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We conjecture that if the equal-time commutator of the electromagnetic current with its
third time derivative exists as defined by Bjorken's asymptotic expansion, then the approach
to scaling in deep-inelastic electron scattering is like 1/q2, where q2 is the square of the
mass of the virtual photon. We show that in the scaling region one can expect the structure
functions for charged pions to be the same as those for neutral pions. If the longitudinal
structure functions vanish in the nonscaling as well as in the scaling region, then the pion
mass difference, as calculated via the Cottingham formalism, converges. For nucleons, on
the other hand, a similar assumption for an "almost" longitudinal structure function does not
guarantee convergence. The condition that does, however, may be consistent with experiment.

In the one-photon-exchange apyroximation the
hadronie contribution to inelastic scattering of
electrons from an unpolarized target can be de-
scribed by the tensor 8'„,:

W „=-,' g(p( j (0)in)(n[ j„(0)[p)(277)'&"'(p +q-n).

Here q is the four-momentum of the virtual photon
and p that of the target; j is the eleetromagnetie
current operator, and an average over the target
spin is to be understood. The most general form
for W~p conslsteDt with general 1nvarlaDee pr1nel
ples ls

where M is the mass of the target and v =- p ~ q.
The 5"s can be related to scattering exoss sec-
tions due to longitudinal (L) and transverse (T)
photons by the following equations:

(
2 )

q +2Mv or(q iv)
(32M 4m2e

)
q'+2Mv -q' o~(q', v)+e~(q', v)

2M v' -q' 4n'a

Here n is the fine-structure constant (=~», ). The
S"s can also be thought of as absorptive parts of
the forward virtual Compton amplitude T„„(p,q)
defined by

T„.(p, q) = 'd' "*(plT[j„(»,«))lp&

When nucleons are used as the target it is found
experimentally' that for -q' & l (Gev/c)', the di-
mensionless structure functions E, —=MW, (q', v) and

E, =-vW, (q', v) scale; that is, they both become non-
trivial functions of a single variable v =- -2v/qm.
Such a behavior was shown by Bjorken' to follow
from the existence of certain equal-time eommu-
tators (ETC) of the electromagnetic current as de-
fined by the behav1or of T~p ln the limit g ~ too

with q and p fixed. One result of the present yaper
wiQ be to show that Bjorken's original argument
can be naively extended to conjecture that the ap-
p~geck io scaling behaves like l/q'; that is to say,
the asymptotic series for the E,. (&o, q') can be ex-
pected to be of the form

E;(q' ~),. „E;(q' &)+(&Iq'S;(q', ~)+"
There are at the moment several empirical fits to
the data which are consistent with this behavior4;
however, it is far from being verified. Should it
eventually be found that the data are inconsistent
with this simple expansion, we would conclude that
the naive assumption of the existence of ETC's as
defined in the manner of Bjorken has broken down.

Most of this payer will be concerned with the
problem of electromagnetic masses and mass dif-
ferences. Cottingham' was the first to show how
this problem ean be directly related to inelastic
electron scattering. He showed that, to first or-
der in e, the electromagnetic self-energy of a
hadron is given by

~ Wq2

nM — dv(-q' v')'"T ~(iv q')
p

(6)
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If dispersion relations are written for the T, , then
4M can be directly expressed in terms of integrals
over the measured quantities W,.(q2, v}. It is well
known" that the low-energy contributions to the
integrals lead to the wrong sign for the neutron-
proton mass difference, ~hereas for the pion they
lead not only to the correct sign but also to the
correct magnitude. Harari ' has suggested that
the reason for this is that the isospin exchanged in
the t channel is different in the two cases, and ac-
cording to Regge theory, this will give rise to dif-
ferent convergence properties. More specifically,
in the nucleon case (AI = 1) one can expect T, to
require a subtraction but T, to be unsubtracted.
On the other hand, in the pion case (b,I =2) there
are no known high-lying trajectories so we can ex-
pect both T~ and T, to be unsubtracted. The extra
convergence in the ~I =2 case is, according to
Harari, the reason why these mass differences
can be calculated using only the low-energy con-
tributions. In the 4I =1 case, however, the pres-
ence of a subtraction term presumably indicates
the importance of high-energy contributions. When
.the high-energy data became available, however,
it was soon discovered that the scaling hypothesis
led, in general, to divergent mass differences. "
In fact, a straightforward calculation shows that
the coefficient of the logarithmic divergence for
the self-mass is

& -=lim q'T, (q')+, dx[2xE, (x)+E,(x)],
Ww00 dp

where x -=1/(d and T, (q') —= T, (q', 0). This shows

explicitly that

lim q'T, (q')
q2~ ~ 00

must be a constant in order to avoid quadratic di-
vergences, and that without some special relation-
ship or assumption the self-masses and mass dif-
ferences are logarithmically divergent. Below we
shall discuss the possibility for ensuring both the
finiteness and correct sign of the mass differ-
ences. Our conclusions in both cases will be
rather unsatisfying: In particular, we confirm the
general folklore that electromagnetic mass differ-
ences as calculated in the manner of Cottingham
generally diverge.

II. NAIVE CORRECTIONS TO SCALING

Let us first discuss the corrections to scaling.
83orken' has suggested the following asymptotic
series for. T„„(qand p fixed}:

where

, ( "W, (q', v')dv"
(loa)

and

t"W2 (q', v') d v"
p

(10b)

can be transformed to the variables x, q' to obtain

( 2 ) ( 2)
~W, (q, x')dx'2

p

2
t'~ W2(q, x')dx'2

p X X

(lla)

(lib)

In the (I = 0 frame, where q,' =q' and x = -qg2p„
we need only consider T,,; its asymptotic expan-
sion in the qp- i~ limit is

4 2 ( 1 28

T,,- T, (q')- ' W (q', x')
~p n o qp

This series can be compared with the Bjorken
form, Eq. (8); the C,, are of the form

(12)

C,(,"(p) = (4, + B,p, ')5,, +D,p, p, , .(13a)

C(~4'(p) = ((44+B4pp +C+p )6'g+ (Dg+E4p, ')p, p„
(13b)

where A» B». . . , D~ E4 are constants. Comparing
the two series we see that to this order in 1/q',

lim W, (q', x)dx'- ——,
' B,+ -s

q2~ ~oo 0( p
2 q2 (14)

lim q W, (q, x), - —D, +,dx D~
~~OO p q

Following Bjorken we can deduce from these
that the limits

lim W, (q', x) and lim q'W, (q', x)
q2~ ~ 00 q2~ ~ 00

(with x fixed) exist provided B, and D2 exist. The
argument can clearly be carried one step further,
to conjecture -that if B4 and D4 also exist then the
scaling functions approach their limits like 1/q'.
Should this prove to be untrue experimentally we
would have a direct indication that the naive as-
sumption that C 4' exists is not valid.

d'« "'"(&lb,(» o} "" '&.(0}]lp) (&)J

In the frame where q =0, crossing symmetry elim-
inates the odd powers in this expansion. ' The con-
ventional fixed-q' dispersion relations for the T, ,
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Two remarks are worth making here: (a) Callan
and Gross" have pointed out that in specific mod-
els C,'&' may actually be 'simpler than the general
form. For example in the quark model' B2 = -D„
in which case Eqs. (14) and (15) lead to E,(x)
= 2xE, (x), which is equivalent to the vanishing of
q'0~ in the scaling limit. On the other hand in the
algebra of fields" B;-0, which leads, from (14),
to E, (x) =0; this is equivalent to the vanishing of
q'o ~. Present experimental data' seem to favor
the former model. Although C,'~' may not exist in
general, it is nevertheless unfortunate that even
in simple models it is too complicated an object
to evaluate. For example, it would be nice to have
a prediction for at least the sign of the nonscaling
contribution. Indeed, as we shall see below, these
contributions play a crucial role in the discussion
of the mass differences. (b) From the 5,, term in
Eq. (12) we can also deduce that

lim T,(q')-~a+ —
~s

A A.

q
(16)

III. ELECTROMAGNETIC MASS DIFFERENCES

%e shall now concentrate on the problem of the
mass differences. It is clear that without an as-
sumption which allows us to calculate

lim q'T, (q')
q2~ ~ 00

we cannot say anything further. Such an assump-
tion was suggested by Jackiw, van Royen, and my-
self, ' and I shall now present a generalization of
that argument here. Consider the amplitude

2 2

T~(q', v) =T, (q', v)+P(q', v), T,(q', v),

(18)

unless, of course, there is an operator Schwinger
term, in which case it would be given by '

lim T, (q').
q2~ ~ 00

An alternative way of seeing this is to work in the
frame where p=pand look at the n =1 term of the
T„component of Eq. (8). If

(p~[j, (0, x), j, (0)]~p}=i@s,6"'(x), (17)

then according to Eq. (8) T« -Qq, /qo. But from
the explicit representation, Eqs. (5) and (11), we

have T„-T, (~)q, /q„which verifies the statement
that

q= lim T, (q').
q2~ ~ 00

We see therefore from Eq. (7) that the removal of
a possible quadratic divergence in b,M requires
the absence of operator Schwinger terms. '"

where P(q', v} is an arbitrary analytic function of
q' and v which scales. Its imaginary part is easily
seen to be

)
q'+2v (r, (q', v}

2M 4m2~ (19)

where o'3 = (1 —P)o r —Po~. We can clearly choose

P in such a way that os vanishes in the Regge limit
(i.e., v -~ for arbitrary q'). If, further, this P
makes vo, —0 we can write an unsubtracted dis-
persion relation for T,(q', v) from which we can
deduce a sum rule for T, (q'):

dv
T, (q') =J, [W, (q', v) +P (q', v)W, (q', v)]. (20)

Taking the q'- -~ limit of this equation leads to a
sum rule for Q:

q =2 —Z, (x),
dx

(21)

where Es(x) =E,(x) —P(x)E, (x)/2x. The work in
Ref. 8 was essentially equivalent to the choice
P = 1 in which case o~ = -cr~ and Fs is purely longi-
tudinal. Equation (21) is a simple generalization
of the result given there and is similar in spirit to
that of Corrigan, Cornwall, and Norton. '~ These
latter authors go somewhat further than we have
here and consider an amplitude analogous to T3
which, by construction, satisfies the unsubtracted
hypothesis. This is equivalent. to taking P to have
the cut structure of the canonical asymptotic
Regge form. As we have already remarked, the
absence of a quadratic divergence in 4M requires
setting Q =0. This can be accomplished if 2xF, (x)
=P(x)E, (x). As an example, suppose R (=a'~/or) is
independent of q' and v in both the asymptotic
Regge and scaling regions (which for the proton is
consistent with experiment); then the choice
P =1/(1+R) is consistent with our Regge assump-
tions and with Q =0. Now, recall that the coef-
ficient of the logarithmic divergence in 4M in-
volves

lim q'T, (q');
q2~ ~ 00

this can be determined from Eq. (20):

lim q2T, (q')
q2~ ~ 00

'dx
=2 — lim q'W, (q', x) —2P(x)xz, (x) .

4 p X q2~ g()

(22)

Now, we have shown from the existence of C,.'~'

that the E,. (x, q') satisfy an asymptotic power series
in 1/q' (for fixed x}. Hence if Es(x) vanishes, then

lim q'Ws(qm, x) —=Gs(x)
q2w ~ 00
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exists. Using this in Eq. (V) we find.

dx—(2G, (x) - [2P (x) -1]xF,(x)).
p X

(23)

This explicitly demonstrates the apparently capri-
cious relationship that must hold between the non-
scaling and scaling contributions in order that 4
vanishes. " In Ref. 8 we considered the possibility
that Gs(x) = 0 and P (q', v) = 1; in that case it is clear
that although A does not vanish [since, in general,
E,(x) x0] it does have a definite sign (&0). It
should be noted that for a mass difference it is of
course understood that we must use I ~) -E,'"'
when we write I'~. Experimentally' this differ-
ence appears to be positive, which implies that
the possible logarithmic divergence at least has
the correct sign. This point has recently been
emphasized by Lee,"who has pointed out that in
his version of quantum electrodynamics the photon
propagator in Eq. (6) has an extra convergence
factor which makes the mass difference both con-
vergent and of the correct sign if Ges)(x) =G',"'(x).
A judicious choi.ce of the cutoff can, of course,
lead to the correct magnitude. An extra term like
A2/(A2-qa) in the photon propagator could be
thought of as a smaQ scale-breaking term in the
E; (x, q2) which only becomes important for -q' R A'.

A typical value for A is -50 GeV, so it is unlikely
that such a term can be detected in these experi-
ments. A different way of introducing a scale-
breaking term which makes the mass difference
convergent has recently been discussed by Moffat
and Wright. "

Experimentally the data appear to indicate that
R is nonzero in the asymptotic bmits. We shall
therefore now examine this more realistic possi-
bibty, keeping the assumption that G+)(x) =G',"'(x).
If we demand that the self-masses of both nucleons
not be quadratically divergent, then we must re-
quire P = (1+R) ' for each nucleon in the asymptot-
ic regions. The mass difference is then conver-
gent if G+)(x) =G',"'(x) and

2-R'"'(x) {„) 2-R~)(x) ~)
{„)()

F'."'(x)=
1 {p)( )

E. '(x) (24)

Experimentally, it appears that E"(x)&E~)(x),
so for the mass difference to be convergent we
must have R'"'& R'~'. Now, since it is extremely
difficult to measure R ~' accurately it will be even
more difficult to measure R'"'. Hence it might ap-
pear that for a long time into the future (24) will
always be consistent with experiment. As an ex-
ample suppose Em{")/E2~) -0.9 and R ~) -0.2; then
for (24) to be satisfied we require R'"'-0.12,
which would be very difficult to distinguish from
zero experimentally. However, a word of caution
shouM be added: If for some value of x R'~' =0.2,

then (24) requires Eg)/Em{") & ss; since R'"' must
remain positive. This upper limit decreases with
decreasing R'~'. The data on this ratio are still
rather crude, but there is some indication that the
condition might be violated. The important point
here is that even though R +' and R'"' may be dif-
ficult to measure one might still be able to draw
definite conclusions on the validity of condition
(24) from the ratio Fm~'/Fm"'. It should be noted
that if the mass difference is convergent then it is
almost impossible to say anything about the sign
of the high-energy contribution, since this would
then involve only the nonscaling contributions. On
the other hand, if we are willing to use a real cut-
off (in the manner of Lee), then (24) indicates that
the sign and magnitude of the high-energy contri-
bution require accurate knowledge of R'"' and R@'
as well as I'2"'. In short, then, we would conclude
that the problem of the n-p mass difference is not
a happy one; even if we are willing to make various
simplifying assumptions as we have here, both its
convergence and sign still depend upon experi-
mental quantities like G, (x) and R '"'(x) which are
extremely difficult to measul'e.

We conclude this discussion with some remarks
concerning the pion mass difference. As already
mentioned above, the absence of any 7= 2 Regge
trajectory suggests writing unsubtracted disper-
sion relations for the I= 2 components of T, and T,.
We shall denote the charged-pion amplitudes by
T,'. and the neutral-pion ones by To Because
(Tg —T)) is unsubtracted we shall find upon carry-
ing through the Bjorken procedure [as in Eqs. (8)
and (12)] that v(W,'- W,') scales. Since each T, sep-
arately is still subtracted we know that the sepa-
rate 8", s scale as before; this means then that in
the scaling limit W,'=W,', i.e., E,'(x) =E,'(x). Also
consistent with this Regge hypothesis is the unsub-
tractedness of an amplitude such as (T,'- T~o).

This leads to a sum rule of the form (e,g., take

p =1)

dv'[W2(q', v) —W20(q', v)] =0. (25)

Looking in the scaling region this says that if the
difference E2(x) —E'(x) does not oscillate then it
vanishes. The equality of E{(x) with E', (x) is con-
sistent with the notion introduced by Wilson'8 that
in the scaling region the structure functions are
sensitive to certain operators which occur in the
light-cone expansion of the commutator in Eq. (4).
These operators are supposed to have low dimen-
sion; now there are no known operators of low di-
mension with I= 2, which is consistent with the re-
sult stated above, viz. , that E', (x) =ED(x). Now, in
the algebra. of fields'~ there are operators with
I= 2, so in that case these simple results would
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not follow. On the other hand this algebra is in-
consistent with the nucleon data since it requires
E, (x) to vanish and, as already remarked above,
the data appear to be in much better agreement
with the quark algebra which has no I = 2 operators.
It is well known that the pion mass difference is
divergent in the algebra of fields. " It might be
hoped that the simplicity of the results which fol-

, low from what we have done here (which is con-
sistent with the quark algebra) might lead to a
finite answer. Unfortunately this hope does not
seem to be borne out in general. Since E',(x).
=E', (x) the coefficient of the logarithmic diver-
gence in the pion mass difference will simply be

(26)

For this to vanish we require (as in the nucleon
case) the nonscaling contributions to vanish [e.g.,

G~(x) =G~o(x)].2' Since this cannot be demonstrated
even in a model, we are left with the rather frus-
trating result that this mass difference also di-
verges in general. If, on the other hand, we are
willing to assume that G,'(x) =Go(x) (e.g., that the
q'0~ vanishes in the nonscaling as well as scaling
region) then the pion mass difference is indeed
convergent.

Clearly, nothing can be said about the sign of
this divergent term. However, any reasonable
value for a cutoff (-10 GeV) together with a rea-
sonable choice for Gs(x) [-M' E(x)] leads to a con-
tribution of -I MeV to the mass difference. This
is considerably smaller than that from the low-en-
ergy terms, which is presumably the reason why
the low-energy calculations work. In the nucleon
case, on the other hand, the high-energy contribu-
tion is comparable to that of the low-energy, so
the problem is considerably more delicate .
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