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Taking account of analyticity, crossing, and signature, we derive sum rules relating
triple-Regge vertices to integrals over low missing masses in inclusive reactions. Some
implications for triple-Regge couplings are discussed.

I. INTRODUCTION

Recently it has been suggested that it might be possible to use analyticity to derive sum rules for sin-
gle-particle distributions in inclusive reactions. On the basis of model studies sum rules have been pro-
posed relating integrals over low missing masses in inclusive spectra at high incoming energies to triple-
Regge vertices. In form and content these finite-mass sum rules are similar to finite-energy sum rules
for two-body processes.

In this paper we discuss the derivation of such sum rules, paying particular attention to the correct in-
corporation of crossing. We emphasize which pairs of crossed reactions are related by the sum rules,
what sum rules are free of wrong-signature fixed poles, and how triple-Regge signature should be taken
into account. The sum rules we obtain take the form
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' (M' —t -m, '), t = (p, -p, ),
and &i=ph (p, +p, )=-,'(s„—s„--m,'+m, ') (see Fig.
1). Other quantities in Eq. (1) are defined as fol-
lows: T„v.~, and 7, are Regge signatures, and

$;(t) =—(7', +e ""t'")/sinn+, (t), P,';(t) and P~» (0) are
the reduced residue functions familiar from two-
body scattering, and g,', (t) is the vertex for the
three Reggeons c&, (t), c&, (t), and c(„(0) In order.
that Regge exchanges in the t channel dominate,
the range of integration in (1) must be such that
n»N, ltl

Strictly speaking the sum rules should be eval-
uated at fixed t and fixed g. However, experi-
ments are normally done at discrete laboratory
energies, and p, p, =-,' (&) + &y), so that data do not
exist at fixed g. However, evaluating
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at one fixed laboratory energy (d, =p» p, /m, and
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at another fixed energy (d, =p, p, /m, will yield an
approximation to the sum rule accurate to orders
N/m, &u„N/m, ur„provided

~
~, —u&,

~
=0 (N/m, )

« ~„cu, . This point will be discussed below.

II. DERIVATION

It has been made plausible" that the inclusive
differential cross section for the process a+5- c
+anything (see Fig. 1) is related to a discontinuity
in M' = (p, +p, —p, )' of the forward a + b + c- a + b + c
scattering amplitude 2 (s„,M', t). This discontinu-
ity must be evaluated on a sheet where the square
of the incoming subenergy s„ is just above its
physical cut, and the outgoing squared subenergy
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A-Qq "&"""i"'f (v, t)+A(q, v, t). (4)

[For notational simplicity, we have absorbed sig-
nature factors and residues into the definition of
f,~(v, t).] The powers of p in the first term of Eq.
(4) are determined by the leading helicity poles
which are related to the Regge poles indicated in
Fig. 3. The remainder term A has a different
power behavior in g and is not expected' to con-
tribute to the discontinuities in v. The quantity
f,j(v, t) is referred to loosely as the Reggeon-par-
ticle scattering amplitude —more precisely it is
the analytic continuation of the maximum-helicity-
flip amplitude in the center-of-mass system of the

s; —, just below its physical cut, as indicated in
Fig. 2. Clearly at fixed t we may equally well re-
gard the amplitude A as a function of g and v rath-
er than s, and M'.

Then

d'o
E, (a+ b- c+anything)
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(2)

where X(s„,m, ', m, ') is the usual flux factor. Ac-
cording to the Steinmann-like relations, the loca-
tions relative to their cuts of variables overlap-
ping the squared-missing-'mass variable M'
= (p, +g -p,) do not affect the value of the discon-
tinuity appearing in Eq. (2). We choose the incom-
ing subenergy s„just below its cut and the outgo-
ing subenergy s;; just above its cut. Then A is
on a sheet such that the inclusive cross section
for c+ b - a+anything is the discontinuity of A in
(p, +p -p, )'. In terms of v,

d 0'
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Regge analyses' of the (3-3) amplitude A suggest
that in the limit g» v, t it may be approximated
asymptotically as

crossed channel bb- e,.e,
In order to write a dispersion relation for

f,.~(v, t), and therefore derive a sum rule, one
must understand its singularity structure. Sup-
posing A has no discontinuity in v, we find for
large q from Eqs. (2) and (4) that

d 0'
E, (a+t - c+anything)=Pq "&+ i 'disc„,f z(v, t)
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and from Eqs. (3) and (4) that

d 0'
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Thus fo has a right-hand cut which may be inter-
preted as the absorptive part of the Q, + b- a~+ b

Reggeon-particle scattering amplitude, and a left-
hand cut which corresponds to the absorptive part
of e~+b- e, +b. Both cuts are required because
if f„is contin. ued to particle poles in positive t
one expects to recover the usual analyticity prop-
erties of two-body scattering amplitudes.

The question arises whether, at negative values
of t, f,, (v, t) has any other singularities in the
complex v plane. Such singularities do not occur
in models that have been studied such as perturba-
tion theory, ' the Gribov Reggeon calculus, ' and
the dual-resonance model. ' Further there is no
reason yet known from S-matrix theory why sin-
gularities should occur at complex values of v.
Thus normal threshold singularities of the (3-3)
amplitude A in other physical-region variables
such as (p, +p, +p, )' move off to ~ as q- ~, and so
could not appear in f„.(v, t). Most simple triangle
and box-diagram Landau singularities in A move
off to ~ as g- ~; those that occur at finite values
of v lie on the real axis, and are included' in the
definitions of the discontinuities to be associated
with inclusive cross sections. It therefore seems
reasonable to follow previous authors in assuming
that f,&( t)vhas the same analyticity properties in
v as a (2-2) particle scattering amplitude.

In order to derive useful sum rules it is neces-
sary to know the asymptotic behavior of f, ~ in v.
This is determined by Reggeons in the bb channel
via the "triple Regge" formula'
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FIG. 1. Kinematics for a + b e+ anything.
FIG. 2. Discontinuity related to the inclusive cross

section.
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All the symbols in Eq. (7) were defined in Sec. I,
with the exception of v, the triple-Regge signa-
ture factor.

That 7 is not simply the signature v„of the Regge
trajectory n, can be seen by imagining a case
where a, (f) and ()~(t) are unit-separated trajec-
tories of opposite signatures. Proceeding to a
double particle pole in the f channel, f,~

is pro-
portional to an amplitude with crossed-channel
helicity flipped by n,. + ej, an odd number. It is
well known" that in such a case 7 = -7

~ . A choice
of v. consistent with this observation is 7 =7,7&7.,
This is indeed the form taken by ~ in Feynman
tree-graph models with elementary-particle ex-
changes, and, more realistically, in the dual-res-
onance model as shown in the Appendix.

We have now motivated the required analyticity
properties of the Reggeon-particle scattering am-
plitudes f,,(v, t), related [Eqs. (5) and (6)] its cuts
to inclusive cross sections, and know the behavior
of f,~(v, t) as v- ~. Therefore, we can derive a
sum rule for each f,z(v, f) using the contour shown
in Fig. 4. Adding these sum rules together with
weights q &'"& ' the finite-mass sum rules (1) for
inclusive reactions are immediately obtained.
Note that (2-2) processes such as elastic reactions
should be included in the missing-mass integrals,
and will give important contributions.

As mentioned in Sec. I, the finite-mass sum

rules should strictly speaking be evaluated using
data on inclusive cross sections at fixed values of
)7 =p, ~ (p, +p,). As v =p, ~ (p, -p, ) varies this corre-
sponds to varying the incident laboratory energies
&o, and ~, over a range O(N/m, ). But in the approx-
imation where a t-channel Regge description is
used this variation in energy makes a fractional
change in the cross section of O(N/q) «1. Hence
if we insert data at fixed laboratory energies into
the sum rules (1) they should still be accurate to
order N/q In .fact to the same accuracy it is not
necessary that the laboratory energies ~, and co,
be exactly equal, as long as

~ ~, —~,
~

=O (N/~, ).
However this does mean that terms down by
O(N/)7) relative to the leading terms in the Regge-
pole expansions (5), (6), or (7) cannot be evaluated
reliably using the sum rules (1). For example, in
processes where both the Pomeranchukon and or-
dinary meson trajectories can be exchanged in the
t channel, sum rules at fixed laboratory energies
will permit the determination of Pomeranchukon-
Pomeranchukon and Pomeranchukon-Reggeon con-
tributions, but not Reggeon-Reggeon contributions.

Schwarz-like" sum rules can be written down
for other combinations of integrals over the in-
clusive cross sections a+6- c+anything and
c+b -a+anything, but then nonsense-wrong-sig-
nature fixed-pole residues R(() (f) must also be in-
cluded on the right-hand sides:

f
N dSO d'adec" g, (a+ h -c+anythillg) + (-i) Z. (c+h -a+ anything))

0 de dpi'

g, ( ) ( ) t(t)("()t)dl (t)tll (t) tt( l(t)t [ic ( i) ( c t )
di(( )dl ( ) "'""" '"' """)

o.,(0)+n+I - a, (t) -a, (t)
0

u= —(M~ -t -mbj
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FIG. 3. Representation in the limit s,&» M, t of term
in (3-3) amplitude with M discontinuity. FIG. 4. Contour used in deriving sum rules.
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III. DISCUSSION

The most interesting applications of the finite-
mass sum rules (1) are likely to be in the estima-
tion of triple-Reggeon vertices by integrating over
data at relatively low values of the missing mass.
Data in the triple-Regge region g» v»m, ' are not
likely to be available until there are results from
NAL; precise evaluations of triple-Regge vertices
from fits will have to wait until then. It would also
be interesting to use the sum rules to investigate
whether the Harari-Freund i' conjecture can be
generalized in the natural way to Reggeon-particle
scattering. One would evaluate resonance produc-
tion contributions to the inclusive cross-section
integrals to see whether they built up Regge ex-
changes in the bb channel. A similar analysis
could help resolve the controversy" on the duality
properties of Pomeranchukon-particle scattering.

It has been argued'4 that certain of the fixed-pole
residues RP~~'(f) appearing in Eq. (8) may vanish at
t = 0 because of crossed-channel unitarity. This
suggestion could in principle be checked by using

the sum rules (1) to evaluate the triple-Regge ver
tices g,~(t), and substituting them into the Schwarz
sum rules (8) to evaluate the residues R',.",'(t). The
evaluation of fixed-pole residues in the Reggeon-
particle amplitude for a range of t is quite inter-
esting physically, since the fixed-pole residues
set the scale of Reggeon-Reggeon cut contributions
to two-body scattering. Thus measurements of
single-particle inclusive cross sections in princi-
ple determine the magnitude of cuts in two-body
scattering. Thus the Regge-pole description we
have assumed could be checked for self-consis-
tency is

In all the above work the Pomeranchukon has
been treated as an ordinary Regge trajectory (pos-
sibly with zero slope), on the assumption that this
is a reasonable first approximation to its nature.
The sum rules give a lower limit to the rate of
falloff of Pomeranchukon-particle scattering am-
plitudes. Consider the special case of the sum
rule (1) with particles a and c identical, n =1, and

g so large that nondiffractive processes may be
ignored; Then

d v vE (a+ 5- a+ anything) = —" (N) ~&"'+'
1 —cosign~(t) n~(0)+2 —2np(t) ' (9)

where n~(t) is the Pomeranchukon trajectory, and

the sum is over trajectories k with positive sig-
nature. The left-hand side of the sum rule (9) has
a nonzero positive contribution from the elastic
process a+ b- a+ b. Because the inclusive cross
section is positive this contribution cannot be can-
celed, so tha.t the coefficient of s'~J'"' ' on the
right-hand side of (9) cannot fall to zero for large
N. Hence there must be a nonzero coupling g»,
for the Pomeranchukon to some positive-signature
4-plane singularity with n, ~ 0. This could either
be the f' or Pomeranchukon trajectory, "or some
other cut, trajectory, or fixed pole with J~ 0.
Under reasonable assumptions'4 about the residues
of wrong-signature fixed poles in Pomeranchukon-
particle scattering, this restriction on multi-Po-
meranchukon couplings can be strengthened to es-
tablish" a lower bound on the triple-Pomeranchu-
kon coupling at (+0.

The term sinn[a~(0) —o.;(i) —n, (t)] in the denomi-
nator of Eq. (7) might appear to give an unphysical
singularity in t in the full 3-3 amplitude. It has

been pointed out" that the apparent singularity can
be canceled by terms in A(s„,M', i) for o., (t)+ nj(i)
—a, (0) =0, -1, -2, . . . and suggested that for a,.(t)
+ n~(t) —a, (0) = 1, 2, 8, . . . the poles are canceled by
zeros in the vertices g,"~(t). This latter proposal
is clearly required by sum rules (1) (continued if
necessary to positive t) for the cases n,.(t)+ n,.(t)
—o~(0) = i &0 such that (-1)' =r,.rp, . These zeros
arise because right-signature fixed poles were as-
sumed to be absent in the triple-Regge formula (7).
If nonsense-wrong-signature fixed-pole residues
were nonsingular, then the finite-mass Schwarz
sum rules (8) could be used to prove the existence
of the zeros at integers c: (-1)'= r, r,r„. A re--. .

cent paper by Mueller and Trueman" reaches a
similar conclusion on the basis of Feynman-dia-
gram calculations.¹teadded in Proof Arecent pa.per by Kwie-
cinski' also discusses finite-mass sum rules for
inclusive reactions, and reaches conclusions simi-
lar to some of those reported here.

APPENDIX

In the dual-resonance model, the helicity pole limit can be investigated explicitly. ' We multiply each
cyclically inequivalent ordering of the external momenta by the appropriate Chan-Paton factor. Then„ in

the limit ri ~, v -~, q» v (fixed i), the asymptotic behavior of the amplitude is determined by the sum
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of eight cyclically inequivalent terms" (Fig. 5):

A- Q y, ([(-s,) +7 (-s;) &][( s-;)-"&+7&( s -)-~](-s ~-)

+[(-s s) '+&;( ss--)"*][('--»"'+& ( s"-)"'l&a( .~.)" "' "']. (A1)

sgbg —-s~b~ - V 0.

A complete definition of the expression requires a
specification of the phases of each of the powers
(-q)". To obtain the inclusive cross section
do(a+5- c+anything), the prescription is to
choose"

(a) Res„=Res.-; = q, Ims„=+i&, Ims, s
= -i~.

Notice that the inclusive cross section d (a a+ 5- c+ anything) could equally well be obtained by the
alternative prescription

(b) Res„=Res;; = q, Ims„= -ie, Ims;„- =+ie.

In general, the two prescriptions correspond to
taking the discontinuity in s„,- on different Rie-
mann sheets. Of course, the complete determina-
tion of the sheet requires the specification of other
energy variables, such as s„and sb,-, relative to
their physical cuts; however, according to the
Steinmann-like relations, the discontinuity in $„;
is independent of the specification of the overlap-
ping variables. [Furthermore, the equality of the
discontinuity on sheets having either prescription
(a) or (b) is a consequence of time-reversal in-
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FIG. 5. Cyclically inequivalent terms contributing in
triple-Begge limit.

The residue, y",
&

= I'(-n,.)I'(-n~)I'(n, + n, —n„), is
the same for all eight terms. To the expression
above must be added another term which has no
discontinuity in the missing mass and is of no in-
terest for the present discussion. In the limit of
interest, we have

$ —$ ~ ~ ~$.~ =~$~ ~ ~$ I —~$ ~$ —$ ~f))0
ab ub bc oc ao gb - bc bc

variance]. Although the discontinuity in s„,- & 0 is
independent of the choice of phase of s„and sb;,
the discontinuity in $„-;will not be. The inclusive
cross section do(c+ 5 - a+ anything) will be ob-
tained from either of the foll.owing choices:

(c) Res„=Ress; = q, Ims„=-ie, Ims;; =+is.

(d) Res„=Res;; = q, Ims„=+i e, Ims&; = ic. -
On a sheet satisfying prescriptions (a) and (c), the
expression given above, Eq. (Al), can be written
simply as

A- Qy', p "~' ~$,$,*[( .v). "&-"~ +~(~,~p, )v "I. f ~].
iia

(A2)

If however we choose (a) and (d), we find

& Zy" n"' '"[k h*( v) ' -' ~+5 g,*7. ~T. v"~ +-~~]
iilt

(A3)

Using the fact that y',
&

= y~, the two expressions are
precisely equal.

No doubt the asymptotic forms (A2) and (AS) fol-
low from the assumption of Regge behavior on all
the sheets and are not peculiar to the dual-reso-
nance model. In the general case, the residue
would be y";, =P'„-(t)P~~,*(t)P~»(0)g';, (t). The symme-
try property y", , =y~, follows quite generally from
the requirement that the discontinuity for v) 0 is
the same no matter whether prescription (a) or
(b) is taken. The reality condition y', , = y', , is as-
sured by the requirement that the discontinuity
be real.

Assuming Regge asymptotic behavior on each of
the many sheets, other sum rules could be written
down; however, it seems that only on the sheets
discussed above can the discontinuities be actually
determined experimentally. For example, imag-
ine choosing all subenergies above their cuts as
for the physical 3- 3 amplitude. The discontinu-
ity in s„;would then be quite complicated, and
multibody S-matrix elements would be needed for
its evaluation.
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