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which is the minimally coupled nonlinear model.
To conclude, we have shown, that the minimal-

coupling and nonlinearization procedures are com-
mutative, that is, the minimally coupled non-
linear model is indeed the infinite-chiral-scalar-
mass limit of the linear model. Therefore, just
as is the ease without the electromagnetic inter-
action, any results obtained from the linear mod-
els, independent of the chiral scalar mass, should
be uniquely related to the corresponding results

obtained from the nonlinear models. This conclu-
sion:can also be straightforwardly generalized to
models concerning the chiral SU(3)SU(3) symme-
try.
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A recent measuremerit of the branching ratio I"(g p+p, )/I (g 2y) yielded the value
(5.9+2.2) && 10 . We examine here the implication of this result on theoretical predictions
for the real part of the g p+p, decay amplitude and conclude that the branching ratio is
uncomfortably large for most of the models proposed so far. We then evaluate the g p+p
decay rate in the baryon loop modej. . Predictions are also made for the associated decays

yp, +p, , xo e e, and pro ye e

I. INTRODUCTION

Recently, measurements have been reported by
Hyams et al. ' on the decay g- p'p, and by Clark
et al. ' on the decay KL- p, 'p . Since these decays
can proceed electromagnetically through a two-
photon state it is instructive to give the experi-
mental numbers as branching ratios, i.e.,
r(q- p'p, )/r(q-2y) =(5.9+2.2) x10 ' and
r(SCO, - q'q )/r(SC', 2-y) &0.31-x10 (90% confi-
dence level). To the extent that neutral currents
are neglected the only other physical states per-
missible in these decays are 2ny, 3m, and 3ny. We
will assume for the moment that these states can
be neglected completely. Then the decay amplitudes
for g- 2y and K~- 2y are real and can be taken
from experiments. If we further assume CP in-
variance and standard quantum electrodynamics
for the muon interaction then the above branching
ratios should be almost identical because the

masses of the g and E mesons are approximately
equal. Numerically one finds' r(g- g'p )/r(g~'2y)
~ 1.07 x10 ' and' I (Ko~ - g

'
p, )/r(Ko~ - 2y)

~ 1.17&10 '. These values, the so-called "uni-
tarity bounds, "are expected to be very reliable.
There will be of course a small variation due to
interferences with other physical states in the
imaginary parts of the amplitudes. However, the
addition of the real parts of the amplitudes can
only increase the branching ratios given above.

It is obvious that the experimental results are
significantly different from the unitarity bounds.
The result for g decay is compatible with its bound
whereas the result for KL, decay is not. As regards
the latter, several attempts have been made to
explain the discrepancy by allowing interference
with other channels, i.e., the 2my, 3n, and 3ny.
Original estimates made by Martin, de Bafael,
and Smith' have been improved by Farrar and
Treiman, ' Gaillard, ' Aviv and Sawyer, ' and Adler,
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Farrar, and Treiman. ' These states are now

known to allow a variation of approximately 10%
in the unitarity bound for Kz decay. Such calcula-
tions (for the CP-conserving part of the decay,
amplitudes) are immediately applicable to q decay.
In fact we have checked that the may intermediate
state can only change the unitarity bound for g
decay by 2%. Another possible explanation of the
K& result has been proposed by Christ and Lee, "
namely, that a CP violation is necessary to pro-
duce a destructive interference and thereby lower
the- unitarity bound. Such a mechanism has no
implications for the q meson because it decays
electromagnetically. In this paper we do not
address ourselves to the problem of the K~ decay
but would like to examine the implication of the q
result on models for the real part of the g- p, 'p.
decay amplitude. Note that models for g decay
also yield predictions for the decay, m'- e'e for
which there are no experimental results.

If we continue to assume that the decay is purely
through the 2y state then the real part of the decay
amplitude must come from a dispersion integral
over the two-photon cut. Let us take the coupling
of q(P)- y(k, )+y(k, ) to be of the form

A(q 2y) Fq(k~ ~ k2 )c~~ygPe k,"k2 (1 1)

so that the on-mass-shell decay g- 2y measures
F~(0, 0). If F„(k,', k,') is taken to be a constant
then the real part of the decay amplitude for g-p. 'p,
is logarithmically divergent. It would therefore
seem at first sight to be easy to produce a model
for F„(k,', k, ') which produces a large real part
and thereby explains the experimental number
given above. However this is not so easy. If we
want to produce a real part of the amplitude which
is twice as large as the imaginary part then the
cutoff mass A in the logarithmic factor In(A/m„)
must be chosen around eight times the q-meson
mass. Clearly this is only a rough estimate be-
cause there are other coefficients involved as well
as finite terms. A cutoff mass which is so large is
rather peculiar; in fact, one would expect to be
able to use a mass around the vector-meson mass
if these states explain the decay rate. Let us now
review the models proposed so far to see what
actua11y happens.

Basically the models fall into two classes. There
are authors who assume an ad hoc form for
F„(k,', k, '), i.e., Drell" and Herman and Geffen. "
Then there are authors who use some form of vec-
tor-meson-dominance model with spy or happ cou-
plings, i.e., Young, "Quigg and Jackson, "
Litskevitch and Franke, "and Litskevitch. " The
model of Herman and Geffen, "when applied to g
decay, gives a very small real part to the decay
amplitude. Indeed a cutoff mass approximately

20 times the g mass is required to satisfy the
branching ratio reported in Ref. 1. Drell" intro-
duced a discontinuity in his form factor which gives
a more singular real part, so that, when applied
to g decay, it gives the correct value for the
branching ratio with a cutoff mass eight times the

g mass. The functional forms introduced by these
authors do not seem to have any physical signifi-
cance. Quigg and Jackson" used a model with

direct couplings of the type happ etc. , and found an

even smaller real part than tQat of Herman and

Geffen. With the second choice of coupling of the
type spy they found a slightly higher value but still
require a vector-meson mass of approximately 18
times the mass of the g to fit the experimental re-
sult. In fact they find it difficult to imagine a
branching ratio lying outside the interval from one
to two times the unitarity bound. Their results
seem to be in disagreement, however, with those
of Litskevitch and Franke" who predict higher
values both for n'- e'e decay and q- p. 'p, decay.
Indeed Litskevitch" gives a result for the above
branching ratio of 3.2 @10 ' based on the physical
vector-boson masses. This result clearly con-
tradicts the conclusions of Ref. 14 and we have
reason to believe it to be incorrect. Difficulties
with the standard form of the vector-dominance- .

model" are already known for these decays be-
cause the spy coupling" has been found consistent
with zero from photoproduction analysis. Only
the co- m'y decay has been measured and a small
upper limit is known for the decay p - m'y. The
model of Young, "which is a combination of dif-
ferent vector-meson-dominance models together
with an ad Roc form for the high-energy behavior
of F„(k,', k2'), has a large number of parameters.
It is possible to accommodate a branching ratio
of 5 X10 ' in his model, but one would require more
data, especially on g- p, 'p, y and m'-e'e, before
any conclusions can be drawn. Clearly the mea-
surement reported above is disturbingly large for
most of these models, and does not decisively
rule out the presence of a neutral current coupling
the q directly to a muon pair.

In view of the limitations of the models listed
above, it seems worthwhile to investigate yet an-
other model for' the real part of the q- p, 'p. de-
cay amplitude. We have therefore carried out a
calculation based on the nucleon loop model to see
what happens when higher-mass states are included.
This model is actually much older than the models
given above but its implications for this decay have
not been worked out. Steinberger, "in his original
paper, proposed this model to explain the m' life-
time and it is well known that the prediction is very
good (assuming pseudoscalar pion-nucleon coupling).
Lautrup and Olesen' generalized the original mod-
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el to discuss baryon loop contributions with dif-
ferent SU(3) coupling constants. They found a
reasonable prediction for q- 2y decay. An addi-
tional reason for considering such a model comes
from recent work on soft-pion limits. " It has
been shown by Adler" that the Vfard identity con-
necting the divergence of the axial-vector current
to the pseudoscalar current contains an anomalous
term. In the soft-pion limit of the decay w -2y,
only this anomalous term survives and yields the
same result as that from the pseudoscalar nucleon
loop model. This indicates that the pseudoscalar
nucleon loop model should also give the dominant
contribution in the associated decays n'- ye'e
and w'- e'e, as well as the corresponding g de-
cays g-2y, q-yp'p, and g- p. 'p, even if we
do not take a soft-pion limit.

In Sec. II we give the basic formulas for the two-
photon decays of the no and q mesons. Our results
are identical to those given by Lautrup and Olesen. "
Section III gives the corresponding results for the
decays q- yp'p and w -ye'e . Previous calcu-
lations of these modes have been made by Geffen
and Young' and by Jarlskeg and Pilkuhn. " There
are experimental results available for the slope
of the form factor" "in w'- ye'e decay but they
are rather inconclusive. At present the form fac-
tor is so small that radiative corrections" to this
decay will have to be considered before any ex-
perimental result can be given. The decay
g- yp'p, should not suffer from this problem be-
cause the muon mass is much larger than the elec-
tron mass.

The decays q- p, 'p. and m'- e'e are considered
in the nucleon loop model in Sec. IV. We do not
use direct Feynman parametrization because this
leaves a five-dimensional integral after we inte-
grate over the two loop momenta and its evaluation
is rather complicated due to the presence of singu-
larities. Instead we use the unitarity equation for
g- p. 'p. decay in the same spirit as Martin, de
Bafael, and Smith' in their consideration of the
decay K', - p, 'g . Fortunately there are various
simplifications in g decay as compared to K decay,
because there are no infrared divergences. After
calculating the absorptive part of the amplitude we
compute numerically an unsubtracted dispersion
integral to find its real part. Our conclusions are
given in Sec. V where we also discuss the modifi-
cations due to other baryon-antibaryon exchanges
with SU(3) values for the coupling constants.

In Appendix A we give the absorptive part of the
q- p.

'
p. amplitude with the yern intermediate state

because the relevant formula does not seem to be
available in the literature. We also give a numeri-
cal estimate of the effect of this state on the two-
photon unitarity bound.

II. THE DECAY @~2'

The model we are proposing is based upon the
Feynman diagram for q(P) - N(q) + N(q') - y(k, )
+y(k, ) shown in Fig. 1. Using m~ for the q mass,
M for the baryon mass, and q for the loop inte-
gration momentum, we find the following expres-
sion for the amplitude:

, ~ d'q g If, +I -/+I g+g, +M
(2v)' y'(q-k, )' —M' ~' q' —V' ~' (q+k )'-I'

cx g sin '(—,'$)
e&vpae&E&k%x

2

II
ep v p a 6 y Epk xk p ~ (2.1)

Here the qNN vertex is defined by A(ri- N(q')N(q) }
=gg(q)y, ~(q') and g =m„/I is a small parameter.
The decay rate is given by

r(q-2y) = " (aP

rate is given by

2 g2 $2r(q- 2y) =m ———(I+~~'+~~'+ - ~ ~ ) .6 MO

(2 3)

Equations (2.1), (2.2), and (2.3) agree with the
results of Lautrup and Olesenw (who define the
qNN vertex with the extra phase factor i) The-.
term in (' is very small and can safely be neglected.

= 1.227 x10-'m —."4m (2.2)
III. THE DECAY q~yp, 'p

If we expand this equation in terms of $, then the
Now we proceed to calculate the probability that

one photon is virtual and converts into a lepton
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N{q

FIG. 1. Feynman diagram describing the decay g 2p.

pair. Following the notation in Fig. 2, we find
the amplitude

A(n-r) ') )

1
k

= —BiMe'g@(p, )r'v(py) 2 ~) vpa~lt)1(pl+p2)

- d'q 1
(27()' (q —j'g, )' -M' q' -M' (q+0,)' -M'

(3.1)

The integral is the same as the one in Sec. II but
now k, ' &0. Feynman parametrization leads to
the following expression:

4 p

[sin '(-,'i))* —(sin '(-,'i )I*)
~ ~

N(q

= 2[1+~» (t'+ )).') +~~0 (t'+ g')).'+ )(.') + ~ ~ ]

(3.2)

where again $ =m„/M and )). = (k,')'~'/M. It is ob-
vious that the fourth-order term is again so small
that it can be neglected because ~' is bounded by
4m'/M' & )(,

' ~m„'/M', where m is the lepton mass.
Retaining only the quadratic term leads to the pre-
diction that the slope of the form factor in g decay
is ~»g', i.e., if F„(k,', k, ') is the general off-mass-
shell form factor, then with m„'x=k, '= A,'M',

IV. THE DECAY q~p'p,

We now consider the more difficult calculation
of the amplitude for g - p, 'p, . The Feynman dia-
gram is shown in Fig. 3, where we now use k and
k' for the virtual-photon momenta. It is a rela-
tively simple matter to write down the amplitude
as a double-loop integral and reduce it to a five-
dimensional integral over Feynman parameters.
However the resulting integrations become rather
complicated due to the presence of various branch
cuts. We chose therefore to follow the unitarity
calculation given by Martin, de Rafael, and Smith'
for Kl- p. 'JU. decay, and, having found the ab-
sorptive part of the amplitude for q- p, 'p, decay,
evaluate a dispersion integral for the real part.
We define the decay amplitude by

A(q- p, '(p'))(, (p)) =is(p)rg(t)v(p'), (4.1)

where t=( P+P)'=P'. The decay rate is there-
fore given by

(4.2)

Assuming CI' conservation in this decay, the muon
pair is in a singlet S state. The projection oper-
ator for this state has been given in Ref. 5. We

Pq(ok, '), )"=,(00) , ) +( ") —=)"q(0, 0)(1+~('x) .

(3.3)

Thus the slope of the form factor is predicted to
be a=~»('=0.03 for g decay and 0.002 for m decay.
These results are significantly different from
those of the vector-meson-dominance model which,
based on the p meson alone, give a value of a„
= (m„/m, )'= 0.6 for q decay and a, = (m, /mp)' = 0.03
for w decay. Unfortunately the experimental data
on this slope parameter are not yet good enough
to distinguish between the various models. A
recent experiment by Devons et a/. "yielded the
value a, = 0.01 a 0.11 while older experiments"' "
gave negative values. The fact that the slope is
much larger for the decay g- yp. 'p, gives some
hope that this parameter can be measured in the
near future.

N(q)

N(

N{q) p'. (p')
FIG. 2. Feynman diagram describing the decay

'9 P P 'V. FIG. 3. Feynman diagram describing the decay q p+p, .
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denote it by

P".„', (p, p') = „,[-2m(p+ p') „y"y,

+4'„...(P'P"-P "P')c""+ty51

(4.3}

so that the relation between A(q- p, 'p, ) and F(t)
is

Tr[P,'„,(P, p')A(q- p, 'I' )] =t(2t}' F(t). (4.4)

The unitarity equation for the amplitude

A(-)" t' ) is

2mAb~(n- V'u ) = ' dp. 5'"(P+O' Qpd-2 J

xA*(p, 'p, - X)A(g- X),

so from Eq. (4.4) we find

AbsF(t}=, , 2 J dp 5"(p+p'-gp, )

x&zlTl(p, 'p ), &*A(q- x),

(4.5)

where the integration is taken over the phase
space of the intermediate states A.. Because we
assume CP conservation the absorptive part of
the amplitude F(t) is equal to the imaginary part
of F(t). Direct calculation of the absorptive part
sometimes involves both real and imaginary terms
on the right-hand side of Eq. (4.5) but the imaginary
parts always cancel when we add all the contri-
butions which are of the same order in the fine-
structure constant. The amplitude

&&I Tl(p't' }",&*

is the Hermitian conjugate of the transition am-
plitude for (i''t' )iz to go into the state ),. The
projection operator which selects the singlet S
state of the incoming muon pair is also given in
Ref. 5, namely,

where

GATI' »
(4 ')

P» ——1 —4M /t. (4.8)

This expression coincides with the result given in
Eq. (2.1}for the physical g meson because the
analytic continuation of w' —ln'[(1+P„}/(1 —P„)] to
the case t=m„' yields 4[sin '(—,'$}]'with (=m~/M.
The (p'g )x» -2y amplitude is found from the

0

the NN states, it is convenient to assume that the
g mass is so large that physical decays into NN

states are allowed, as well as yNN states. We
therefore calculate the right-hand side of Eq. (4.5)
for these states. Then we evaluate the real part
of the amplitude by a dispersion integral at
t=m„' taking into account the 2y, NN, and yNN
states, using analytic continuation where necessary
to have real functions. The decay rate is then
calculated from this dispersive part and the phys-
ically allowed 2y absorptive part. These possible
states are drawn in Fig. 4.

A. The Two-Photon Contribution

When we take the intermediate state A. in Eq.
(4.3}to be the two-photon state, we need the am-
plitude for q- 2y with the photons on their mass
shells and the amplitude for (p'p )i~ -2y. The

0
first term here is already known and given in Eq.
(2.1). As we are considering t=m„'&4M', then
we can also use unitarity techniques on Fig. 1 to
find the absorptive part of the amplitude and eval-
uate a dispersion integral to find its real part.
The imaginary part is canceled later by the cor-
responding contribution from the NN cut so we do
not write it here. Our result is

I";."(p,P') =
2(2,)„,[2~(p+P')„y"y,

+2'pupa(p P PP )o +ty5]'
(4.8)

After calculating the absorptive part of the decay
amplitude we find its real part from an unsubtracted
dispersion integral for the amplitude F(t). For a
physical q particle the only states allowed in Eq.
(4.5} are the 2y, 2»y, and 3» states We know. that
the contributions of the states 2' and 3m are very
small compared to those of the 2y states. An ex-
plicit value is given for the 2my contributions in
Appendix A, and we will henceforth neglect such
states. However, as our model for q- 2y includes

FIG. 4. Unitarity diagrams corresponding to the 2y, NN,
and NNy contributions to AbsA(t) in Eq. (4.5).
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Born diagrams in Fig. 5. If we use the projection
operator (4.6) then the singlet S transition ampli-
tude is only a function of the scattering angle in the
muon center-of-mass frame. The integration over
A. can therefore be written as an integration over
the cosine of this angle. Hence we find the follow-
ing result for the absorptive part of the form fac-
tor F(t):

&(k')

p'(p')
i

p-k

&(k)

p-(p)

AbsF" ~'(t) = g —ln
4w t P„1—P~

x v' —ln' " 8(t —4M'),
1 —pN

where

P~
——1 —4m /t.

(4.9)

y(k') (k)

When 4m' & t &4M', then p„ is still real but pz
becomes imaginary. Equation (4.9) then becomes

M1 1+

(4.10)

2 M 4 2 1/2 t 2

(4.11)

B. Contribution from the NN States

Equation (4.3) can again be reduced to an inte-
gration over the center-of-mass angle of the muon
pair. First of all we need to discuss the general
amplitude and the sum over the spin states of the
baryon-antibaryon pair. The amplitude for g de-
cay is

A(q- NN) =gu„(q)r, v„(q') . (4.12)

Now we need the S-wave projection of the ampli-
tude for p, 'p, - NN in the two-photon-exchange
approximation. Using the notation shown in Fig. 6
where l and I' —l are now the photon momenta, we
find that the amplitude for diagram (a) is given by

which is the expression to be used in the physical
decay rate. However the dispersion integral is
taken from t=0 to t=~ so we still need the absorp-
tive part from 0 (t (4', i.e.,

FIG. 5. Feynman diagrams describing the p+p 2y
transition amplitude.

4

A(g'p, - NN) = e JI 4u~(q)r&(g —g™)r~vg(q')2r'
g& gv™v„(P')rs(P f+m-)r up(P)

I '[(p —l)' —m'][(q —l)' M'](P —l)'-

(4.13)
At this stage we perform the sum over the pos-

sible spins of the nucleon-antinucleon pair. This
gives us the following trace for the nucleon loop:

»[P';."(P,P')rg(A-5+m)r ]=—
( t)ii2 e @P"1'.

The product of Eq. (4.13) and Eq. (4.14) gives the
simple result

eme~P I e~„g~P I = -2[P l —(P 'l) ] . (4.15)

In terms of the center-of-mass angle P the unitar-
ity equation for the NN intermediate state is

Q A(q-NN)A*(p, 'p, -NN )
splns

= »[(4+M)r. (4'-M)r. (d —I'+M)r„]
= -4iMge„,„P'l'. (4.14)

Now we take the projection of the final p, 'p,
pair in the singlet S state,

t +I,

AbsF(""~(t) = ", ,», — dcosP Q A(rl-NN)P~D~A~(p'p, -NN).
spins

The expression to be integrated can now be written as

(4.16)
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with

2[P'l' —(P l)']
l2(P —l)2[(p- 1} -m'][(q- l)'-M'] ' (4.18)

The evaluation of this integral has been done using the Mandelstam representation. " Its real part cancels
with a corresponding contribution coming from the two-photon intermediate state. The evaluation of the

imaginary part is straightforward. It is convenient to define the function

F(y, t) = 2 lny ln(t/m') -4 lny+ lna ln + lny ln
a-y ay(a —y}(1—ay)
I —ay 1 y22

2
y

2 2 a 2 $ 2 ] 2 2 a f 2 (4.19)

where

[(M+m)'-s]'" -[(M- m)'-s]'
[(M+m}'-s]'"+[(M-m}2-sj'" (4.20}

a=m/M, and s = (p —q)'. Our Li, (x) functions a,re
defined as in the book of Lewin. " The integral is
now given by

im~ ty1(t) = —
2 (1 .) &(y, t). (4.21)

The integration over, the center-of-mass angle can
now be written as an integration over y, i.e. ,

and

, (l-ti. )(1 ti, )
(1+0„)(1 ti, ) —' (4.24)

ghent'""'(t) = P(y, t) —e(t-4M'),
2m tP„„y

The contribution of the crossed diagram in Fig.
6(b) only multiplies the above result by two, so
after some simplification we find the final result,

)) N g 3
1

( 1-P. (}1P)-
(1+0„)(1+0)N

with limits given by

(4.22)

(4.23)

(4.25}
where E(y) is given in Eq. (4.19). The analytic
evaluation of this integral is possible in terms of
trilogarithmic functions. However it would take
too much time so we evaluated Eq. (4.25) numeri-
cally.

C. Contribution from the AN State

The integration in Eq. (4.5) is now over three-body phase space, and we require the amplitude for the
transitions g-yNN and p, 'p, -yNN. To lowest order in the electromagnetic coupling constant the ampli-
tude for g-yNN is determined by bremsstrahlung radiation from the nucleons. Hence following the nota-
tion in Fig. 7, with k' the photon momentum, we find

(4.26)

P;„' A(p, 'p -yNN) =(-ie)'Tr P; (p, p') )g, yq+yq, , )t u„(q), y,v„(q')i(p —l(I+m) i (l% —lf'+m} -ig~"

(4.27)

g(v-ygie)=( (e)gig (g) y,-, g.„. . g+ . . . v) v (q').( O' P'+M)-, —tt(4+If'+M)

The amplitude for p, 'p, - yNN is similarly determined by the two Born diagrams in Fig. 8, where k is the
virtual-photon momentum. If we take the singlet S state for the muons, then

, (-4mi) „, ,„1 Xv

(2t)'~' ('"" k'-2p k k"-2p k' (4.28)

Qur method of integration follows that of Ref. 5 so we only give a brief description here.
We use k'= s and let 6 be the angle between the momentum of the virtual photon k and the p,

' momentum
p' in the c.m. frame of the t(, 'g system. Then the scalar products in the denominator of Eq. (4.28) are
easily expressed in terms of s, t, P„, and cos8. Similarly, if we define L9' as the angle between the N mo-
mentum q and the direction of k in the c.m. frame of the NN system ((P' is the corresponding azimuthal
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Equation (4.5) can now be written as an integration over s, cos 8, cos 8', and P', where the last integration
yields a factor of 2m, i,e.,

(4.29)

2v)' ' d' d' ' d'k' 1»»"""'(f)=
~ !I,~l, &'"(~-q- q'-&') Q &(q-year)&*(I 'I -y-~Fr) (4..30)

angle). , then scalar products in the denominator of Eq. (4.26) can be written in terms of s, f, PA, and cos8'
with P„' =1 —4M'/s. The sum over the spine of the NN state now yields

x —
I dcos8' I dP' Q A(q-yNN)AQ(p'p, ), - yNÃ). (4.31)
p+1

2 0 SPkA$ 0

Substituting Eq. (4.29) into Eq. (4.31) yields a rather simple four-dimensional integral which can be evalua-
ted analytically.

Integration over the angles requires only one integral, i.e.,
dcos 8 1 1+Pg

1 —P„'cos 8 P„1—Pq

so we finally obtain the absorptive part of the form factor Jl(f),

Aber'~~"'(f) = g ln ~" Z(P„)8(& 4M'—),vtp„1 —P„

shel e

(4.32)

+Pg l +2 I Pg +2 lng F N ln ~N + (4.33)

D. Numerical Results for the Absorptive and

Dispersive Paris of the Amplitude

For completeness we now check the unitarity
bound and discuss briefly the evaluation of the
dispersive part. For the physical g mass, the
only contribution to Abs F(t) is given by Eq. (2.10)
so that the decay rate is

(4.34)

Ho'Never the corresponding decay rate for g 2y
involves the same coupling constant g, so that if
we divide Eq. (4.34) by

FIG. 6. Feynman diagrams describing the p+IJ, Ng
tX RBsltlGD RIQplltQ6e e

-"=- H(")" (-'-)'
=1.226' io 'm, 4, 4.35
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p " AbsF(t)
d

7f 0 t mq
(4.38)

The 2y intermediate state yields an absorptive
part given by Eq. (4.9) in the region t ~ 4M', Eq.
(4.10) in 4m' & t & 4M', and .Eq. (4.11) in 0 & t & 4m'.
Equation (4.38) is only a. principal-value integral
in the second region, and it converges very slowly
in the first region. Combining all the terms, we
find that

N(q') ReF '~ (m ') =2.13xlp 'g. (4.39)

N(q)

FIG. 7. Feynman diagrams contributing to g AN.

we find

r(q-p. 'p ),(m)' 1,(1+l3,
)

(4.40)

Similarly the yNN contribution to Eq. (4.38) gives
an ordinary integration over the absorptive part
Eq. (4.32). Numerical integration yields the re-
sult

The NN intermediate state similarly gives a con-
tribution to Eq. (4.38). However we have to per-
form the integral over y in Eq. (4.25) and then the
integral over t. The factor 9(t —4M') means that
Eq. (4.38) is no longer a principal-value integral.
Our numerical evaluation gives

ReF~""~(m ') = p.78x 1Q ~g.

=1.07x10 ', (4.36)
ReF'~""~(m ') =1.32x lp 'g (4.41)

AbsF '& (m ') = l.7 14x 10 'g. (4.37)

which agrees with the usual unitarity bound for the

decay. ' For convenience, we give the numerical
value of the absorptive part of F~'~l(m „') from Eq.
(4.10),

We see that the real part of the amplitude in our
model has the final value

ReF(m„') =2.67x 10 eg, (4.42)

which is not appreciably larger than the absorptive
part given in Eq. (4.37). Hence our final result
for the rate is

To find the dispersive part of the amplitude, we

write an unsubtracted dispersion integral for F(t),
and evaluate it at the mass of the g meson,

2

I'(q -p' p, ) = 4.52 x 10 "m
q

so the branching ratio is

(4.43)

N(q) N(q')
F(n O' t ) 3 6x lp 5

r(rt- 2y)
(4.44)

p.+(p')
p,-(p}

This value is in reasonable agreement with the
experimental number (5.9+ 2.2) x 10 '.

It is now qui. te straightforward to change masses
and calculate the same quantities in m'-e'e de-
cay. From (4.10) we have

AbsF"&'(m „')= 2.58x lp 'g', (4.45)

N(q')

g' being the NNw coupling constant defined as be-
fore. The three contributions to the two-photon
intermediate state give

p+(p') p-(p)

FIG. 8. Feynman diagrams contributing to p+p pe.

& (m ) =3.13xlQ g',

while the NN and yNN states yield

ReF' "'(m 2) =-0.77xlp 'g'

ReF ~"" (m ') = 1.43x 10 'g'

(4.46)

(4.47)

(4.48)
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Our final value for the real part of the m'-e'e
decay amplitude is therefore

ReE(m, ') =3.79x10 'g',

so that the decay rate is
I2

I'(w'-e'e ) =1.05x10 "m„4

(4.49)

(4.50)

t2
I"(wo 2y) = 7.08 x 10 ~ m (4.51)

and hence our final branching ratio is

) = 1.4x10-'.
I"(w'- 2y)

(4.52)

If'we only use the absorptive part of the ampli-
tude in Eq. (4.45), we find the unitarity bound

~ 4.7x10 '.
r(w'- 2y)

The predictions of other models can be found in
Ref. 14.

V. CONCLUSIONS

We have concentrated here on the calculation of
the rates for g- p, 'p. and m'-e'e using a nucleon
loop model with the mass of the nucleon equal to

The corresponding two-photon rate from Eq. (2.2)
is

that of the physical proton. Clearly it is possible
to vary our predictions for the absolute decay
rates by using different baryon intermediate states
and SU(3) coupling constants at the meson-baryon
vertices. Such modifications have indeed been dis-
cussed by Lautrup and Qlesen. " The idea is to
sum over the various states assuming an average
mass and then use the SU(3) values of the coupling
constants. Instead of simply having the strong-
interaction coupling constant g, one finds instead
Q;gt =(2/W3)n, g for ti decay and+;g, =2n,g for
m' decay. The parameter n, is the strong-inter-
action SU(3) mixing parameter which is determined
experimentally to have the value 0.73. Hence the

q decay rates are slightly reduced from the pre-
dictions in the previous sections and the m' decay
rates are increased by approximately a factor of
2. We have avoided stressing the specific decay'
lifetimes. We rather believe that the branching
ratios, which are independent of the strong-inter-
action coupling constants, have more reliability.
Clearly the result for I'(q-tt'tt )/F(ti- 2y) is in
reasonable agreement with experiment. Whether
the value for the branching ratio I'(w'-e'e )/
I'(w'-2y) is compatible with experiment should be
known in the near future. Experiments are possi-
ble at the Los Alamos Meson Physics Facility'
and it will not be very difficult to lower the pres-
ent upper limit on this branching ratio by several
orders of magnitude.

APPENDIX

We outline the results for the yzz contribution to the absorptive part of the q- p, 'p, amplitude. Since
t) $2w, there are no bremsstrahlung graphs in the q-yww amplitude. We therefore define a structure-de-
pendent amplitude for tt(P) -y(k')+ w(q)+ w(q'), i.e.,

A(ti-yww) =
~ e„„,e"Q'kt'k "t

m„' ~~'

where Q=q —q' and @= q+ q'. The decay rate for tl-yww is therefore given by (t = m„')
t 3 4 2 3/2

r(tl-yww) = m„~a~' +, s 1--'
384w m„'„, 2 t s

=1.453x10-'m„ la I'

(A1)

(A3)

s. 1+ P~ 4m~

(A4)

on the assumption that B is a dimensionless constant.
The evaluation of the contribution of the ywca intermediate states now parallels the calculation of the yNN

states. We find [P„=(1 —4m'/t)'t']
2 ~ t

AbsE &" (m ') =
12pm„'p„, 2

= 9.904x10-'B.

If we now take the branching ratio I'(tt-yww)/I'(tt-all) =0.047, then the value of B is 3.99 and

AbsF b""~(m„')= 3.95x 10 ', (A5)

which is to be compared with the contribution from only the two-photon state. If we ignore for the moment
the nucleon loop model and take a basic pseudoscalar coupling for this decay, namely,



2030 M. P RA TAP AND J. SMITH

A(q -2y) = e„„~e,"e2 k~fkn, (A6)

then

r(n-2y) = 64"„I&I'.

The corresponding contribution to the absorptive part of the g- p.
'

p, decay amplitude is

AbsFi»~(m„') = —ln
O. m H 1+P„
4m„p„1-p„

= 1.224x10 'H. (A8)

Taking therefore the branching ratio 1'(q-2y)/I'(q-all) =0.375, we solve for H finding H=1.92xl0; so the
numerical value of Eg. (A8) is

AbsE'» (m„') =2.35x10 '.
The effect of the yvw state is thus to change the yy contribution by approximately 2$. The reason this ratio
is 1omer in g decay than in K~ is due entirely to the fact that the rate for g- yzz is known, whereas only a
large upper limit exists for KL, -ym.
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