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The behavior of the scattering amplitude in the vicinity of a physical Landau singularity
is considered. It is shown that its singular part may be written as an algebraic product of
the scattering amplitudes for each vertex of the corresponding Landau graph times a certain
explicitly determined singularity factor which depends only on the type of singularity (tri-
angle graph, square graph, etc.) and on the masses and spins of the internal particles.
Thus the well-known result for single-particle-exchange poles is generalized to arbitrary
physical Landau singularities. AJ.so, it is shown that for any Landau singularity there exists
a finite polynomial in the scalar products of the external four-momenta whose vanishing
gives the Landau singularity curve. A general, purely algebraic, method is given for con-
structing this polynomial.

I. INTRODUCTION

Among the various properties of scattering amplitudes, one of the best known and most useful is the
behavior in the neighborhood of single-particle-exchange poles. It is known that if the n external legs of
a given amplitude be divided into two disjoint subsets (1, . . ., r) and (r+1, . . ., n), and if the total quantum
numbers of each subset allow for the exchange of a known physical particle of mass M, and if we let

Q P~ -Q Pq—-P~, ——

then we find:
1. The amplitude has a pole at points satisfying P' =hP.
2. The four-momentum of the corresponding exchanged particle is P„.
3. In the immediate vicinity of the pole, if the exchanged particle has spin 0, the amplitude may be

written in the form

Aa~ "an( l~'''~ n) ag a('1~~~'''~ r~ ) 2 .4 a q& "an( ~Pr+1~ ~ ~Pn)

+ other nonsingular terms,

where A&" and A&'& are the amplitudes for the two independent scattering processes connected by the ex-
changed particle. If the exchanged particle has spin —,', then we have

(~) i(p

+M)Bing

'an+11 t n) a ' a 8P 17 I rP ) 2 2 ' 8tr p —ZVP +16 ~+& ~ ~ &
(P,P„+„.. . , P„)

8, 8'

+other nonsingular terms.

In space-time this represents the possibility of the
over-all scattering taking place in two far sepa-
rated clusters, one in the forward light cone of
the other, with a physical particle on its mass
shell being emitted by the earlier cluster and ab-
sorbed by the later cluster. '

It is well known that scattering amplitudes also
possess singularities corresponding to more com-
plicated types of particle exchanges. These are
called Landau singularities and their location is
given by the Landau equations. Each Landau singu-
larity (i.e., each type of particle exchange) may
be represented by a graph in a standard way. '

Vfe regard a reduced graph of a given graph as

a distinct graph, representing a distinct type of
particle exchange. %e shall be interested only in
physical-region Landau singularities, i.e., only
Landau singularities which correspond to real
physical space-time processes. ' One may then
ask the question: How much of properties 1
through 3 for single-particle exchanges may be
generalized to arbitrary physical-region Landau
singularities? As we shall prove in what follows,
all of it may be generalized, more precisely, we
shall consider an arbitrary scattering amplitude

A~. ..„(P„... , P„)
and an arbitrary physical Landau singularity of
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ALGEBRAIC FACTORIZATION OF SCATTERING AMPLITUDES. ..
that amplitude with its corresponding graph. The
graph has n external lines. Let it have m internal
lines, / independent loops, and p vertices. I.et r&
external lines and s& internal lines meet at the jth
vertex. Then

~g ~

+(g g)] ~ +y' ~ ~ ) P~ j ~)' ~ ~ p +g

be the four-momentum of the jth external line
which enters at the ith vertex. Let B~, j = I, ... , /,
be the jth independent loop momentum. Finally,
let Q„ i = l, . . . , m, be the four-momentum of the
ith internal line and let

4 = Z J'((.')

be the total external four-momentum entering at
the ith vertex.

In what follows we shall prove that:
1. There always exists a finite polynomial in

the scalar products of the K,. such that 6t(K, ' Kz) =0
gives the location of the Landau singularity.

2. For a given set of values (K„.. . , Kp) which
lie on the given physical Landau singularity [which
implies $(K, ~ K& ) =0] there exists only one
unique set of values for the inter nal-line four-
momenta, Q, (K„.. . ,Kp), which satisfy Landau's
equations. In other words, if four-momentum is
conserved at each vertex, and if Q, '=M, ',
i =1, . .. , m, where M, is the mass of the ith in-
ternal line, and if Q()., Q, „=O around each indepen-
dent loop of the graph, with at, &0, i =1, ... , m,
where e, are the Feynman parameters for each
internal line, then each Q, is uniquely determined.

3. For I'„... ,P„ in the immediate vicinity of the given I andau singularity, the scattering amplitude
may be written in the form

~0)~p!&.~ ~ az (+1& ~ ~ ~
& nl Lf ~n(l, l) ~ ~ .a(l, r ) 8(1,1) ~ ~ ~ 8(l,&y) (+(1 l) y ~ ~ ~

y +(1 r&) & 9{1y) y ~ ~ ~
y Q(g p&) )

&0,&)"' 60)' ~&)

y a(2)
+(2 ~2)8(~ ~) @( ~2) ~ (2 1) ' ' '

y (2 t' ) &(2 z) ~ ~ ~ ~
& &(g q2)I X

x &(~)
~&(p &)'"+(p rp)s(p, a) "8(p,sp)(+(p, x) ~ ~ ~ ~ y+(p yp},Q(p, x)p ~ ~ ~ p 'Q(p pp})

&& /so &)... ()(&,». .. ()(p o... ()(p, ) (K„.. . ,Kp)+other nonsingular terms,

where A ') through A. (~) are the scattering ampli-
tudes for the P independent scattering processes
taking place at each vertex, and P is determined
only by the type of Landau singularity (triangle,
square, acnode, etc. ) and the type (mass and spin)
of each internal particle. g is analytic in the
immediate vicinity of the given Landau singularity,
and singular on it The Q(&.

&) are the uniquely
determined internal momenta given by 2.

In order that 1 and 2 may hold only one restric-
tion need be observed: At least one internal line
must have nonzero mass. If property 3 is to hold
we must further require that the given Landau
singularity point does not also lie on the Landau
curve of another graph, . of which the given graph
is a contraction. This excludes mainly normal
threshold singularities and isolated points where
a given Landau singularity curve touches one of
its reduced-graph singularity curves. 4

Property 2 is really a theorem in classical
mechanics. It says, for example, that if we fire
three relativistic billiard balls at each other, and

the lightest of the three balls bounces back and
forth 13 times between the two heavier ones and
goes off, then given only the initial and final mo-
menta, of the three balls, we can uniquely recon-
struct the momenta of each of the three balls at
any time during the scattering. It is assumed the
distance between collisions is large compared to
the radius of the billiard balls.

Given property 2, it is not surprising that prop-
erty 3 holds. The total amplitude -for a given pro-
cess with specified initial and final states, is a
sum over the amplitudes for the possible interme-
diate states. If the intermediate state is uniquely
determined, then the sum collapses into one term
which is a product of the cluster amplitudes. %'hat
is a little surprising is that the functions Q are,
in simple cases such as the triangle graph, square
graph, etc. , very simple expressions as we shall
Show by explicit calculation.

The results have a number of applications. The-
oretically the clustex -decomposition program of
analyzing the momentum-space behavior of field-
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theory amplitudes (or S-matrix amplitudes) im-
plied by their behavior at large space-time seya-
rations has never gotten beyond the case of non-
interacting clusters and the one-particle-exchange
case. The results obtained here enable one to ex-
tend the cluster-decomposition program to include
multiparticle exchanges. Experimentally, there
has been interest for many years in trying to use
the triangle singularity to explain certain enhance-
ments in strongly interacting three-particle final
states. ' This effort was hampered by the fact that
one had to do lengthy dispersion calculations in
order to estimate the intensity and width of any
given enhancement. ' The results given below en-
able one to make the same estimates by substitu-
ting the appropriate masses (some of which may
be unstable complex masses) and real four mo-
menta into the simple formulas obtained below.

II. DEMONSTRATIONS

Proof of Property I

Our notation will be that given in the Introduc-
tion. It is well known that there exists a.function
D((K, ~ K~),M, ', u, ) called the discriminant, which
is a homogeneous polynomial in the z„and whose
coefficients are linear in the (K, E~) and M.,',
such that the equations 8D/se, =0, i=1, . . . ,m are
equivalent to the usual Landau conditions for the
existence of a Landau singularity. ' There is a
theorem in algebra which states that given any m
homogeneous polynomials, 6', (e, , . . . , o ), in m

unknowns, there exists a unique minimal homoge-
neous polynomial in the coefficients, 6t((K;.K, ),M;2),
called the resultant, such that 8= 0 is a necessary
and sufficient condition for the existence of a solu-
tion to the system of equations 6', =0, . . . ,6' =0
distinct from the trivial solution (o.,= 0, . . . , n =0).'
Further, this polynomial may be explicitly writ-
ten down in the general case as the quotient of two
determinants. ~ Note that in particular when we
have m homogeneous linear polynomials in m un-
knowns, the resultant becomes just the usual deter-
minant. Clearly 6t((K, ~ K~),M ) is the desired
polynomial in the external momenta whose vanish-
ing gives a necessary and sufficient condition for
a Landau singularity. Note that R=O gives unphys-
ical as well as physical Landau singularities.
This establishes property 1. This method offers
an algebraic alternative to the usual geometric
dual-diagram method, initiated by Landau, for
finding the location of singularities.

Proof of Property 2

By conservation of four-momentum at the ver-
tices, the m internal-line conditions may be writ-
ten as Q&2 =M&2, where

e]~= -1,0, +1.

Consider the problem of locating an extremum of
Q, , satisfying subsidiary conditions

in the 4l-dimensional space of the A». The E»
are regarded as fixed. In order for a point in the

A» -space to be an extremum it must be a simul-
taneous solution of the equations

Q, '=M, 2, i=2, 3, . . . ,m

QI 2 QlU Qlll + Q
Qlll 0

~'9g0p ~'Oo &'Op ~'Oo~'Op

i=2, . . . ,m. (&)

At the extremum point we have further from (4)

8Qq2 sQ(2l
pBA ~p BA) p.

(8)

Also since sQ, „/sIt ~„=c',
& 6& „=const, anywhere

on the surface we have

(4)

where the p, are the Lagrange multipliers. If an

extremum happens to satisfy, in addition to Eqs.
(4), the equation

Q, =M,',
then clearly we have a solution to the Landau equa-
tions, and the external momenta K;& must lie on
a Landau singularity. Thus any set of internal
loop momenta, A;„, which satisfies the Landau
equations gives an extremum of Q,

' for fixed Q,
'

=M&, x=2, 3, . . . , m. In fact, If the given Landau
singularity is a physical one, m P, & 0, i = 2, 3, . . . ,m,
then the R» which solve the Landau equations give
a maximum.

Proof. Let q, o = 1,2, . . . , (4l -m + 1), param-
etrize the surface in the R+ space determined by
the (m —1) subsidiary conditions in the neighbor-
hood of a given solution of Eqs. (4). Then for
points on this surface we have

s Q,
' 8Q,.„
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From (7), (8), and (9) it follows that at the ex-
tremum

2 8 8
1p eg, asap

1p ~ ~~f e~ ~~p
f,v

sQ, ' s'R„
BAfv BgfyBgp

j,v

sQ 2 s2R

m s2Q
~p ~~

5=2

SQIq BQI~

Og Op

Using (10) we find that at the extremum

Q,. =pe', , K,. +pe', ,PoI,

for each internal line. This implies (Q,. —Q,.)„
=QIe2II (R» IT-,„).. Multiplying on the left by a, Q,.

and summing over i and p, , we find

g~, [Q,'-(Q, Q, )j=0,

since P, c(, Q, e', ~=Pn, Q, around the jth closed
loop=0. However Q, '=Q, '=M, ', and if we assume
Q„Q„&0, then Q,

' —(Q, Q, ) (0 for all i, and since
c(, &0 for alii, Q,.'=Q,. Q, ~Q, =Q, " Thus there
is only one maximum. We assumed that Q', Qo &0.
We regard solutions for which the time directions
of some of the internal lines have been reversed,
as corresponding to distinct types of processes.
We may accordingly redefine the notion of "a dis-
tinct Landau graph" to include a specification of
the time direction of each internal line.

Proof of Property 3

Since Q,.' =M, '& 0, Q,.„ is timelike and so by (6),
for an arbitrary displacement dq„we find that

n.Q, „=Q '" d)7.'n

is spacelike. Using this result we see from (11)
that for arbitrary dq„

g,'o oo oo, o(o„o,)"=go, (oo, ) ) o,
p fJg x] p

since ti, & 0 at a physical Landau singularity.
Q.E.D.

This establishes property 2 except for the possi-
bility that there may be a finite number (&1) of
maxima. That this is not the case may be seen
as follows. Assume there were two distinct posi-
tive n solutions to Landau's equation for a given
Landau graph, and given external four-momenta.

Then Pn, Q,. =Pe, Q,. =0 around each closed loop,
and Q,

' =Q =MI2 with las in Eq. (2)]

QI ——gCI~Kq+Qc, ~R~

Consider for general values of the external mo-
menta, the (4l —m)-dimensional surface in the R»
space satisfying Q,

' =M, ', i =1, . . . , m. It is the
intersection of the (4l —m +1)-dimensional surface
givenby Q, '= M,.', i)2, and the surface Q,'=M, '.
When the external momenta move onto a given
point on the physical Landau curve, M, ' becomes
the maximum value of Q,

' for fixed Q,
' = M,.', i «2,

so clearly for these particular values of the exter-
nal momenta, the (4l —m) -dimensional surface
(or the branch of it in the vicinity of the maximum)
satisfying Q,.'=M, ', i =1, . . . , m, degenerates into
a single point. Let Kf„be the given set of external
momenta on the physical Landau curve, and let
R» be the point which maximizes Q, '. Clearly by
continuity arguments, for any e & 0, there exists
a 6&0.

Q [KI„-K,.~ P &5
f p

implies that if RI& is any point in the (4l —m)-
dimensional surface determined by the equations

Q iRI~ R» i2&e-.

Now consider any perturbation-theory contribu-
tion to the given n-point amplitude,

R„,...„„(P„.. . ,P„) fII P'R,.
&=1

J3o(,...o(„(P„... , PR,R i, . . . , RI )
m'

II (Q,'-M,".)
j=1 j)
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where the given Feynman graph has m' internal lines and l' independent loops. " If this Feynman graph
has no Landau singularity at the given point K~„, then we include its contribution among "other nonsingular
terms. " If it does have a Landau singularity at the given point, we may write, without loss of generality,

m

) II II B„,...„„(P„.. . , P„,R„.. . , R, .)

where the q„ i = 1, . . . , m are the uncontracted lines in the Landau diagram (the internal lines of the re-
duced graph) and q„ i =m+1, . . . , m' are the contracted lines. Further, the R, are chosen so that q,. for
i ~m depends only onR„. .. , R, and not onR„„.. . , R, . This is always possible. " R, through R, are the
/ independent loop momenta of the reduced graph. It follows from the analysis of Eden et a l..

"that the
part of the amplitude which is singular at the given point arises solely from the coincidence of the m poles
intheintegrand 1/(q, '-M, ' i+a}, i =1, . . ., m. Therefore, if we only wish to look at the singular part of
A, we need not integrate each of the R», j =1, ... , l from -~ to+~. We may write instead

m r'

A„....„(P„.. . , P.)= IIgR, II q. M. II ~R;
~/ v z —z z z qz Mz + zE J co

+ other nonsingular terms,

B~, ..„(.Pz, . . . , P„,Rz, . . . , R),)n

m'

II (q~' —M~'+is)
j= m+1

(14)

where V is a 4l-dimensional volume containing all points (R», . . . , R») within 5 (5& 0 and arbitrarily small)
of some point on the (4l —m}-dimensional surface given by [q, (Kz, . . . , K, R„.. . , R,)]'=M, ~, i= 1, . . . , m.
By the above, as the external momenta (K„.. . , K ) approach the given physical Landau singularity,
shrinks to a sphere of radius 5 centered at Z». If we require that two distinct Landau singularities (having
distinct graphs) not coincide at the given point in the space of the external momenta, then the second factor
in (14) will be analytic in a neighborhood of R», and by choosing 5 sufficiently small we may regard the
second factor as a constant as R&& varies over V. Thus we obtain

fit

4= 1+x II (q, '-M," )
"v z=z J=z z ™d

j=m+1

+ other nonsingular terms . (15}

Here,

q&=q&(K„. . . , K»R„... , R, ) forj =1,.. . , m,

q) =qg(Pz& ~ ~ ~ t Pn &R» ~ ~ ~ )l Rz&R)+z& ~ ~ ~ &l Rz'}

for j =m+1, .. . , m'.

Also, let

q& q&(K„... , K&,R-„.. . , R,), j =1, . . . , m.

Clearly the first factor on the right-hand side of
(15) is just equal to the algebraic product of the
independent Feynman graph contributions to the
cluster amplitudes at each vertex, times a factor
of (f()z +M, ) for each intermediate spin- —,

' particle
in the Landau graph. If we put g8(g y) Q(p )
equal to this product of intermediate spin factors,
and if we-set

Z

~(K" ~ ~ 'K.)= IIS'R II q* MS=& @f
(16)

and then put

~gz, z )".8(p, sp)

we have explicitly constructed the function P which
appears in Eq. (1) and if we then sum over all
Feynman graph contributions to the given ampli-
tude we find that we have established property 3.
It should be noted that the function g is not unique-
ly defined. Clearly we can add any function, ana-
lytic in the neighborhood of the singularity, to g

without invalidating property 3. Thus, for example,
we could just as well take

(18)

or even better we can use the analysis of Cutkosky'4
and make a change of variables in (18}writing

J "a' J='~'f", n(q.'. M....,),
(19)

where fQ dp is the integral over the remaining
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III. EXAMPLES

The Triangle Landau Graph

Our notation is fixed in Fig. 1.
1. Let y, m

= (K,m -M, ' —M2~}/2M, M2, y„=-1 and

cyclic permutations of the above. Then as is easily
obtained by the method described in Sec. II,

$(K,', K,m, K, ) = Det(y, q)
= 0 (21)

gives the Landau singularity curve.
2. The physical Landau curve has six branches

in the K,„space. Consider the specific branch
where K,' & (M, +M,)', K,' & (M, + M, )', K,' & (M, —M,)',
K, &0, K &0.

Let us go to the rest frame of K» and then rotate
so that R, =-pp, where p, &0. Then

K, =(E„o,o, o),

K, =(E,-E„o,o,P,),
K, =-(E„O,o,p, ), E,&0.

Let the loop momentum R„=Q», this implies

Q, q-R „K+,q,

Q3p-R p- K,p.

Then solving for the unique intermediate-state
momentum as described in Sec. II, we find

~2p=R„
1

((M22 -MB +K~3), [p(K,2, M22, M~2)]~ms),
1

(22)
Qz p=R p+Ksp~

Qsq—-Rq-K, q,

angle variables, and J is the Jacobian of the trans-
formation. Then the analysis of Cutkosky shows
that the singular part of the right-hand side of (19)
is

(2v)(m-1) ~ 2 II+ 5 (20)
a

" J Q 2-M'+it
and we may take E equal to expression (20).

where p(a, b, c) =a'+b'+c' —2ab —2ac —2bc. The
other branches are obtained by cyclic permutation
and by the over-all reflection K,„--K,„.

3. Finally evaluating expression (20) for the
case at hand we find for all six branches

+i 2 2 2

8 [ (,'. .. ,)],I, in[I.(K, , K, , K, )],

(23}

where if iR&0, In6t is real and if 8&0, indi =In(-6t)
-im. If all three internal lines are spinless, then

If, for example, the Q, line were a spin--,'

particle, and other lines spin 0, then

psst(Kg& K2& Kg) =(g(K~& K~& Kg) ++ +M&}ssr

x g (K,', K,2, K,2) .
The Square Landau Graph

Our notation is fixed in Fig. 2.
1. Let

~,2+M, 2 —K,'
y» = '

2
' ' and cyclic permutations,
1 2

1 and cyclic permutations

M22+m, 2- S
$2 =

2MM2 4

M 2+M -t

Then one easily finds

6t(K, ', K,', K,', K4', s, i}= Det(y, )) = 0

gives the Landau singularity curve.
2. The physical Landau curve has 14 branches

in the K,„space.
(a) Four branches are inthe regions K,'& (M, +M,}',

K~2& (M~+MS), K2 & (Mi-M2), K4 & (MS-M4),
K, & 0, K3 ~ 0 and its distinct cyclic permutations
and over-all reflections, K,„--K,„, i =1, 2, 3, 4.

(b) Eightbranches are inthe regions K,'& (M, +M, )',
K2 & (M~+M~}, K~ & (Mm —M3), K~~ & (M~ —M4)2,

K„&0, K» & 0 and its distinct cyclic permutations

K~

g

Q2

K1

Q2
Ir

s = (K3+K4)
2

t =(K +K4)
2

K4

FIG. 1. The triangle Landau graph. FIG. 2. The square Landau graph.
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K2

K

K3

Ii4

K2

K3

K4

K2

K K

K,„=(E„O,0, 0),
K2„=(E„0,0,p, ), p, &0,

K,q =(E„p~„,0,p„}, p,„&0,

K4q = -(E, +E~+E3,p~„, O, pn+p~, }.
Then a simple calculation shows that for each

of the three cases pictured above, the unique inter-
mediate momenta are given by (26) and

R, = (R„su),
FIG. 3; The three distinct possible types

of space-time processes.

and over-all reflections.
(c) Two branches are in the regions K,' & (M, +M, )',

K32 & (M2+ M~)~, K~~ & (M, +M2), K~ & (M~+ M~),
Zlp 0y %30 0 K2p 0 K p 0 and its distinct
cyclic permutations and over-all reflections.

Typical space-time diagrams for the three types
of processes are shown in Fig. 3.

Let

where
Ml -M4 +Kl2

0
1

[p(K,', M, ', M,2)]~2

u„= -[1—(u,)']'~'

ug = (M, —M2 +K2 + 2E2 Ro) .1

2P2r

@1p=Rp ~

Q,„=R„+K»,
Q~p=R p +K2~ +K3p,

q,p=R„-Z,„.

(26)
8. Evaluating expression (20) we find for all

branches

2

16M, M2M~M4[$(K~ & Ka, K~2, K~, s, t)]'~2 '

For the three cases pictured above we can always
choose a Lorentz frame, where where if 6t&0, then vK= iv'-6t. -

(28)
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