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The previous attempt by Schiff to describe large-angle potential scattering is shown to be
inaccurate for strong potentials. The reason for this is that a small ripple in partial-wave
amplitude, t&, of the order of (ka) (-1) t& is neglected in the eikonal approximation. This
ripple may produce a strong coherent effect in the backward direction. To overcome this
difficulty the partial-wave sum for the second Born approximation is carried out exactly,
and it is shown that a stationary phase, hitherto neglected, occurs in the oscillatory inte-
grals. An application to the square-well potential shows that the error in the eikonal ap-
proximation is of order (ka) ~ rather than (ka) as previously thought. Even more im-
portant is the fact that this occurs in the second Born term and that the cross section is now
increased by a factor of (V/E)2(ka). Investigation of higher-order terms shows that one is,
of course, describing the square-well glory, but it is quite clear that these effects persist
for potentials other than those with discontinuities. Finally, in a numerical check, a marked
improvement in the fit to the correct differential cross section is observed when second-
and third-order contributions are added to Schiff's essentially first-order result.

I. INTRODUCTION

It is the purpose of this paper to obtain a simple
prescription for describing high-energy scattering
at backward angles. In principle, the scattering
problem for any spherically symmetric potential
can be solved numerically on a computer by utiliz-
ing an expansion in partial waves. Though in prac-
tice it is more difficult than the authors realized
to obtain accurate results at backward angles in
this manner, the aim here is not to replace such
calculations by analytic methods. Rather it is to
gain deeper physical and mathematical insight into
the problem so that in intractable situations, not
amenable to numerical methods, one may be aware
of the important factors to guide necessary approx-
imations. Thus much attention has been focused on
analytic methods for high-energy scattering, the
most notable being Glauber's' application of the
Moliere' phase method for scattering at forward
angles.

Many authors have sought to modify this method
so as to extend its applicability to large angles.
Bassichis, Feshbach, and Reading' replaced the
Glauber phase,

U(b, a') da',
2k g

by the WKB phase,

([lP —U(b, &')j' ' k)da'—
This was tested for a square-well potential and al-
though some improvement was found in the scatter-
ing amplitude at small angles, the method was un-
reliable at backward angles. The approximate re-

suits were often several orders of magnitude too
small. The agreement was greatly improved when
absorptive potentials were considered.

The problem of extending the Qlauber method to
backward angles was approached as early as 1S56
by Schiff. 4 Hp was able to sum approximately the
Born series for f(w) by assuming that the main
contribution to backward scattering from the nth
Born term arose from n —1 forward or soft scat-
terings, amenable to Glauber approximation, and
one hard scattering through 180'. (This will be
discussed further in Sec. IV.) Unfortunately, the
resulting expression offered no improvement when
compared to the exact solution for a square-well
potential. (See Sec. VI. ) Sugar and Blankenbecler'
pointed out the importance of double-scattering
events in which the particle is turned around by
two potentials. Hahn' has investigated the accura-
cy of Schiff's method and this refinement and found,
in comparison with exact calculations, that with
Gaussian and Yukawa potentials there is some im-
provement, but that the method is still unreliable.

Weingarten' calculated each phase shift in the
WKB approximation and converted the sum,

f(e) = —Q (2l+ 1)P,(cos8)e' ' sinb, ,
l

to an integral over the Watson-Sommerfeld con-
tour. For purely absorptive Yukawa potentials
this led to a reliably accurate expression for f(e)
at high energies. Finally, Wallace' has presented
a systematic method which improves the accuracy
at larger angles.

In the present paper a different approach is dis-
cussed which yields a rather reliable expression
for f(p) and has the virtue of affording physical in-
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sight into the problem. The particular potential
to which the method is applied is a square well
which in some ways is the most difficult to handle
because of the discontinuity. The approach is dif-
ferent from that of Sugar and Blankenbecler, but
contains the same feature in that double-scattering
events are emphasized. Furthermore, it is shown
to be essential to include higher-order events if
reliability is to be achieved.

In Sec. G, tbat feature of backward scattering
which makes this a difficult problem will be iso-
lated. In Sec. IG the first and second Born ap-

- proximations for backward scattering are investi-
gated. In Sec. IV, higher-order terms are in-
cluded and in Sec. V the intrinsically third-order
term is calculated. The results of numerical
tests of the method are given in Sec. VI.

II. THE SOURCE OF DIFFICULTY

The exact expression for the backward scattering
amplitude is given by

f(v) = . Q (-1)'(e ' t —1)(21+1)2ik, 0

1 e»~I, -&+ e»~~+i
(2l+1) e '

28k 2

e2~~0 ]
4ik

partial-wave amplitudes as calculated exactly. A
typical case is shown in Fig. 1 where t, =e' ~ sin5,
is plotted as a function of / for 300-MeV nucleons
scattering off of a 20-MeV square well of radius
3 F. The important feature to be noted is the "rip-
ple" superimposed on the smoothly varying ampli-
tudes. The Qlauber expression for the phase shift
can reproduce the smoothly varying part, but cer-
tainly mill be unable to describe the "ripple" which
oscillates like (-1)'. This effect is small, of the
order of (ka) ', and will not be important in the for-
ward direction. In the backward direction, how-
ever, the (-1)' factor in f(&) will lead to a cancel-
lation of the smoothly varying part but a cohezen. t
sum of the oscillating part. Because f(&) is small,
this coherent sum could, in fact, be the dominant
term in the summation. This renders Eq. (5) use-
less since e' ~ is not a smoothly varying function
of /. It is the failure to realize this fact that has
led other approaches to this problem into difficul-
ties.

It is straightforward to demonstrate the origin
of these ripples for small / waves. Each term in
the Born series for the phase shift has, from the
Green's function, products of Bessel functions
such as j,'(kr) or j,(kr)n, (kr). For example, in the
Born approximation

sin5, =-k
~) j,'(k~)U(x)~'Ch.

At high energies ' 1t ls tempting (and sometimes
correct) to identify the angular momentum quantum

number with kb, mhere b is the impact parameter.
Following Glauber one may then approximate the
phase shifts by

1
5( —= 5qq=- —j) U(b, z)de.

Using the second form for f(v) in Eq. (2) one may
then consider / as a continuous variable and write

e"' —1 82

5 odd

Substitution of 5, from Eq. (7) into this form of
f(&) leads to a simple expression for the scattering
amplitude at backward angles. For the present
purpose it is sufficient to note that the resulti. ng

f(v) is of the form

f(&)-f(o)l 6(1/ks)+ 6(U/k')]. (6)

Thus for typical high-energy scattering, where-
ka» 1 and U/k' «1, f(&) is small. Thus the ne-
glect of terms 6(1/ka) or 8(U/k'), which may be
quite valid for small angles, might constitute a
serious error at backward angles.

At this point it is appropriate to consider the

For small /, /&ka, the j, 's may be approximated
so that

1
sine, =-— t cos'[kr ——,'(1+1)v]U(~)A.

kg,

1+cos 2k' -1 '+' U y dr.

The cosine term is of the order of 1/2ka relative
to the leading term and might then be considered
negligibly small. For backward scattering, be-
cause of the (-1)' factor, this term gives the dom-
inant contribution. In the usual eikonal treatments
this ripple has been neglected for all terms except
the first Born term.

The above argument holds, of course, only for
small / so that if there were some mechanism for
reducing the small / contribution, the neglect of
the ripple might not be a serious error. Such a
mechanism is provided if the potential is highly
absorptive, in which case the eikonal methods are
reliable even at large angles. ' Finally note that
for a potential singular at the origin such as a
Yukawa potential, the integral in Eq. (8) is diver-
gent and the ripple argument suspect.
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FIG. 1. The "ripple. " The partial amplitude tI = e~~t sin0& is plotted as a function of l . It is obvious that for
small l there exists a part which is varying like (-1) . This will produce a coherence for backward scattering.

To summarize, it has been pointed out that
(1)f(&) is small compared to f(0),
(2) subtle cancellation and enhancement effects

are present,
(2) the situation may be different for absorptive

and nonabsorptive potentials, and

(4) singularities at the origin may be important.
These considerations will determine the proper

approach to the problem.

III. THE FIRST AND SECOND BORN APPROXIMATIONS

The scattering amplitude for backward scattering,

f(m)= —P(-1)'(2l+1)f j, (kr)U(r)R, (r'Jr'dr,
1 =0 0

can be written, using the Born series for R, as

f(v) = -g (-1)'(2l+ 1) j,'(kr) U(r) r' dr —ik t j,'(kr) U(r) r' dr h~i'~ (kr')j, (kr') U(r') r"dr'
0 0 r

oo rr
—ik j, (kr)h, ' (kr)U(r)r'dr I j,2(kr')U(r')r" dr'+ ~ ~ ~

0 4p

=fbi(&) + fa2(&) + (10)

For the present it will be assumed that the energy is sufficiently high, relative to the potential strength,
so that the first two Born terms dominate. If in the second Born term the factors k',"(kr)j, (kr') and
j,(kr)k~'i(kr') are grouped together, the sum of I can immediately be done and one recovers the usual
expression

This form constitutes the usual starting point for studies of this problem. Schiff, ' for example, noted
that by inserting e'"'' e '"' ' one obtains

f k'p+ $A'p

fa, (w)=, d'r' U(r')e'"' ' d'p U(p+ r')32 4&2 p
(12)
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where p = r —r' and q = 2k. He then argues that the main contribution to the integral in brackets comes
from p antipaxallel to k and performs the angular integration by parts. He further notes that one could
also insert e'"' 'e '"' ' and obtain a similar expression with the roles of r and r' interchanged. This will
in fact lead to a factor of 2 if the regions whex'e the main contributions to the integx'als originate are dis-
tinct. Thus Schiff obtains two contributions to f»(&) corresponding to a scattering of 180 occurring at r
or r' with the other scattexing being at forward angles.

With the above approach to the problem it is difficult, but not impossible (see Sec. IV), to properly treat
the "ripple" on the partial amplitudes because the l dependence has disappeared. Since it has been shown
that this might constitute a serious error, . a different approach is necessary. Thus instead of the group-
ing of the Bessel (and Hankel) functions as above, functions with the same arguments are grouped together.
It was this grouping that led to the (-1)' factor. One can then use the formulas'

j,'(kr ) = dn sinnP, (coen)
sin(2kr sin-,'n)

4kr sin —,'n

emihr siniP
j,(kr)hei" (kr) = -i

I dP sinPP, (cosP)
0 4kr sin&P

Substituting these into Eil. (10) and noting that

Q (2E+ 1)(-1)'P,(x)P, (x') = 25(x +x'),

f~,(v) = ——
il sin(2kr) U(r) r dr

(as usual) and

j $F
f»(&) = —

I dP I
dr r U(r)e'"" "&8 dr'r'U(r') sin(2nr'cos-, 'p)

40
eo

+ —
I dP II dr rU(r) sin(2kr cos-,'p) dr'r'U(r')emi4" ""ie

&I2 r
dP I

drrU(r)e" ' e drr' (rU')sin(2kr'cosp).
0 ~0 0

(16)

By this technique the six-dimensional integral has been reduced to a three-dimensional integral with, as
yet, no approximations. Thus the coherence of the (-1)' terms remains intact.

It is unfortunately not possible to perform the angular integration on P in terms of simple functions. One

is forced to make approximations or, at this point, insert a specific potential and perform the r and r in-
tegrations. It can now be shown, however, that the procedure which other authors have adopted is suspect
for any potential.

What is normally assumed in Eil. (11) is that in a large region of the phase space

kr & kr'»1.
One then attempts to develop a power-series expansion for the scattering amplitude in powers of k' by in-
tegrating by parts. Thus the contributions to the integration arise from the end points of the range. How-

ever, consideration of Eil. (11) in the form obtained after exactly performing three of the integrations [Eil.
(16)] shows that the largest contribution to the P integral comes rather from a stationary phase at P„
where

rcosP =r'sinP . (16)
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Assuming the ineiluaiity in EII. (17) one then obtains

tn%/2

I= dPe" "' Bain(2k''cosP)=I +I

where the stationary-phase contribution is

(20)

Rnd the end-point contrlbutlon 18

e2i'" sin2kr'
2kr' 2kr (21)

It is significant to note that although Isp is still oscillatory in both r and r', its amplitude is a factor of
k"' larger than that of Ipp It would certainly be incorrect to ignore this term.

It is tempting now to use the above expression for the angular integral in evaluating f»(II) [EII. (16)].
This however could be quite incorrect since the condition assumed in the evaluation of I is definitely not
valid over the entire range of integration on ~ and x'. The behavior of the potential when r (or I"') is near
zex'0 18 of cruclRl importance ln determining the propex' procedure. This 18 of course )ust R manifesta-
tion of the well-known fact that backward scattering is very sensitive to the details of the potential near
the origin. To illustrate the correct procedure Rnd the pitfalls of the straightforward procedure referred
to above, the specific case of a square-well potential of radius a and strength U0 will now be considered.

Fol' the siluare well substjtutlon of Egs. (19)-(21)ill'to Eti. (16) 18Rds to

U 2 a ]
(22)

21 k r'+ I.")"'
An integration by parts, to develop a power series in k ', yields

rr 2 a "
g&/2 2ikt t'

IJo
d i2II4 sin nisv& ici4 &-.slaen&r I c/4)- (23)

The last term will be negligible after the subsequent integration on r. The other term arising from IEp,
the third term above, is now the leading term with the stationary-phase contribution being down by k "'.
The difficulty lies in the second term which results from evaluating I» at r'=0. This term should, in
fact, not be present. One can show this by integrating on r exactly first and then examing the p integra-
'tloll. Al'tel'IIR'tlvely olle CR11 1'eexRnlllle EQ. (19) pRy111g pRI'tlclllR1 Rt'tell'tlon 'to tile 1'egioll wllel'6 the lneilual-
ity (17}is not satisfied. Thus consider again

%/2

I= (eninr in8s+ i nr' isBcosninr sins-ninr'cos8) dp
0

The first integral has the stationary phase, as noted, when P = Po where tanP, = r/r' The secon.d integral
also has a stationary phase when P=-P Tohis was ignored since Po is outside of the range of integration
when (1V) is satisfied. But when Po is zero, i.e., when r is zero, this stationary phase occurs just at the
end point and exactly cancels the contribution of the stationary phase of the first integral.

Thus, for a square well, the contribution of I~ at r'=0 will be spurious. This problem would not arise
for potentials which are zero and analytic at the origin but would, in fact, require even more careful con-
sideration for potentials which are singular. The contribution of I» at r =r does persist in any case and
represents an important correction. As noted it is no longer the leading term. The reason for its being
previously overlooked in Eq. (11) is that it now appears as a "second-order" stationary phase.

For the square well the r integration may now be performed to obtain

U. 2 2 " +l/2 2ik&2a-i%/4
0 @2ika
@ 6

2 ~ 2(k~} (25)

The first term arose from IEp and is in exact agreement with the Schiff result. The second term arises
from Isp and for large ka is negligible compared to the first. This comparison is, however, misleading
as will be shown in Sec. IV. It should be further noted that the error in neglecting the higher-order terms
in the k ' series is of order (ka) '~', not (ka) ' as indicated by Schiff. This result has only been derived
for the square-well potential and is not general.
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The stationary-phase term described above represents a different contribution to the scattering than that
calculated by Schiff. It arises from a double-scattering event turning the particle around rather than a
single scattering event. Such a possibility is included in the work of Sugar and Blankenbecler with a dif-
ferent approach. This stationary phase term is present for all potentials and could be more important
than the Schiff contribution if the potential is real and sufficiently strong. The latter condition is a result
of it being intrinsically second order in the potential while the Schiff term, as will be shown, is always
first order. (The higher-order terms calculated by Schiff merely add a phase to the Born contribution. )
There will also be present triple-scattering events, and so on, whose importance will increase for in-
creasingly strong potentials. When complex (absorptive) potentials are considered the small-/ partial
waves will be suppressed and the stationary phase, or "ripple, " contribution will be decreased. Hence,
the approach of Weingarten, which assumes the WKB, smoothly varying phase shifts should be valid and

is for an absorptive potential. But it would fail for real potentials.
In Sec. IV higher-order terms are considered in a manner similar to the Schiff approach and the above

arguments are mathematically confirmed.

IV. HIGHER-ORDER TERMS

Schiff summed the Born series by noting that the soft (forward) collisions before and after the hard col-
lision could be treated in the eikonal approximation. He thus derived an expression for backward scatter-
ing of the form

Z

f ( )=sf (e) = ——Je"'*U(r)exp( — ri(S, Z')-dZ'} dZd S*
2ikr cos8

r cose

4m
e""'" U(r)exp —— U(reine, Z')dZ )dpsin'eder'dr

k

OO r -r
drrU(r) e" "exp —— U(D Z')dZ' —e ""exp —— U(DZ')dZ'}

4iI| Jo
(26)

The phase or distortion entering this expression is
twice that obtained in the Glauber approximation as
the wave is distorted both going in and coming out
of the potential as is illustrated in Fig. 2(a).

For a square-well potential f,(&}may be approx-
imately evaluated by integrating by parts to obtain (b) (c)

f (+) 0 [ 2iAea-i 2a/U0eA-2Aia]Ua
Sk2

(27)

f (ii) 0 2iaa (26)

In fact, if the absorption is sufficiently strong,
practically any calculation of the phase, be it
WKB, Glauber, or Schiff gives the same result
of Eq. (28}.

If the exponential in Eq. (27) is expanded the
second Born term obtained is identical to the end-

This result can be represented schematically as is
shown in Fig. 2(b). There are two reflections, both

at impact parameter zero, one at the first sur-
face, the other at the back with, consequently,
two traversals of the potential. If the potential
were strongly absorptive only the first reflection
would contribute and

(d} (e)

FIG. 2. (a) The process described by the Schiff term
for an arbitrary potential wherein the. projectile is
turned around by a single collision. (b) This intrinsical-
ly single scattering for a square-well potential. (c) The
process described by the stationary phase in the second
Born term for an arbitrary potential. Note that the radi-
us vector bisects the scattering angle at each hard colli-
sion. (d) The second-order process for the square-mell
potential. (e) The process described by the stationary
phase in the third-order Born term. Again the scatter-
ing angles are bisected, (f) The third-order process for
the square well.
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point contribution of Eq. (25). Thus the effect of
the higher-order terms is to add a distorting
phase due to traveling to and from the single hard
collision. In this way the single hard-scattering
nature of the process is essentially unaltered by
the addition of higher-order terms. In a similar
manner the effect of incorporating higher-order
terms into the stationary-phase term, which de-

scribes a process wherein two hard collisions oc-
cur, is also to add a distorting phase. This phase
results from the traversing of the path from -~
to r, in the Z (incoming) direction, from r, to r,
and from r, to -~ in the -Z (outgoing) direction.
(Here the locations of the two hard collisions are
r, and r, .) The proof of this statement is sketched
in the Appendix. There it is shown that

sin l&,r, + &,r, I
8" '2 '~

f(&)= fs, (&)+—,
' r,' dr, sine» de»r, ' dr, e'"&e' eke'k ' ' ' ' U(r, ) U(r, ),

l k', r, + A',r, l

'
I r, —r, l

(29)

where 0» is the angle between r, and r, and the &'s and 6» are distortions of the type calculated by Schiff
I see Eq. (A10)]. An integration by parts on 8» would lead back to Schiff's approximation. Guided by the
previous analysis, a stationary phase is sought and indeed one exists when 8» =&/2. It is thus concluded
that a significant contribution arises from a Process ichich is an intrinsically double, hard scattering, or
a tulo-potential collision, iUhen r, and r, are perpendicular, independent of the particular potential em-
ployed. This process is illustrated in Fig. 2(c).

The caution described earlier must again be exercised when using the stationary-phase contribution in
performing the subsequent integrations in Eq. (29). For the square-well potential the previous arguments
obtain and the final result is

g&/2 U 2g2
f(ii) f + f f P e -i(Up/ kk)3V2ae -i W/42"' ih' 8(ha)"' (3o)

This new contribution arises from the process illustrated in Fig. 2(d). It corresponds to the glory. " How-
ever, it emerges in a straightforward way from this analysis and since the stationary phase that is re-
sponsible for the effect occurs for all potentials there will be, in general, some effect on the backward
scattering. This holds even though the optical interpretation, such as is illustrated in Fig. 2(d) may not
apply.

It can now be seen that for real potentials the amplitude for single potential backward scattering, f„and
the double potential scattering have the ratio

I fi I / I f. I' = (ha)(U. /h')' = (ha)(&/E)'.

Thus if ha is greater than (E/V)' the double-scattering term contributes more to the total backward ampli-
tude than the single term.

V. THIRD-ORDER SCATTERING

The question naturally arises as to the significance of processes which are intrinsically triple hard scat-
tering, i.e., those in which the projectile is turned around in three steps. It is straightforward if a little
tedious to calculate the resulting contribution to the scattering amplitude. A sketch of the procedure will
be given here.

Beginning with the third Born term,

(32)
4w ' lr, -r,

the integration on the angle between r, and k, is performed, keeping the angles between r„r„and r3
fixed. The result is

~1k'I 3- 2I ~ JrI 2- ~l

U(r, ) U(r, ) U(r, ) d' r,d' r,r, 'dr, .
4m klr3+r, l

' ir3 r2l ' ir, -ryl (33)

Upon investigation it can be seen that this integral contains a stationary phase when the azimuthal angle,
iti, —P„ is zero or & so that r„r„and r, are coplanar. Then

1 l 2w I/2 sinh [ r + r [
eiklr3-rzl

16vr J hr, r, sine» sine» h i r, + r, I

'
I r, —r, I

fktr2-r&I - fm'/4 fklr~-r&l++&&/4 "
x + U(r, )U(r, ) sin8» sine»r, ' r,'r, ' dr, dr,dr„(3Ir, -r, I lr, —r, l,
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I I

V=-20- i 40
R=SF

I I

+ QOUSLE

Q SCHIFF

IO

(r, —r, ~, =[r,'+ r,' —2rp~cos(e»+8»}]"'.

The e„and 8„ integrations can now be performed
using the method of stationary phase. The result-
ing description of the third-order process is illus-
trated in Fig. 2(e). The striking feature is that at
each hard collision the radius vector biseets the
cmg$e thxough sahib the particle is scattered.
This was also characteristic of the double- (and
of course single-) scattering terms and presum-
ably holds in general. (This has not yet been
proven. ) For the particular choice of the siluare-
well potential the x„r„and x, integrations may
be performed first with the only significant contri-
bution coming from a=a. Then it is clear that a
stationary phase obtains at 8/3 60' and 823 120'.
This process is illustrated in Fig. 2(f). A simple
calculation including distortion then. leads to

f (&)
( ) ~ 8&a -i2Pj&a/it -im/4 (35)

] f, ['/( f, p = (v,/Ii')'ua = (v/z)'ka.

VI. NUMERICAL TEST OF APPROXIMATIONS

(35)

In this section the approximate expressions de-
veloped in the preceding sections are tested by
comparing the resulting differential cross sections
with a computer calculation of the correct results
for a square-well potential. It should be stressed
that the three expressions tested, given by Eqs.
(2V) (30) and (35} are simple analytic expres-
sions. The calculations were performed with a
nucleon incident on a target of 10' amu.

In Fig. 3 the comparison is made for a strongly
absorptive potential. The assertion that such a
situation does not constitute a stringent test is ob-
viously box'ne out, . The higher-order terms ax'e

IO

I

V=-20 MeV

R=5F
SCHIFF

+ DOUSLE

The fourth-order terms have not yet bien inves-
tigated, but the general method is quite clear. One
performs the integxation exactly on the angle be-
tween one of the r's and ko, holding the angles be
tween the r's fixed, and then searches for the
points of stationary phase for the other angular
integrations.

Finally it should be noted from Eil. (35) that

IO

Io'=

b(C~I~ IO—

IO

I

I00 200 500
E (MeV)

I

400
I

500

FIG. 3. Comparison of approximate and exact results
for an absorptive potential. Since the higher-order
terIQS ale negbgible only the Schlff and second-order re-
sults, which essentially overlap, have been included.
For such a potential no significant flux reaches the
"back" of the potential to be scattered so that any reason-
able calculation of the phase inside vill give the same
result.

IOO 200 500
E (MeV)

400

FIG. 4. Comparison of approximate and exact results
for a real potential. Here it is apparent that the third-
order contribution ie necessary, but excluding higher-
order terms is justified. Except at the minima the ap-
proximation proves quite reliable.
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200 500
E (MeV)

400

FIG. 5. Comparison of approximate and exact results
for a stronger real potential. It is seen that at nearly
every energy the second- and third-order terms lead to
a significant improvement over the Schiff result. The
best approximate result is still unreliable and obviously
higher-order terms must not be neglected.

almost totally suppressed and the Schiff, second-
order, and third-order results {not shown) nearly
coincide for all the energies considered.

In Fig. 4 the comparison is made for a real po-
tential with a depth of 20 MeV and a radius of 3 F.
It is now apparent that the Schiff contribution,
alone, is quite inaccurate except at extremely
high energies. The inclusion of the double-scat-
tering term is seen to improve the results for
every energy, in some cases by more than an or-
der of magnitude. As can be seen in this example,
the approximation, including the third-order pro-
cesses, agrees very well with the correct results
and even at the lower energies the error is, ex-
cept at the minima, a few percent at most. At
those energies where the cross section is a min-
imum any approximation scheme will have diffi-
culty.

As should be apparent from the method used to
develop these approximations, there will be poten-
tials whose strength or range is such that fourth-
or higher-order processes must be included before
agreement is obtained; i.e., arsy approximation
which treats only intrinsically multiple scattering
processes offinite order will fail for some poten
tial. As an example of this consider the compari-
son made in Fig. 5 where a potential of depth 40
MeV and range 5 F is employed. Although at al-
most every energy the inclusion of the second-or'-
der processes constitutes an improvement over
the Schiff result, and the third-order contribution
improves the results again, even this is inadequate
for this potential. Possibly the inclusion of the
fourth-order processes would be sufficient, but
what would obviously be desirable for a universally
reliable description is a summation of the contri-
butions from all orders. Alternatively, given a
particular potential it is essential to ascertain that
higher-order terms which are neglected are, in
fact, negligible. If this is not recognized one has
the situation which has been described in the liter-
ature of various authors testing arbitrary poten-
tials with always some improvement but never
achieving reliability.

The methods described here are immediately
applicable to potentials which are analytic at the
origin, but no attempt has been made to present a
general, closed form expression. The reason for
this is the necessity for treating each potential in-
dividually when the contribution of the stationary
phase is considered in subsequent integrations.
Backward scattering is a very sensitive probe of
a potential so that a small variation in the poten-
tial can cause a large change in f{w). In any case,
the stationary phases and the processes attributed
to them will be present for any potential.

Applications to angles smaller than & are rather
straightforward and will be discussed in a later
paper.
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APPENDIX: EFFECT OF HIGHER-ORDER TERMS IN THE DOUBLE-SCATTERING PROCESS

It is the purpose of this Appendix to sketch a proof for the intuitively rather obvious assertion that there
will be three contributions to the distortion in the double-scattering process. These correspond to sum-
ming the effect of all forward collisions before, between, and after the hard collisions.
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Consider the contribution to the Nth Born term arising from hard scatterings at r and r„, all other N-2
scatterings at zero angle. This will be designated by fBB which is given by

??t~1

f,"„=-—
J

e'"'" (' ",
, U(r„)G(?2, s- l)u(r„,)" G(m+ I,m)U(r„) '",

,
d2~„~ ~ d2~. ,I) ~

where

(Al)

G(q, q-1) = (A3)

Defining p& =r&- r, the integral

I=
) G(m+2, m+1)U(r „)G(m+1,2?2)d2r„„

can be written as

e&&lP??t+2-P +I I e~&PPg+y

~ p~+2 p~+ j. ~ pm+~
{A4)

Assuming as usual a slowly varying potential one can integrate by parts on the angle between p „and
p +~. Then

where k„„„is the unit vector in the (r „—r ) direction. The assumption that an integral containing an

oscillatory exponential in k is negligible leads to

e~"('~+2 ~??t+2I=- — U(k „p+r„)dp.P.2 0
(A6)

Using this procedure repeatedly in Eq. (Al) for all m and n, one finally arrives at the expression for f (w):

f(v) =f (v)+ d r d 2 e'"0"2""2U(r )e' '2'"& G(2 1)U(r )e'"& e'"o' "~1
Bl (4 )2 1 2 2 1

with

] Ir -rI
f3(r„r,) =— U2$ 1 2k

(A8)

In order to proceed with the integration in Eq. (A7) the phases will temporarily be replaced by a function
of differential operations, e.g. ,

eix2 efkr2cose2

eely((j+I)

/&02 ),j ~/~02) +f42?'2cQse3 fx efk2f'2QQge, (A9)

After performing the differentiation k, w'ill again be set equal to k. Now, keeping the angle between r, and

r, fixed, an integration can be performed on the angle between r, and k, . Then an integration on Q» yields

f(n)=f»(v)+ —,
'

~
'r, dr, r2'dr2 sin8»d8» e'"&e'e»e'"2 ' ' ' ' U(22)G(2, 1)U(r,),

Ik,r~+k, r, l

where 8» is the angle between r, and r,. An integration by parts on I9» would lead back to Schiff's approx-
imation. Instead, guided by the previous analysis, a stationary phase is sought and indeed one exists
when 8»= v/2. It is thus concluded that there is a significant contribution from a process which is intrin-
sically a double, hard scattering, or two-potential collision when r, and r, are perpendicular, indepen-
dent of the particular potential employed. This situation is illustrated in Fig. 2(c).
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The differential operators, s/&k, and s/Bk„oc-
curring in Eq. (A10) can be evaluated by noting
the approximate eigenvalue relation

ei l&i &i+ k 2 & 21 kr 2 + k(r .r» ) ei lag ~i+ a 2 &Q I
1 1 2

8k, Ik,r, +k,r, l jk,r,+k,r, I jk,r, +k,r, j

'

Similarly,

x(b„z,) = x(r, cosp„r, sinp, ),
where

tan pa = r2/r, ,

(A13}

At the point of stationary phase then, where

r1 r2 =0

a2 '~' s)
x(b, &}=-xl 1+ k.ak, ' ' ek,)

. 2

X 2+ 2 1/2p 2+ 2 1j2
1 2 1 2

(A11) with a similar expression for 6„.
Again being careful about using this stationary-

phase contribution in the subsequent integrals in
Eq. (A10), one obtains for the square well

1/2 rp 2 2 2$AaV5
wp 0f(~) fs f2 ~f8 2&I4 fk8 S(k&)&l&

=—X(r, sinp„r, cosp, ) . (A12)
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We discuss several problems involved in the current-algebra sum rules derived by Suzuki
and his collaborators. In particular we discuss the ambiguities related to soft-current inser-
tion to the external lines. Alternative prescriptions to get similar sum rules are also dis-
cussed. An application of the sum rule to the S'-production process is briefly discussed.

I. INTRODUCTION

Suzuki and his collaborators" recently made
interesting applications of current algebra' to .
single-particle inclusive processes, g-production,
and also pion production processes. Their results
seem to be in agreement with other predictions
based on various other models of high-energy re-
actions; the basic assumptions involved are the
following:

(i) the "low-energy theorem" of the soft-photon
radiation;

(ii) simple analytic structure of the production
amplitude (namely, dominance of the normal sin-
gularities at high energies);

(iii} duality arguments, which are used to moti-
vate the neglect of 3-body scattering amplitudes;
and

(iv) absence of the contact subtraction terms.
The purpose of the present note is to discuss the


