its conjugate, the generalized momentum co-
ordinate, is
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lows that the equation of motion of the bosonic sys-
tem is just the generalization of the Klein-Qordon
equation, namely

() ) y + I, ~Py g(l)(N)1' e)28 mr/r +b(n) e-i 2nmz/2')
P P 5 p tI

n=j.
(1.13)

[:&P P&:-m'j I )& =0. (1 8) where the b's obey the anticommutation relations

I,'„I y& = 0, n =1, 2, . . .
where

I.„=:&e"'"'/ P P&:, n =0, +I, +2, . . .

(] 9)

(1.10)

Note the normal ordering of the internal modes to
eliminate the zero-point energy. The solutions of
this equation lie on a family of parallel straight-
line Regge trajectories whose slope is identified
with the period of the internal motion. ' The re-
markable feature of this equation, however, is its
compatibility with an infinite number of subsidiary
conditions obtained by applying the correspondence
principle to the elimination of the ghosts appearing
in the theory. These are

(1.14)

It is then straightforward to write the generalized
Dirac equation:

(1.15)

Its solutions lie on straight-line trajectories. In

particular, the mother trajectory has parity dou-
blets above the ground state. " Again, the remark-
able thing is that it is compatible with this equa-
tion to impose subsidiary conditions on its solu-
tions. In analogy with the Rarita-Schwinger for-
malism, these are

are the Virasoro operators. 4 These conditions can
be derived in a less heuristic manner by requiring
that the internal space be spurious, i.e., that 7 not
be observable. ' An amusing way of seeing this is
to consider the matrix element of the operator
P„(7)p"(7). The necessary condition that this ma-
trix element be independent of v is that the states
obey the constraints (1.9) since

F„I(&=0, n=1, 2, . . .
where

F =&e"F"~ I P&, n =0, +I, a2, . . . .
These, together with (1.15), imply that

(I,s+1.~)i)i)& =0, n=1, 2, . . .
with

(1.18)

L p . es~nfrr/Tp . (1.19)

n=l

+&/I f,s i/~&e-' &"'/ )

This is equivalent to a super gauge condition, '
which, as far as it can be calculated, "eliminates
the ghost states from the theory. In this respect,
the dual theory stands alone since it describes an
infinite number of relativistic states without ghosts.
The big problem to be faced later is of course the
introduction of interactions compatible with the
constraints.

The generalization of the Dirac equation evolves
along similar lines by introducing super Dirac ma-
trices, r„(v), which obey local anticommutation re-
lations in the internal space and reduce to the or-
dinary Dirac matrices when averaged over the in-
ternal motions, i.e.,

(1.12a)

[I'„(7'), I' (v') j= 2g„6(().—T')/T), mod(T)

(1.12b)

from which

The important point in the description of a free
dual system is that it does not seem to have ghost
states even though it describes relativistically an
infinite number of stationary states. Another fea-
ture of the approximation is that it treats the
ground state as a point particle, i.e., the ground-
state fermion obeys the ordinary Dirac equation.
Although it would be tempting to interpret this state
as a quark, "we choose to think of it as a bare pro-
ton on purely esthetic grounds, rather than to face
the unthinkable three-body problem.

II. DUAL INTERACTIONS

The identification of Q„(7) as the position opera-
tor of the dual theories, together with the corre-
spondence principle, ' allows for obvious generali-,
zations of the coupling schemes that appear in the
usual treatments of hadron interactions. Before
tackling the electromagnetic case, it is amusing to
consider in this light the coupling with an external
scalar field. In spirit with the previous remarks,
the interaction will take place at the generalized
coordinate Q„().), averaged over the internal space
with a suitable scalar density, p~(v), which will
lead to the new equation of motion
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[:&P P&: —~+g:&p 4(Q)&:]Iy&=o (2 I) + F/S
j'(O) =

i
d7.(P (i) e"'e"~ } (2 8)

In the case of unit scalar density we show that
this equation leads to the Veneziano amplitude in
the tree approximation. To see this, consider the
interaction vertex in momentum space,

It is, however, more interesting to considex' the
dual fermion electrodynamics. . The equation of
motion becoIQes

p+ T/2

V{&)=— '

d& e"'~ & ~

2 4-rfm
(2.2) [&r P&-m-e (r W&:][y&=0

from which me obtain the following current

(2.9)

and perform R Taylor expansion of the integx'and
Rx'ound '7=0. All the terms of the sex'les SRve the
first one ean be expressed as a commutator with
:(P'): (=He) by means of the Heisenberg equations
of motion in the internal space; these mill accord-
ingly decouple from the physical states. Thus me
can write

V(I)= e"'~0&. (2.8)

mhich is the familiar scalar vertex. ' This peculi-
arity of the model is vexy significant and comes
from the fa,et that the px'opagator of space-time
motion coincides with that of the internal space.

A more recent example is the interaction of a
pseudoscala, r field with the dual fermion system,
glvlng I'lse to the equation

[&r p& - m+g&r, y(q)&][ y) =o, (2.4)

where F, is the generalization of y, of Neveu and
Schwarz" and of Thorn'4:

{2.5)

P„(~)-P„{~)—e:W„(q(~)):. (2.6)

Its insertion into the generalized Klein-Gordon
equRtlon yields

[:&P P&:- nP -e(&P ~:A. :&+(:A: P&)

+e'&.~ "~:)]~y&=0,
(2.V)

corresponding to an electromagnetic current in mo-
mentum spaeeas

This theory has been investigated by the above-
mentioned Ruthors and leads in bosonie channels t,
the Neveu-Schwarz IQodel. "

We touched earlier on the problem of consistency
of these interactions with the subsidiary conditions.
It is the sad fate of these models that such a con-
sistency exists only where the external fields have
Rn DQaglnary rest mRss.

Similarly, the electromagnetic interaction of
these systems should be obtained by some general-
ization of the usual minimal interaction, "which me

take to be

+ mfa.

j~~(k) = — dr r„(~):e"'o":.
-T'fm

(2.10)

Notice the close analogy with Dirae electrodynam-
ics. Current conservation. follows simply from the
identity

~„:e"'~'~: = -[P„(~), :&e"'o&:],

which is a consequence of Eq. (I.V). Thus,

n„j~~(k) = -[(r P), :&e"'e&:],

(2.ll)

(2.12)

leading to the vanishing of the matrix elements of
the current divergence between states obeying the
free generalized Dixae equation. SimBarly, one
can show the same for the boson case, namely,

(2.18)

This coupling scheme of the electromagnetic po-
tential A„(x) with the dual boson system implies the
identification of the vector meson lying on the lead-
ing trajectory as being the photon. " It is nice that
in this case, consistency with the subsidiary eon-
dltlons ls RttRlned when the mass of the vectox' pRx'-

ticle is zero, i.e., in our interpretation, for on-
mass-shell photons. As the boson theory is al-
ready mell known, me concentrate on the electro-
dynamics of dual fermions for the remainder of
this paper.

The conservation of our current insures that of
the three-point function. A trivia1, calculation
shows that the matrix element of our current be-
tween the gxound-state protons leads to a unit form
fRctox. This IQ8Rns that ln oux Rppl-oxlIQRtlon the
proton is still treated as a point particle, which is
not amazing when one realizes that the free dual
theory is obtained by treating the ground state as
a point particle. Rather, me choose to think that
the strong corrections mill successMly account
for the odd electromagnetic properties of the pro-
tOIl.

The current can, however, cause tx'ansitions be-
tween the stationary states of the system; also the
higher mass states of the theory have nontrivial
folIQ fa,ctox's. Those Rx'8 difficult to build becRuse
the general form of the stationary states is not
known.

Thex'e remains to check that oux interaction pre-
serves electromagnetic gauge invariahee on the
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one hand, while it does not lead to the production
of ghostlike states. In the absence of a Lagrangian
formalism, the only way to test electromagnetic
gauge invariance is to build the Compton amplitude
(and maybe others) and explicitly check that it is
divergenceless -this we shall do in Sec. III. The
second point, which we call strong gauge invari-
ance, requires more thought since the ghosts must
be absent from both the integer-spin and half-in-
teger-spin channels. The best way to check the
latter is to start from the wave equation (2.9)
which is first order in momentum. The fact that
F, and F„have the same anticommutation relations
with the vertex evaluated at T =0 suggests that
there are no mass constraints to the applicability
of some subsidiary conditions in fermion channels.
The same is not true for bosonic channels where
the equation is second order in momentum and
where the commutator of the vertex with L, and L„
differs by a term proportional to the dual spin of
the vertex, which, in turn, depends on the mass.
In fact, in our theory, there are gauge conditions
in the boson channel only when the photon mass is
zero. We will expand on this point in the next sec-
tion.

III. COMPTON AMPLITUDE

We now consider in detail the case of the elastic
scattering of a photon and a fermionic dual system
in its ground state, i.e., the proton Compton scat-
tering amplitude (see Fig. 1). The kinematics are
described by

FIG. 1. Compton scattering amplitude.

where u(p;) and u(pz) are Dirac spinors and

Io, p, ,) =e"i.~'"'I». (3 3)

The first step is to take the projection operator out
of the propagator,

1
Fo —m+i e

Fp+ m

Lo+ m
(3.4)

where we have used

Io
= FoFo (3.5)

It is crucial to note that L, is the generator of in-
ternal motions in v. Thus we can write

1 +

fto(k) d+e irLO 1 (0)-. ei)& ~ Q(o). eirLo
-T/2

(3.6)

which corresponds to an amplitude

s'„". =s(p&)(o, p& i&(--p') p ')( )sop)«(p, ;),
0

(3.2)

r(k) +p(pi) r(k') +-p(py), (3.1) It follows that

s' '=:f s&f &o s(p&)(o, -p& r (o):e &'"~"& '+ e" ""* &:r(o)&."~"& op)»(p).
0

(3.7)

We see that the extra dependence on the internal space we had noticed before goes away when on the pole.
Another way to say this is to identify the states, generated by this dependence, with spurious states which
decouple from the ground states of the theory. " Then, we write

s~„'=o(p,)(o, -p, r„(o): -""'&":s",r„(o): "'&'&: o,p) (p, ).
0

We now use the equation

(E„1",(0):e"'o"':]=I2P, (0) + I', (0)k ~ I'(0)j:e"'o"):
and the fact that the ground state obeys the free Dirac equation to rewrite our amplitude as

s&c& s(p&)(o p& r&(ol. &.
-& "w &. [op (0)+r, (o))& r(o)]:e'' '~"': op) (p ).

0

Then, by writing the denominator of the propagator as
p1 2dXXio+m -~

Lo+ m ~0
2

and by using the Heisenberg equations of motion, one obtains

(3.8)

(3.9)

(3.10)

(3.11)
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1
Si &=-j dpv

0

x u(pz)(0, -p&)r&(0): e " 'o['l: [2P„(-ilnx)+r„(-i lnx)k r(-i lnx)]: e'k'o[ ""*):)0; p)u(p&) .

(3.12)

Next, we separate the a from the 'h modes, and proceed with care because each contribution gives rise to
an infinite term. which cancel one another at the end.

The Compton amplitude is then seen to reduce to

1
S&J=- dxx k "k(1 —x)

' 'u(pz) y„y g-2'(p;+k)„+ (g&„k-yp„' —y„k[5) u(p;),
0 1 —x

with

s=S-m .2

(3.13)

(3.14)

It is clear from this form that poles in the t channel are generated only when the two photons are on their
mass shell, since only then do we have

2k ~ k' = -t (3.15)

Before checking gauge invariance it would be natural to include the term with the photon lines interchanged,
in analogy with Dirac electrodynamics. However, in our case, the (s, t) amplitude is gauge-invariant by
itself. ' Indeed, we find that

1

k, S+&, = dxx ' "'(1—x)
' '[2k k'x+ a, (1 —x)]u(p&)y„u(p, ) .

0

Use of the identities

'„~,(1 ), , r(a) r(b)
J, r(a+t )

(3.16)

(3.1Va)

1"(a+1)=aI'(a)

leads to

(3.17b)

(3.18)k, s&&=0.

It can be checked that k„'S(„,~ =0 as well.
We must therefore conclude that gauge invariance does not enter in the perturbative treatment of the

electromagnetic force with dual systems. We point out that the spurious states which we have eliminated
by neglecting the dependence on (7. A) would ha-ve spoiled the gauge invariance. It would then have been
necessary to add some seagull term to restore it because the addition of the crossed diagram would not
have been sufficient.

This peculiarity may be seen as a consequence of the removal of some spurious states, together with

current conservation.
This amplitude yields for the deep-inelastic structure functions

and

W (k', s) = ssIQ (-1)' [5(l —a, ) + 5(1+ 1 —a, )] —5(a, )I
2k2

L =0

W(k', s)= Q( )5((—a).
1=1

(3.19a)

(3.19b)

As we do not know yet how to properly smear the
imaginary part of the propagator, we prefer to
leave these results as they are.

We would like to conclude this section with some
comments concerning the t-channel behavior of our

amplitude. As we remarked earlier, it has t-chan-
nel poles only for on-mass-shell photons. How-
ever the correct spectrum in this channel can be
obtained by considering the n-photon process and
then factorizing in t. The theory proceeds in the
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same way as that of Neveu and Schwarz" and of
Thorn. " For example, the photon vertex is of the
form given by Eq. (3.9) (with the I'„replaced by
the Neveu-Schwarz H„) and allows for subsidiary
conditions only when the photon mass is zero.

In the fermion channel, we cannot show any de-
pendence of the subsidiary conditions on the mass-
es. Nevertheless, consider the state

I q'& = r„(0):e' 'o"&:
I 0), ( 3.20)

where )P) satisfies Eqs. (2.15) and (2.16). Then,
it follows that

(&. —&.) I 4') = -1'„(0):e"' "':(&.-&.) I 0)

= —m I'~(0): e"'e"':
[ g) . (3.21)

This suggests that the states created by a photon
on a proton seem to obey certain subsidiary con-
ditions in which the photon mass does not enter.

CONCLUSION

to be compatible with it. This is highly nontrivial
in the sense that we have coupled, in an electro-
magnetic gauge-invariant manner, the photon field
with a system enjoying a non-Abelian gauge group.
Also there is factorization in the t channel for on-
mass-shell photons. The lack of duality off the
mass shell does not appear as such a loss as long
as the strong gauges are really preserved. It is
also sad that we cannot compare with experiment
our deep-inelastic structure functions since the
dependence on the smearing scheme is probably
more important than the form of the unsmeared
expression. This difficulty can only be remedied
by a better understanding of the unitarity question,
i.e., by inclusion of strong corrections. Finally,
the problem of saturation of the current algebra
can be undertaken only when the inclusion of in-
ternal quantum numbers is successfully tackled;
however, this theory may be a serious first step
if indeed there are no ghosts.

Our theory has many shortcomings, in particular
the structurelessness of the proton in this order of
the strong interactions. " On the other hand, the
ever-so-important strong gauge conditions seem
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We assume that the partial-wave amplitude of the scattering of two scalar bosons, in the t
channel, has n complex-conjugate pairs of Pomeranchukon singularities of the form n(t) =1
+a~t. We consider the cases where the complex singularities appear in an additive way and
in a multiplieative way in the partial-wave amplitude. We obtain for the scattering amplitude
an asymptotic expansion of the form

n

F (s, t) Pay(t) (Ins) g(z),

where g(z) is an entire function of the argument z =~tins. We discuss properties of the
forward spike in the differential cross section, and the properties of the amplitude in con-
nection with the Froissart bound and the violation of the Pomeranchuk theorem.

We consider the two-body scalar-boson collision
1+2- 3+4. There is a single scattering amplitude
F(s, t), and the crossing symmetry gives E(-s+ie)
=F*(s+ic). We construct the symmetrical ampli-
tude E,(s, t) = 2(F, +F,) and the antisymmetrical
amplitude F, (s, t) = 2(F, F,), where -E,(s, t) and

F,(s, i) are the scattering amplitude for the pro-
cesses 1+2- 3+4 and 1+3- 2 +4, respectively.
The crossing then gives

E,(se™)=E,*(s),

E,(se'") = F,*(s) . -

Oet+ Z y

so as the energy increases the integrated elastic
cross section and the total cross section remain
bounded. The forward spike of the scattering is
defined by its width [k(s)] ' and height (do/dt), ,
which are exhibited by the parametrization do/dt
= (do/dt), ,e' '. We shall also—use the asymptotic
phase of the amplitude which is defined by the ratio
ReE'(s, 0)/ImF'(s, 0).

The high-energy scattering amplitude is con-
structed in the usual way by means of the Sommer-
feld-Watson transformation:

The optical theorem relates the total cross section
0~ to the imaginary part of the forward elastic am-
plitude; thus we have

ImF&(s, 0) =2ks'"or(s), i= 1, 2

where c~ is bounded by the Proissart bound. ' By
definition we have

F'(s, t) „2. t s' ]'(j)a'(j, t) dj,
1

Cg

where $ (j) is the usual signature factor

1+e '"
sin(wj)

'

(4)

1 t IF(s, t) I'dt
16@ 2, s s-4m'

16v )4„2,dt

The unitarity relation provides that

(2)

('(j ) is purely imaginary at t= 0 and $ (j) exhib-
its a right-signature pole at j=1, so we shall use

~ 2 1
( (j)-~- —.

r j-1
a (j, t) is the partial-wave amplitude in the t
channel which can have all singularities allowed


