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By studying the eigenvalue spectrum of the Faddeev kernel in a certain singular limit, we

give an independent proof of an effect recently deduced by Efimov: %hen three identical
particles interact via short-range pairwise potentials, the number of three-body bound

states grows without limit when the pairwise scattering length a becomes large. [ The num-

ber of bound states is then roughly (1/w)ln(A (a (), where A is a momentum cutoff]. We ex-
tend our proof to the case where only two particles are identical and show that Efimov's
effect persists in the special limiting cases with two heavy and one light particle, and with

two light and one heavy particle.

I. INTRODUCTION

Recently Efimov demonstrated a remarkable and
hitherto unsuspected property of three-body sys-
tems."He showed that if three nonrelativistic
identical bosons interact ~ia short-range two-body
potentials gv(r), then as the coupling constant g
increases to that value g, which can support a sin-
gle two-body bound state. at zero energy, the num-
ber of bound states of the three-particle system
increases without limit, being roughly given by the
formula

X - (I/s) ln(Aa),

where a is the two-body scattering length (which
becomes infinite whenever there is a zero-energy
s-wave two-body bound state) and A i's a momentum
cutoff determined by the range of the potential v(r)
This result surprised us because we did not ex-
pect that well-behaved short-range potentials
could support infinitely many bound states (even. in
many-body systems); therefore Efimov's effect
reflects yet another qualitative difference between
two- and three-body scattering. A rigorous dis-
cussion of some things that can and cannot happen
to many-body bound states, but not of the surpris-
ing Efimov effect, has been given by Simon. '

Since Efimov's discursive derivation' was not
immediately available to us, and since the result
was startling, we undertook an independent verifi-
cation. Our efforts led to a rigorous proof, which
turned out to be sufficiently different from that
given by Efimov as to be interesting in its own

right. An abbreviated account of our proof has
appeared previously4; the purpose of this paper is

to present our results in considerable detail, in-
cluding their extension to the case of nonidentical
particles. %e will also discuss some of the
physical aspects of Efimov's effect.

Our approach to the three-body bound-state
problem is based on the integral form of the
Schrodinger equation introduced by Faddeev'.

(2)

This is a system of three coupled homogeneous
(because we are studying bound states) integral
equations of Fredholm type, whose kernel has cer-
tain very desirable mathematical properties (i.e.,
it is "compact") if the two-body off-shell scatter-
ing amplitudes t,-,. are derived from reasonably
well-behaved short-range potentials (e.g., Yukawa

potentials, Wheeler-Yamaguchi potentials, etc. ).'
For technical reasons connected with the fact that
the trace of the kernel of Eq. (2) vanishes, it is
difficult to treat the case of three nonidentical
particles using our methods. However, if even
two of the particles are identical, Eq. (2) can be
put into the form of a single homogeneous Fred-
holm integral equation, the trace of whose kernel
does not vanish identically and so can be studied
in a relatively simple manner. As we shall see
subsequently, Efimov's effect is a form of in-
frared divergence of certain traces, which appears
when the three-body barycentric energy E is set
to zero, and the two-body scattering length be-
comes infinite. (The order in which the limits are
taken is immaterial. ) If we consider any power of
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the kernel of our equation, we find that as a- ~
with E =0 its trace diverges as ln(Aa}, whereas if
we let E-0 with a= ~, the trace diverges as
ln(-E). In Sec. II (which deals with the simplest
situation, that of three identical bosons) we show

by a power-counting argument that this divergence
is indeed present in every power of the kernel. We
then discuss the connection between this divergence
and the number of bound states of the system. By
confining our attention to the most singular part of
the kernel, we obtain the leading contributions to
certain traces, and thereby prove that the number
of three-body bound states indeed grows in the
manner indicated by Efimov. In Sec. III, we apply
our method to the situation where only two particles
are identical, confining ourselves to the two inter-
esting limiting cases where the two are either very
heavy or very light compared with the third parti-
cle, and taking into account the possibility that the
pair scattering lengths may be different. In Sec.
IV we discuss the physical interpretation of
Efimov's effect. FinaQy, we have for didactic
purposes relegated some of the more mathematical
portions of the paper to appendixes.

II. IDENTICAL PARTICLES

In this section we show that when three identical
bosons interact via short-range forces the number
of three-body bound states grows like In(A~a~) with
increasing two-body scattering length a, where A

is some momentum cutoff. When the particles are
identical, the three coupled equations in (1) reduce
to a single equation which can be written

(«P) pJjd'P d'« =&(p. «lp '« )P'(p«'), ',.(«'),
where (tI = m = 1)

2(k+3pit(E- dp3)ip'+3k') „
(4)

t is the off-shell two-body scattering amplitude,
and E is the total (barycentric) energy eigenvalue.
True bound-state solutions of (3) must have E & -tp,
where b is the binding energy of the most tightly
bound two-body bound state. If there are no two-
body bound states, the three-body bound states
correspond to E &0. The two-body scattering
threshold also begins at E = -b. As we shall see,
the singularity leading to the infinite number of
bound states comes from the confluence of the
three-body threshold (E = 0), and the two-body
threshold (E = -1)}, so that this singularity only
occurs for the first two-body bound state (b =0).

We want to calculate the number of three-body
bound states when g is smaller than, but close to

where u is the separable potential vertex, nor-
malized so that u(0) = 1, and g is the potential
strength. (Positive g corresponds to an attractive
potential. } Introducing a separable t matrix into
the Faddeev equation reduces it to the one-variable
equation'

P(p) Jd'P d(p P=)P(p')'

K, - -„»(5+3p')u(p'+ 3p)7(E —~P')
&~( p, p'~i=

p2 p/2 ~
~

~l

But near a=0, v(e) is approximated by

(6a)

7'(f) = — 3 + «-6
2w a

(this is just the effective-range expansion)' so that
when E =0 and a is very large compared. with the
range A ' of u,

Oo 2 3

r(«)«Jd'PX(p, p)=- — dp

= (a3)3t3v ' ln(Aa)+ const,

where the numerical value of the constant term
depends on the exact form of u(k). On the other
hand, if g&gp so that the two-body scattering
threshold begins at -5&0, we see that when
E ~ -5, there is no singularity at the lower limit
of the integral defining tr(K) [or tr(K"), for that
matter] so the trace remains finite and the diver-
gence associated with the Efimov effect does not
appear. If we now examine in like fashion the
trace of the nth power of K for E =0, a= ~,

g„ i.e., as the scattering length a gets large. We
can do this by studying the traces of various pow-
ers of the kernel of (3}. Unfortunately, if the
scattering amplitude in (4) comes from a local
potential, the traces of the first and second pow-
ers of the kernel will diverge at large momenta
independent of anything else. This difficulty can
be circumvented by studying only higher powers
of K, but such a procedure is technically much
more complicated. Since the divergence con-
nected with the Efimov effect arises from the
small-momentum behavior of the kernel, it seems
inappropriate to complicate the problem merely- to
deal with its (irrelevant) high-momentum behavior.
We avoid the difficulty by using a two-body scat-
tering amplitude derived from an s-wave separa-
ble potential,

&q(t(e) ~q') = u(q)~(c)u(q'},
(5)1, u'(q)

T(E) = —+ d
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~r(x ) "j=dpjd'p, ."
d'P„K p»p2 K p»ps '''K p„, pz

(9)

and employ hyperspherical coordinates in Sn-
dimensional space, we see by power-counting
that the integral (9}has the form C, Jo dp/p+ C„
where C, and C, are constants and p' =+~,P„'.
That is, tr(K")~~, is logarithmically divergent at
the origin in Sn-dimensional momentum space and
elsewhere convergent, so that tr(K") ~~,~ In(Aa)
for large a. Thus it is natural to separate the
kernel into a (singular) low-momentum part K and
a nonsingular remainder K~,

K=K+K~,

K(p, p')= . .. -.-, ~(A-P)s(A- p'),2T(E —4P')
E-P —P -p'p

(»)
where 7 comes from (7}, and A is some momentum
cutoff. [Equation (11) is in fact the singular part
of the kernel for any two-body interaction. The
separable potential is merely a convenient heuris-
tic tool for arriving at this effectively model-
independent decomposition while avoiding the com-
plications associated with the large-momentum
behavior of the t matrix. ] By construction tr(KR),
tr(K~'), and tr(KKs) remain finite when E =0,
a- ~; and as we shall soon see, the decomposition
(10}together with this good behavior of K~ is es-
sential to the subsequent analysis.

We next establish the connection between the
number of bound states and the mathematical
properties of the kernel of Eq. (6). When E&0
and g& g„K(E,g) represents an operator of the
Hilbert-Schmidt type, ' since it is obviously
equivalent under similarity transformation to a
real symmetric kernel„and since tr(K') & ~. Thus
if we consider the eigenvalue problem

K(E, Z}A, =n.(E, r)e. ,

we see (1}that the eigenvalues q, (E, g) are real
and discretely distributed when E & 0, g&g„(2)
that lim, „q,(E, g) =0; and (3) that whenever some
eigenvalue g„satisfies

n.(E, Z)=1,

the corresponding eigenvector Q„(E,g) satisfies
Eq. (3), i.e., is a solution of the Schrodinger
equation. From the above considerations we con-
clude that the number of three-body bound states
for fixed g is just the number of times the eigen-
values of K become equal to unity as E increases
from -~ to 0. We also note that since

(14)

there is for each g a most tightly bound state with
finite binding energy 0 & B(g) & ~ so that all the
bound-state energy eigenvalues E„(g) lie between
-B(g) and 0. Now since each eigenvalue g,(E, g)
is a real-valued continuous function of E and g for
E&0, g&g0 and therefore must pass through the
value g = 1 in order to become larger than unity,
if we can show that an infinite number of g's
exceed unity when E = 0 and g=g„ then we will
have demonstrated the existence of an infinite
number of bound states. In fact, we will show
this by proving that the sequence s, =g„(0,g, ),
v =1, 2, 3, ... of discrete eigenvalues of the limiting
kernel K(0, g,)"have a denumerable set of ac-
cumulation points I.J 10, J= 0, 1, 2, . . . , where J
is the total angular momentum quantum number
(which is of course conserved because of the
rotation invariance of the problem), and that L, &1
but I,J&1 for J&0.

To prove the above statements, we use the de-
composition

K(0, g, ) =K(0, g,)+K„(0,g, )

of the singular operator K(0, g, ) into the sum of a
compact operator K„(0,g, ) [recall tr(K~'(0, g, )}& ~]
and a bounded but noncompact operator K(0, g,). As
we are only interested in the limit points. of the
eigenvalues S„ it is enough to study the eigen-
value spectrum S, of the operator K(0, g,}, since.
by a theorem due to ieyl, "the limit points of the
sequence (S„], , and those of the sequence ]S ], ,
are identical. [In fact, it is just this theorem
which makes our method applicable to any reason-
able interaction, local or otherwise, since the
difference between the actual kernel, Eq. (4}, and
its singular part, defined by the low-energy ex-
pansion of the two-body I; matrix, is always a
compact kernel. ]

The partial-wave decomposition of the kernel K
is given by

K(p p')= Z Z I" (P)I'*(P')K, (P, P'), (16)
J=0 kf = -J

where

K, (P,P')=, s(A-P)s(A-P')4(-1)z

2+ l2 -1-+ (-:P'-E)'"
PP' a

(17)

and Q~(Z) is the Legendre function of the second
kind. We note that the projections KJ are opera-
tors of definite sign, (-1), and moreover (see
Appendix A), that the eigenvalues q„(J;E, g) of
K~(E, g) obey the monotonicity conditions
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BQ——&0
Bg

(18)

Qr],'(J; 0, g)
-1)~R~ O, g) =

Q(-1)'n. (&, o, g)
V=1

tr(K, '(E, g))
tr(K, (E, g)) ' (19)

since both the numerator and the denominator
diverge in identical fashion as E -0 and Z-g,
(i.e., as a-~}, R~(E, g) approaches a constant in
this limit, call it L~. Clearly LJ' has the sign
(-1)~. Now (-1)~I„' is a lower bound to the limit
of the positive sequence ((-1)~S„(Z)),„

(-1)II ~ = lim (-1)~S„(J),
p ~oo

because of the relations

(20)

when E &0, g&gp. Unfortunately, the same state-
ments cannot be made about the eigenvalues of
K~(E, g}~ that is, they are in general neither of
definite sign nor monotonic in E (although they axe
monotonic in g}. This complicates matters, since
it might be possible for an eigenvalue q,(J;E, go)
to take on the value unity an even number of times
as E varies from -~ to 0, and thus to be smaller
than unity when E = 0 so that it escapes being
counted. Similarly, it might also be possible for
an eigenvalue to pass through unity an odd number
of times and thus generate more than one bound
state even though it is counted but once. Eigen-
values which behave in either of these ways we
call "peculiar. " We conclude that the number of
eigenvalues g,(J; 0, g, ) -=S,(J') which exceed unity
in the limit v- ~ is only a lower bound to the num-
ber of bound states, although it is a faithful
bound since the number of three-body bound states
generated by peculiar eigenvalues is finite (see
Appendix B}, whereas the total number of bound
states is infinite when g =g,.

We now demonstrate the existence of the previ-
ously mentioned limit points L~. Consider the
ratio

(21)

We now apply a theorem on divergent series"
(whose proof is included for completeness in
Appendix C): Given a sequence (A„)„,with a
definite limit, l, and a set of positive weight
functions av„(x}, the function

f(x)= QM„(x)A, Qsv, (x) (23)

has the limit l = lim„„f(x) =- lim, „S„if and only if

lim P w, (x Qau„(x)

is zero for any positive integer m. Clearly the
functions (-1)g„(Z, 0, g) play the role of the
weights and (-1)~S„(J')is the corresponding se-
quence whose limit point, I.~(-1)~, we are inter-
ested in locating. " The excess of (-1)~I,~ over
(-1) I.~ is a geometric factor, as can be seen
from the example

llm ~ ]„=11m
p g 0 e x

whereas lim„„e '~" = 1, v = 1, 2, . . . .
To actually calculate the lower bounds (-1)'L„',

we must evaluate the traces tr(K, ') and tr(K~) and
take their ratio as E 0 g gp These are given
by

which foQow first from the fact that the trace of a
positive, compact operator is the sum of its
eigenvalues; and second from the monotonicity
property of the eigenvalues q, (J, E, g) expressed
in the form

(-1}'q„(Z,E, g)-(-1)'S.(Z), E-o, g&g, . (22)

4 4 if2--i
tr(K (o, g)) =(-1)' — — q (2) dP P+ ——

n 3 ~, a 3

( ].}~q (2)ln[1+Aa(3)~~2]
n~g (24)

— ln[Aa(-,')'~'j . Q~' . + const.
1r2 3 sino sino (25}
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Thus, letting g-g, (i.e., a-~)
8 r'(Z + 1) v '/'

v&3q, (2) r'(Z+-,') 18'" (28)

where we have used a simple lower bound on Q~(Z)
to obtain Eq. (26)." For 4 =0, we see

III. UNEQUAL MASSES

We now consider the case of distinguishable
particles with masses Rnd pairwise coupling con-
stants arbitrary: The Faddeev equation for a

However, the oyerator (-l}~Z~(0,g, ) is bounded
and positive and has norm less than (8/wv 3 )2 Q~(2)
xr2(-,'J'+-,')/r(J +1) (see Appendix D). This upyer
bound ls R decreRsing function of cJ; fol cf =0 lt 1s
4(ln3}/)) 3, but for J'=2, it is (4/)) 3)Q,(2)=0.04&.
That is, none of the eigenvalues of K~(0, g, ) ever
attain the value unity when 4 & 0. On the other
hand, we have shown above that 4(ln3)/&3 ~ I;- 1.,'& 1, so that an infinite number of eigenvalues
of Z, (0, g,) exceed unity. Since K~ differs from K~
by a compact operator even in the singular limit,
we have shown that I., is an accumulation point of
the eigenvalues S„(0)of K,(0, g), and that in gener-
al, the points I.~, which are distinct from 0, are
accumulation points of S„(J). [Incidentally, this
proves that k~(0, g,}is a bounded, noncompuct
operator. ]

Thus, the number of three-body bound states is
infinite when g =go, and they all have spin-parity
Z~= 0'. %'e can also ask how the number of bound
states depends on the coupling when g is neRr g„
i.e., a is very large. Since the number of bound
states associated with "peculiar" eigenvalues of
X,(0, g) is at most finite, we see that "most" of
the eigenvalues behave exactly as do those of
K',(0, g), so that asymptotically the number will be
N -tr(k, (0, g))/I, Since I., lies between 4(ln3)/
)(3 and 8/vv 3 ln3, we have N-kl(nAa}, where
I/v ~ k ~ —,

' ln'3, in agreement with Efimov' s result
n= I/s.

bound state of such particles is given by (2).
Clearly the trace of the kernel of Eq. (2) is zero.
Even the singular part of the kernel, restricted
to R pRlt1culRr part1Rl wRve ls Ilot Rn operRtor
with definite sign, in contrast with the identical-
partiele case. To apply the methods of Sec. II we
should first have to separate the singular part of
the partial-wave kernel into its positive and nega-
tive pieces, which would involve solving a cubic
operator equation. The result would be a compli-
cated operator-valued irrational function of the
kernel comyonents, whose traces would be hard
to calculate or even to estimate. Since we do not
know how to surmount this technical difficulty,
and since the general case of three inequivalent
particles all of whose yairwise scattering lengths
simultaneously become infinite seems quite un-
likely, we specialize to a slightly simpler case
which we can solve.

When two particles (l}are identical and the
third (u) is distinguishable from them, the
Faddeev equation takes the form

Whereas it might seem that [since the kernel of
(2V) has inherently indefinite sign] we have merely
traded the difficulties associated with cubic opera-
tor equations for those of quadratic operator
equations (which from a practical point of view
are equally insoluble), in fact Eq. (2V) can be
reduced immediately to 1-dimensional form. That
1S,

(C)
= (A+BC)g. (28)

The new kernel, K= A+Bc„wheri we take its most
singular part as in Sec. II, and partial-wave
analyze it, exhibits the pleasant feature of being
positive definite in states of even total angular
momentum. The corresyonding reduced equation
is (for simplicity we set E =0)

fz()') fdic'p")(, (s,p')f=, (p'), (29)

2 l2

&,(A p') = g(A p)&() —(")(~p)I()g(mph/(), )) ( —~)'-
O'+ P"'(()+y)l)'~1 /"'+ P"'(() +~)/2mt)

1 „2+y ' ' j. , y2+y (30)

and where y is the ratio m„/m, . The l-l and u-1 yairwise scattering lengths are denoted by s«and
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a„„respectively. Applying our previous analysis
to the kernel K~, we find that if a» becomes infinite
while. a„, remains finite, the traces of all powers
of K~ remain finite, and so, therefore, does the
number of bound states. We only have interesting
results when a» remains finite while a„& becomes
infinite, or when both become infinite. In the lat-
ter case we will suppose that the scattering lengths
remain proportional to each other, leaving to the
more dedicated reader the enumeration of the
various permutations which are possible if the
scattering lengths are related by more complicated
growth laws [such as a„=k(a„,), or a»=exp(a„, ),
etc.]. Since the growth of tr(K~") with scattering
length is logarithmic, the constant of proportion-
ality a«/a„, is irrelevant.

There are also two particularly interesting
values of y, namely, 0 and ~. The first corre-
sponds to the Born-Oppenhei~er" molecule of
two heavy identical masses which interact with a
very light one, whereas the limit y -~ corre-
sponds to two identical particles in a fixed poten-
tial. Suppose a» remains finite while a„,-~.
Then for y & 0

1+
vjr(2+ ri)'"

(31)

(I+r)' ~ A, ir(2+~) ""
v'~(2+~) "'

k (1+~)'

so that

tr(K, ')
. , „ tr(K, )

when y -0. That is, the possibility (suggested by
the fact that the second term of K~ is always a
positive operator independent of J') that the I-l in-
teraction with a» —~ might produce infinitely many
three-body bound states in odd partial waves also
does not actually occur. It may at first seem sur-
prising that only the even waves are attractive,
but in fact the choice of signs in Eq. (30) implies
that the like pair are bosons.

Examining the limiting case y -~, we find that
when a, -, &~,

tr(K~')
1 ~ 1+y 0 sin8 ksin8

„ tr(K~) v Q~(1+y)

(34)

which for large y approaches 2/v when Z = 0 and
vanishes like y

' when J &0. An upper bound to
()K,(( which also depends on p like y

~ is easily
obtained. Thus, there definitely cannot occur in-
finitely many bound states with J &0. But since
2/n' &1, we have for 4 = 0 an inconclusive result,
since 2/v is only a lower bound on the accumula-
tion point of the eigenvalues of K,. However, we
already know that when a»&~, and y-~, the num-
ber of bound states is finite, since the wave func-
tion of a noninteracting pair of identical particles
in an external potential is a product of single-
particle (sp} wave functions and the binding energy
is the sum of the sp energies. But these are zero
if a„,= ~. The static limit can be singular, there-
fore, only if a„, and a» both become infinite. The
integrals involved in evaluating the traces for J =0,
y = ~ are rather complicated, so we evaluated them
numerically rather than relying on crude bounds.
We find (to within about 1% accuracy)

tr(K,'} 2/v'+ SO 2/~'+ 46 6./~'
„ tr(KO) 1/w+ 10.6/v'

d8, 1+y
(I+y)' „0 sin8 ~ sin8

[r(2+&)]"' Q (I+r)
(33)

(36)= 4.91+ 0.05.

When J &0, y-~ a„r~a»-~, the situation is
more complicated. We have, for J ~ 1, y-~,

It is clear from Eq. (33) that for each even J'
there is a value of y sufficiently small that the
right-hand side will exceed unity. That is, in
contrast to the identical-particle case, the Born-
Oppenheimer case will have infinite numbers of
bound states in arbitrarily high (even) partial
waves, even when the like pair effectively do not
interact (i.e., when a»&~, the second term in
K~ remains nonsingular). This qualitative result
does not change even when we consider the case
where both a„, and a» -~, since the second term
of K~ becomes smaQ compared with the first

IIK,II
~ —,4' "[0 (~2)]' (36)

(see Appendix D), which for 4 = 1 is a number
roughly equal to 0.84, and which decreases rapidly
with J thereafter. We conclude that the number of
bound states with J & 1 is finite in the static limit
when a„,~ a» —~, as it is in the identical-boson
case.

IV. DISCUSSION

We have shown that three-body systems inter-
acting via short-range forces have a logarithmical-
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ly growing number of bound states near zero
energy as the two-body scattering lengths become
infinite, just as first discovered by Efimov. We
have shown that this occurs not only for three
identical particles, but also for two identical and
one different. In the latter situation we have
studied the two interesting limits of two very
heavy and one light (2H-IL, ) and of one heavy and
two light (1H-2L). In the 2H-1L, case we found
that the heavy-heavy interaction did not matter:
There is an infinite number of states so long as
the light-heavy scattering length becomes infinite.
We can see physically why this should be so since
if the masses of the heavy particles become in-
finite, they become static sources and there is an
infinite number of ways of placing them relative to
each other —each corresponding to a three-body
state if the range of their interaction is effectively
infinite. The infinite variety of possible orienta-
tions is of course the reason why the number of
states can be infinite with 8 & 0. In the 1H-2I. case,
all scattering lengths have to become infinite for
there to be an infinite number of bound states.
This too is easily understood: If one particle is
static and the other two do not interact, the eigen-
states are product wave functions and there is no
infinity of energy eigenvalues.

One of the most surprising aspects of the Efimov
effect is that the number of three-body bound
states is not monotonic in the potential strength.
The number of states diverges only for couyling
strength corresponding to the first zero-energy
two-body bound state. For stxongex or sneaker
coupling, the number of three-body bound states
is finite. On the other hand, one can easily show
using Feynman's theorem" that at least for purely
attractive potentials all two- and three-body
bound states get more tightly bound with increas-
ing coupling. The way out of these seemingly
contradictory facts is to note that three-body
states must occur below the lowest scattering
threshold. In the absence of two-body bound
states, this threshold is E=0, but if there are
two-body bound states, the lowest scattering
threshold in the three-body system is E = -b,
where b is the binding energy of the most tightly
bound two-body state. Hence the scattering
threshold itself is a function of coupling strength.
As the coupling is increased, 6 increases more
rapidly than the binding energy of the nth three-
body state (where n(~) and hence the threshold
overruns, and devours infinitely many three-
body bound states, forcing them onto unphysical
sheets of the scattering amplitude. What happens
to the Efimov states after they are eliminated?
What sheet do they go on to? Do they show up as
resonances? These are all questions we are

presently studying. This nonmonotonicity of the
number of bound states is, of course, not special
to the Efimov states and has been previously noted
by Simon. '

Although we have shown that the Efimov mecha-
nism can produce true three-body bound states
only when the first two-body bound state has zero
energy, it is interesting to investigate in more
detail what happens when the nth two-body bound
state is at E =0. Near any two-body bound state,
the two-body t matrix has the approximate form
(5) or ('I) with a-~, and the trace of the appropri-
ate three-body kernel will again diverge as In(Aa).
However, the kernel will now gain an imaginary
part from the two-body scattering cut which runs
from -b to +~, and this will give the trace an
imaginary part if evaluated for E)-b. It is easy
to see that the trace of the imaginary part of the
kernel remains finite at E=O and a=~. This
means that whenever there is a two-body bound
state with zero binding energy, there are an in-
finte set of solutions of the Schrodinger equation
with E complex and very near zero. What sheet
these eigenvalues are on, and their functional
dependence of the two-body coupling are all in-
teresting questions. It is, of course, particularly
interesting to see if any of these "states" will be
observable resonances. We are presently in-
vestigating these matters. In addition to our an-
alytic attack on the problem, we have made a
numerical model. " So far we have found the
Efimov bound states numerically and we plan to
investigate the sheet structure numerically as
well.

Aspects of Efimov's discovery are of interest
for other problems in physics. The emergence or
disappearance of an infinite number of bound
states as the coupling is increased gives some
indication of the terrible nature of the singularity
in the three-body scattering amplitude at zero
energy and g=g, . This singularity, and also the
voracious behavior of moving thresholds, must
have significance for a wide range of problems,
particularly in particle physics. The existence
and nature of the infinite number of weakly bound
states may also be significant in a number of
statistical-mechanics problems, since this effect
may occur for any (n+1)-body system when the n-
body system first develops a bound state. We are
investigating ways of verifying this for the (n+ 1)-
body system.
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APPENDIX A

In this appendix we establish the monotonicity
conditions on the eigenvalues given in Etl. (18).
The eigenvalues of K~(E, g) [defined in Eq. (1'7)]
are defined by

K~/ =q~Q, (Al)

so that (we suppose that K~ has been symmetrized}

(A2)

(A8)

[Since the scattering length a is a monotonically
increasing continuous function of g for gag„we
can replace eK~/sg by (&K,/se)(«/dg) in (A8).]
Now we use the fact that"

2+ ' -E OO

dt « ""' -'"9 (pt)~, (p't)
2pp' ' pp'

(A4)

to write (we let tt(p) =[1/a+ (-,'p' —E)'t'] 't'p(p))

(&f), [BKg + K~B]Q + 2 dt t'e's~ dpp'p(p)e ~"j (pt)
1J sE (4 Kjk) 0 0

2 A 2.
dpp'8(p)e ' j', (Pt)

0

2 -1

(A5)

where the positive definite operator B is given in the momentum representation by

B(p P')=5(p-P')l( 'P'-E) "-[1/~+('P'-E)'"] '-. (A6)

The second term of (A5} is clearly positive, and the first is just 2(Q, B$)/(g, Q), so that (1/q~)(st~/BE) ~ 0

for E ~ 0, a& ~, as advertised. In a similar fashion we find

1 Bq~ (&f&, [CKg+KgC]Q)
q, sa (y, Ky)

where

(A t)

C(P, P')=~(p-P')
2

2[1/~+(4P'-E)'"] '

is obviously a positive operator. But the right-hand side of (AV) is just 2(g, CP}/(P, P) - 0, and since
da/dg&0, we have

1 Bg~ da 2(Q, CP)
n, sg 4 (44)

Finally, from (A4) we see that (-1}~K~ is a positive operator since for any vector P
-p t2 2

F 0

(A8)

(A9)

APPENDIX B

We show that the number of times a "peculiar"
eigenvalue of K(E, g) can equal unity is finite. We
note that for E real and less than -b(g}, K(E, g) is
a compact operator which by similarity transfor-
mation can be made Hermitian. By virtue of Eq.
(14) all solutions of the equation

q(E, g) =1

must satisfy

Hence if there are an infinite number of roots of
(Bl), they must possess at least one accumulation

point in this interval. Hence it must be possible to
find two values of E arbitrarily close to each other
within the interval for which (Bl) is satisfied.
However, solutions of the equation

K(E, g)e(E, g) = e(E, g).
suitably symmetrized, are bound-state solutions
of the Schrodinger equation. But such solutions
corresponding to different energy eigenvalues are
orthogonal, i.e.,

(S4 (E„g),S4(E., g})=0,

where S is a symmetrization operator (which is a
projection operator and therefore has unit norm).
But as we shall see the eigenvalues of
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K(E, KN (E, g) =n(z, a)e(z, g) (B6)

are continuous functions of E and therefore cannot
satisfy (B4) for two arbitrarily close values Ei and

E, of E corresponding to the same q. To show this
we write (suppressing g)

l(se(z, ), se(z.))l

- l(sy(z, ), s4 (z, ))- l(sy(z, },sy(z, ) —sk(z, })I I .

(B6)

The right-hand side of (B6) can be written (1 -y),
where

y = l(sy(z, ), sy(z, ) —sy(z, ))l& lip(z, ) —y(z, ) II

(»)
by Schwarz's inequality. If the p's are continuous,

y -0 as E,-E, and hence y cannot cancel the one
and preserve the orthogonality of the left-hand side
of (B6). To prove this continuity, consider the
quantity

7141 ~2 It 2 14 i ' Km%21
(B8)

~i N i 42}+—42(~i —&2) = Ni K281+—K2(42 - 0 i)

where we have used (B5), suppressed the g label,
and written f (E,) =f„E(E,) f,. Take matrix
elements of (B8}on the left with an arbitrary
eigenfunction g, of K, corresponding to eigenvalues

A, (A, «q, ). Using (Q„P,) =0 from the Hermiticity
of K„we obtain

(n, -~.)(g., (y, —e.))=(q., (K, -K.)e,) (B9)

Using the operator continuity of K(E) in the real
interval (B2), the right-hand side of (B9) vanishes

as E, E,. g, —X, does not vanish in that limit,
hence (g„Q, —P,) must vanish. Consider the set
of all g, plus the vector y = p, + p, . This set is
complete, but (X, P, —P,) =0. (We assume we are
working in a real basis. ) Hence as E, approaches

E„ the projections of P, —P, on a complete set
vanish and thus the norm of Q, —Q, must vanish,

which proves the result. If the roots of (B5) are
degenerate so that more than one eigenvalue equals

unity at some point, orthogonal combinations must

be formed to make the proof go through. Of course
an infinte number of roots cannot be unity if the

kernel is compact.
We note that if (I/g)(dq/dg} &0 for all real

E & -b(g), as will be the ease for a large class of

potentials including most separable potentials, the

proof given here can easily be extended to show
that each il ean equal unity only once (for fixed g)
as a function of E.

APPENDIX C

We want to show that if w„(x) are positive func-
tions and {sg„,a sequence with limit I =lim„„s„,
the function

f (x) = gw„(x)s„
n=l

w„(x)

g x /(xn'+ 1)
lim & lim „=—&0," Qx/(xn'+1) ~-- g 1/n'

n=l n=1

which violates the hypothesis. We see that as a
consequence,

Z[x/(xn'+1)](I —1/n')
lim

Q x/(xn'+ 1)
n=l

7P=1-—g1.
15

To show that the condition is sufficient, we look at

Qw„(x)(l- s„) Qw„(x)~l- s„~
I&-f( }I= " '-

+ w„(x) Q w„(x)
n=1 n=1

Now ~l-s„~ is bounded for all nby, say, X&0. On
the other hand, given c & 0, there is an integer
rn & 0 such that n & m implies ~s„- l

~

& e/2. Thus

SO„X W„X
(I —f(x)( «z "„+™™+i

W„X W„X
n=l n=i

We now need merely take x sufficiently large that

w„(x)
n=1 E'

Q w„(x)

approaches I as x-~ if and only if for each m&0,

Qw„(x)
lim " ' =0.

Wn X
n =1.

The method used here is that of Ford." It is clear
that the condition is necessary, since we can con-
struct an example which does not satsify the hy-
pothesis: Simply choose w„(x) = x/(xn'+1),
n=1, 2, . . . , and s„=1-n '. Then l=1 and

APPENDIX D

We now use a theorem given by Tiktopoulos" which is useful in finding bounds on operators represented

by integral kernels to bound the kernels in our problem. Consider K(x, y) where x and y may be vector
variables, d(x) may be a volume element in multidimensional space, and the domain of integration is some
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set, D, of x space. Then we have

«8 l(8, &(x)l= «8 fdlx)fd(y)8"(x)&(x, y&yly),
Ihfill= X, Ilail l= j. Ill|/II =1, I'll =1

and if a(x) is a positive function, we have

f d(x&f d(yl I 8 (»& I I &(x «) I I 8 (y) I ~,
Using the Cauchy-Schwarz inequality we now find

«8
I f d(x)f d(y)(8(x)I*I«»(xy)l,', „' f d(x&f d(y),'*, l«»(x, y)lid(y)l'

Since llyll'= J'd(x}lv(x}l'=I we have

1 8/2 - Z/2

IIKII sup jI d(y) IK(x, y) la(y} sup d(x) a(x) IK(x, y) I
(7 x D a

Since we are interested in a symmetric kernel, IK(x, y)l = IK(y, x)l, we have

l«»ii-8 8 fd(y)l«»(x, »lx(y),
1

xED a x

where o(x} is any positive function. Of course, choices of a which make the right side of (Dl) infinite are
not particularly useful.

To apply (Dl) to the symmetrized form of our limiting kernel Kd(0, g, ) of Eq. (17), we note that for Z & 1,
Zd" ((8)~(Z) is monotonically decreasing in Z, and so for Z &Z, & 1,

Thus

(lie,'" ll- —
(8) «8 ...f dy"& (x"(x(&81+, ) .

Let o(p) = p '/', which is surely &0. Then

xxy f "—"„"81,("„"')= „dy f —"„*8,("„*').
Now employing (D2) and noting that (1+x')/x& 2 for x& 0, we have

-,y ( 8 dxx' 6, r'(-,'+ —,'Z}
IIK. II ~,~32 Q.(2} („.)",= ~2 e, (2)

(~ „) (D4)

In obtaining the bound (36), we ignore the first term of (30) for y-~, Z&1, since it is zero. The second
term (when symmetrized) is (y-~, a„,= a» =~)

8 8(d —y)8(d &d)
' dY —8*+ l)"" y" + ly"')

Again choosmg v(p)=p '/', we have

8 f dx f dy 1+-',x') (y'+-,'x') 8 f dx (1+ x
)f

dy (8'-,y''+1)"

Noting that (1+—,'x')/x & &2, (1+2y')/2y & R2, we apply (D2) to get

p4 1 lg
IIK'll- —4'"l~ (~2)Ps r'(J + 1)

(D6)

(D6)

(D7)
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Relativistic Eikonal Dynamics~
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The eikonal formula for the scattering due to neutral-vector-meson exchange at very high
energy in the generalized ladder approximation is obtained as the exact solution of a dynam-
ical equation. This equation is obtained by applying high-energy approximations to an equa-
tion of the quasipotential type. The latter equation is known to have the correct low-energy
limit and it therefore interpolates between high- and low-energy approximations to the gen-
eralized ladder approximation.

I. INTRODUCTION

Calculations of scattering amplitudes in the high-
energy limit have led to formulas of the eikonal
type. Guided by the derivation of the eikonal for-
mula from nonrelativistic theory, Levy and Sucher'
applied similar approximations to the generalized

ladder diagrams' of a field theory of neutral-me-
son exchange to obtain the familiar exponential
form of the scattering amplitude. The same re-
sults were also obtained in the relativistic theory
by means of functional techniques. '4 In these ap-
proaches no dynamical equation was used, the dy-
namics being furnished by relativistic quantum


