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described in any basis by the conditions

(145) =[23]=0-g =O,

(215) =[43]=0- g =@,

(213)=[54]=O- ~ = I.
Note that in a general basis where (z~, z„z„z,) are
complex, at least one point of the real projective

plane shown in Fig. 2 is mapped to a point on the
surface at infinity. Finally, we observe that, just
as integrating the beta function integrand along the
three intervals [-~,0], [0,1], and [1,~] in Fig. 1
gives the three permutations of four external lines,
integrating the 8, integrand over the twelve tri-
angles of Fig. 2 gives the 12 distinct permutations
of the five-point function's external lines. '
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We discuss and generalize to arbitrary syin the kind of single-yarticle syin states which
have appeared naturally in field theories in the infinite-momentum frame. These states
transform simply under the Galilean symmetry group which is important in the infinite-
momentum frame, rather than under the rotation group. We also find that the spinors
U(P, A,) representing these states are very simple.

I. INTRODUCTION

The states of a single particle with mass ~, spin
8 are generally represented by a state vector
~P, A.), where P is the momentum of the particle
and A. labels its spin state. Many definitions of
spin state are available —the most popular being
the Jacob and Nick helicity states. '

The presently common kinds of spin states trans-
form simply under rotations. They are thus par-
ticularly useful for the description of low-energy
phenomena, in which rotational symmetry is im-
portant (for instance, two-body scattering in the
resonance region). In this paper, we will define
and discuss a set of spin states which transform
simply under the Galilean" transformations"
which are useful in the description of particles

moving in the +z direction with high energy. These
spin states have previously been found to emerge
naturally in discussions of field theories in the in-
finite-momentum frame, ' ' at least for the eases
s= & and s=l.

Vfe begin with a brief review of the infinite-mo-
mentum coordinate system,

7 =2 '"(f+z), s = 2 '"(f -z),
paying particular attention to the Galilean subgroup
of the Poincare group, which leaves the planes r
= constant invariant. Ne use this Galilean structure
to define a convenient "spin" or "internal angular
momentum" operator. It is then a simple matter
to construct single-particle eigenstates of this
operator. Ne also show that these "infinite-mo-
mentum helicity" states look like ordinary Jacob
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and Wick helicity states when viewed from a ref-
erence frame moving in the -z direction with the
speed of light.

Finally, we construct the spinors U(P, X) —the
higher-spin analogs of the familiar Dirac spinors
for spin —,'-representing the infinite-momentum
helicity states

~ P, X). These spinors are found to
have a remarkably simple form.

ttdICH -4~K -Q)~

fQJEJ+-I&K
(2.3)

serves merely to rescale the other Poincare gen-
erators:

~Ad Kq~ fN IC

AdKp +-4)K p y

II. REVIEW OF THE INFINITE-MOMENTUM

COORDINATES

K =K3, J=J„
H'= (K, +Z, )/&2, S'= (K, —S,)/H2,

B = (K2 —J'~)/&2, S = (K2+4,)/v 2 .
(2.1)

We recall' that the subgroup of the Poincard group
generated by g, P, II,J,B is isomorphic to the sym-
metry group of nonrelativistic quantum mechanics
in two dimensions, with

H -Hamiltonian,

P - momentum,

g- mass,

J- angular momentum,

(2.2)

8 - generators of Galilean boosts,

(i.e., e'"'zPe "' =P+qv). The action of the Lo-
rentz boost operator K is also very simple -K

In order to keep this paper reasonably self-con-
tained, let us recall the change of variables that
defines the infinite-momentum frame. Our notation
and philosophy follows that of Ref. 3, where a more
complete discussion may be found. The compo-
nents a" of a four-vector in the infinite-momentum
coordinate system are related to the components
a& of the same four-vector in the usual coordinate
system by the transformation

go 2-1/2(QO+ u3) el Ql s2 Q2 e3 2-1/2(dO g3)

In particular, the components of a position vector
are x" =(r, x', x', 3), where 7 =2 '"(t+z) and 3
= 2 '/'(f —z). In the infinite-momentum system,
the coordinate ~ plays the role of "time. "

We will be particularly interested in the gener-
ators of the Poincard group in the new coordinate
system. The generators of translations are P"
=(g, P', P', H}, where 7}=2 ' '(Z+P} and H=2 ' '
x(E-P). Since P„x"=HT+gz-p x, we see that
H generates T translations and thus plays the role
of a Hamiltonian. ' The six generators of Lorentz
transformations are conveniently taken to be K,J,
B,S, which are related to the usual three-compo-
nent angular momentum and Lorentz boost oper-
ators, (J„J„J,) and (K„K„K,), by

~~~B z-t~~ = z'd B t

+$(zIES «kd K + (d S

III. INFINITE-MOMENTUM HELICITY STATES

A. The Spin Operator j

(3.1)

Using R, we can define an "orbital angular mo-
mentum" operator

Rx P =R'P' R'P'.

Finally, the difference between the total angular
momentum J and Rx P defines the "internal angu-
lar momentum" or "spin" operator j:

j=J-RxP. (3.2)

We now choose to let the spin index A, label the
eigenvalue of j; thus

In order to use the infinite-momentum frame to
discuss the dynamics of particles with nonzero
spin, one needs a description of the possible states
of a single spinning particle which is adapted to
that frame. This means that the single-particle
states should transform simply under the Poincare
generators g, P, J, B, and K, which leave the
plane T =0 invariant.

It is easy to find such states for zero spin. We
simply label the state ~q, p) by its "mass" q and
transverse momentum p. [The "energy" of the
state is then given by the free-particle Hamilton-
ian, I/ = (p +M'}/2q, where M is the covariant
mass of the particle. ]

It will come as no surprise that the states of a
massive particle with spin 8 can be labeled by the
momentum (q, p) of the particle and some (2$+ 1)-
valued spin index A. . The states ~q, p, A) will trans-
form simply under g, P, J, B,K if we make use of
the isomorphism with two-dimensional nonrelativ-
istic quantum mechanics and let X label the (two-
dimensional, nonrelativistic) spin of the system.

To do this, recall that in nonrelativistic quantum
mechanics, the Galilean boost operator is B=-mR.
This relation serves to define a transverse-parti-
cle position operator for us'.
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jl n, 5, l &= l ln, P, »
8. The signer Construction

(3.3) Note that this gives the covariant momentum-space
integral over the mass shell,

U(A) lM/v 2, 0, A
&

=g D"(A) „. lM/&2, 0, X'& (3.4)

for AC SU(2). The states ln, p, X& of a particle with
some othex momentum are defined by applying a
certain Lorentz transformation to the rest states
lM/W2, o, x&:

I ,np, &l= e'"'e ' 'lM/&2, 0, », (3 5)

where

v=p/n, e =&2 /nM.

Now since

j lM/Wz, o, ~&=zlM/W2, o, ~&= xlM/~2, 0, »

and j commutes with B and K, we have

jln, p, x&=A. ln, p, x&,

as desired. It is also easy to verify that the states
l n, p, » transform simply under rotations, "Gali-
lean boosts, " and Lorentz z boosts:

e '"In,p ', p', »
= e ln, cos&pp'-sinpp2, sinpp'+cospp2, 3&,

e '"'
ln, p, A&=ln, p+nv, x&, (3.6)

e ' «ln, p, x&=le n, p, x&.

Finally, we note that the states
l n, p, A. & must be

covariantly normalized if the operators exp(-iv 8 )
and exp(-iron) are to be unitary. Thus, we take

(n', p', ~'ln, p, » = ~~1(»)'2n~(n' - n)~'(0' -p).
(3.7)

We can make this definition of the states ln, p, X&

precise (and specify some until now arbitrary
phase factors) by' making use of an informal ver-
sion of the famous Vhgner construction. " Vfe start
with the states lM/v 2, 5, A. & of a massive particle
at rest. Since the particle is to have spin S, we
require that these states transfoxm under rotations
according to the spin-S representation of SU(2):

dP= (2v) Ji 2(P2 2)1/2 Z (4 lP~ A&(P Xl@ )~

Similar states ln, p, A. & can be easily defined for
massless particles; indeed, the infinite-momen-
tum frame is particularly well adapted for the dis-
cussion of the spin of massless particles. The in-
terested reader will find a short discussion of the
massless case in Appendix A. In addition, the
states transform simply under certain Lorentz
transformations which play the role of parity and
time reversal. These transfor mation properties
are discussed in Appendix B. The transformation
properties of the states ln, p, » under the S oper-
ators defined in (2.1) are not particularly simple
or illuminating (just as the transformation proper-
ties of Jacob and VAck helicity states under Lo-
rentz boosts are not particularly simple). "

The states lP, A& described here, while well de-
fined for any momentum P", are presumably most
useful for the description of particles which are
moving with high velocity in the +z direction (as in
Ref. 4). States adapted to the description of high-
energy particles moving in the -z direction can be
obtained in a similar fashion simply bg inter-
changing v z, g II, and B S.

C. Relation with Ordinary Hchcity States

The infinite-momentum helicity states discussed
here have arisen naturally in discussions of field
theories in the infinite-momentum frame' ' for
spins & and 1. In Ref. 3 it was shown that, for
spin —,', the states ln, p, A. & are eigenstates of the
ordinary helieity operator, but referred to a ref-
erence frame that is moving in the -z direction
with (almost) the speed of light. The statement can
be established in the general case by noting that
the helicity operator J ~ P/lPl, when given an in-
finite Lorentz boost in the -z direction, becomes
just the "Galilean spin" operator j:

kuK + -Au K ~lime' 3 ——e ' 3=lime'
2 "'z(n a)+2-'/2Z (a' s')~

k, l =1

[1(n H)2+ p~2]1/2
%id K3

=4+ —BxP =j. (3.8)
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IV. WAVE FUNCTIONS OF THE HELICITY
STATES

In Ref, 3, it was found that the Dirac spinors
representing infinite-momentum helicity states of
a spin-& particle have a simple form. In this sec-
tion we will see that the corresponding spinors for
higher-spin particles are also simple.

We will discuss here the spinors representing
the states of a massive spin-S particle in the (S, O)

and (0, S) representations of the Lorentz group-
or, more properly, of the covering group SL(2, C).
In order to be clear as to what these objects are,
let us digress for a moment. Consider a one-par-
ticle state ~g) and the amplitude

y, (P) =Z~""(~(P))8.(P, ~Is). (4.1)

Here 5)!a' is the (S, O) representation" of SL(2, C)
and n(P) 6 SL(2, C) is the standard t:ransformation
which relates ~M/v 2, 0, X) to ~q, p, X) in the defini-
tion (3.5) of infinite-momentum helicity states:

n(P)=e" e '
(4 2)

where

v=p/q and e =&2q/M.

This amplitude can be regarded as a momentum-
space wave function of the state ~g}. If the state
undergoes a Lorentz transformation, ~g)-~g')
= U(A)~(}, the wave function g transforms according
to the (S, O) representation of SL(2, C):

q' (P) =u""(A)„q,(X(A)-9).

The objects we want to discuss are obtained by
setting ~g) = ~q, p, X) in (4.1) and factoring out the
resulting 5 functions and some factors of 2m and
M. Thus we define the spinor U8(P, A. ) representing
the state ~q, p, A.) and transforming according to the
(S, O) representation of SL(2, C):

U, (P, ~) =M'~""(n(P))„. (4.3)

We will also consider the corresponding (0, S)
spinor

Dirac spinor. )
Our task here is to evaluate the spinors Ue(P, &)

and U'z(P, A, ) explicitly. We begin by constructing
the standard SL(2, C) transformation n(P) defined
in Eq. (4.2). We recall that the generators of rota-
tions in SL(2, C) are the Pauli spin matrices, J
= —,

' 7, and the generators of Lorentz boosts are K
=-,'iv. Using (2.1), we calculate

n(~&=
(
—

~)

"'
M

2

(4.5)

where we define p, =2 '"(p'sip'). We also need
the expression for the matrix elements of 8'~'~(A)
in terms of the matrix elements of A:

a+b+c+d=2S,

a+b —c- d= 2A. ',

a- b+ c —d=-2A, .
(4.7)

This result is due to signer, "at least for the
special case in which A. is unitary; for the reader' s
convenience, a short proof is given in Appendix C.

Now we are ready to evaluate X)!~'~(n(P))z z,
where n(P) is given by (4.5). Since the component
n(P), is zero, the only nonzero terms in (4.6) are
those with b=0; but there is only one solution of
(4. I) with b = 0, namely, a = S + A. ', b = 0, . c= X —& ',
and d = S —A. . Since the sum in (4.6) includes only
non-negative values of the exponents a, b, c, d, this
solution leads to a nonzero matrix element K)(o)z &,

only if c = A, - A,
' ~ 0. Thus we obtain for the spinor

U '(P, A) =M &'~"(n(P)) q

(S ~) t (Sp y) ) ll2 2x/2

(S ) .(S — ). ( — ).

S""(A) ~.~ = [(S+X')!(S —A. ')!(S+X)!(S —X)!] '"
x Q' (a!b!c!d!) '

a,b,c,d

xi(A„)'(A, ) (A,)'(A )~,

(4.6)
where the sum includes all those values of a, b, c, d
in the range 0, 1, . . . , 2S which satisfy

U'(P A.)=M u ' (o.(P))

Msco (8,0)(+(P)t-1) (4.4)
(4.6)

These spinors are the objects which appear in
the momentum-space expansion of the free fields
which transform according to the (S, O) and (0, S)
representations of SL(2, C). They can also appear
in the Feynman rules for perturbation theory" and
in expressions for S-matrix elements between in-
finite-momentum helicity states in terms of invari-
ant amplitudes. " (For spin —,', the two 2-component
objects Ue and U& make up the usual 4-component

where B(n ~X) is 1 for a &A. , zero if n&X. We
find in a similar fashion that the spinor U'(P, &)
=M'~""(n(P)'-') „„is

(4.9)

It is remarkable that these infinite-momentum
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helicity spinors are so simple. The spinors for
Jacob and Wick helicity states, ' by way of contrast,
have a form

U„(P,X)- e e 'e~" ~(sin8)'

S
x P C(X)„,(tm ', 8)-",

where (8, p) are the polar angles of P and cosh+
= (P'+M')"'/M

It is also interesting to note that these spinoxs
have a simple limit as M-0 —the spinor U(P, X)

vanishes unless A. = S and 'the splnor U'(P, A.) van-
ishes unless X =-S.

This work was part of my dissertation research
done under the direction of J.D. Bjorken at Stan-
ford University. My debt to him, and to J. B.
Kogut, with whom we collaborated, is very great.
In addition, I would like to thank J. B.Kogut, D. J.
Gross, and M. Creutz for their helpful criticisms
of the manuscript.

APPENDIX A: INFINITE-MOMENTUM HELICITY

STATES FOR MASSLESS PARTICLES

Jlq„o, x& = ~lq„o, ~&,

jlq„o, ~&=o.
(Al)

The states lg, P, X& for other momenta are now
defined by

lg, p, x)=e '"'e ' «lq„o, x&, (A2)

The states of a massless particle may also be
easily discussed. We start with the states lq„0, X&

of a particle with a fixed momentum P,"=(g„0,0, 0).
%e ask how these states can transform under the
little group of p,"-the group of Lorentz transfor-
mations that leaves p," fixed, which is the group
generated by J' and 5. Since [J,S"]= ie»S' and
[S», S'] = 0, we see that the only finite-dimensional
irreducible representations of the little group are
the one-dimensional representations consisting of
a single vector lq„0, X) with

APPENDIX 8: TRANSFORMATION PROPERTIES
UNDER PARITY AND TIME REVERSAL

It is sometimes necessary to know how the states
lg, p, X& transform under such Poincare transfor-
mations as parity and time reversal. Consider
first the parity operator.

The conventional parity operator U~ carries z
into -z, and hence interchanges w and 8. Thus
this operator may be useful for relating the in-
finite-momentum helicity states lq, p, A& to "re-
versed" states lh, p, p) defined using an infinite-
momentum frame with the roles of w and 5 inter-
changed. (If the states lg, p, X) are most useful for
describing systems moving with high velocities in
the +z direction, then the "reversed" states
lh, p, p& are useful for describing systems moving
with high velocities in the -«direction. )

If, on the other hand, we are more interested in
the internal dynamics of systems moving in the +z
direction, then the "mirror-reflection" operator

is more useful. This operator is exactly analogous
to the mirror-reflection operator in two-dimen-
sional nonrelativistic quantum meehanies. The
operators q and H are scalars under reflection
(assuming, of course, that parity is a symmetry
of the theory). The rotation operator J is a pseudo-
scalar and changes sign under reflection. The
operators P and B are "vectors" and transform
according to (V', V')- (-V', V'). In addition
"pseudovectors" like I'" = e&, V' sometimes occur;
these transform according to (E', E') -(E', -E ').
This information is summarized in Table I.

It is quite easy to find how the states lq, p, A. ) of
a massive particle transform under U~. Assuming
that the states of a particle at rest in the lab frame
transform under the conventional parity operator
according to Upl M/&2, 0, X&= C~lM/v 2, 0, A. &, we
find by using the definition (3.5) and Table I that

TABLE I. Behavior of the Poinaar6 generators under
mirror'-reQection and v-reversal transformations.

v=p/q, e"=g/ri, .
As in the massive case, we find that these infinite-
momentum helicity states are eigenstates of the
Galilean spin operator j and transform simply un-
der B and K:

(-&,&')

(~i g2)

iln, p, ~)=~In, p, »,
e "'

lq, p, x&=lg, p+qv, x&,

e *"ln,P, »=le"n, p, ».
(AS)
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U, ln, p, »=C ln, -P', P', -». (B2) that

U, -=e '"
8UPU~, (B3)

which we might call the "7-reversal" operator.
Assuming that PT is a symmetry of the theory,
simple computation shows that U, acts just like the
time-reversal operator in nonrelativistic quantum
mechanics. The mass g and energy II of a system
are unchanged under 7 reversal; the momentum P
is reversed; and the boost operator B (and hence
the position operator R =-B/g) is unchanged (cf.
Table I).

How do the states ~q, p, X) transform under r re-
versal? We begin with the transformation law for
a particle at rest under the conventional PT oper-
ator:

U~UT iM/v 2, 0, A.)= C~r(-I) iM/&2, 0, -X) .
Then we find, using the definition (3.5) and Table I,

Here C„is a phase factor equal to (-i)'~C~. Thus,
the effect of reflection on the particle states
~7!,p, X) is very simple: The x component of the
momentum is reversed and the spin is flipped.

We come now to time reversal. The conventional
time-reversal operator U~ does not seem to be
very useful in the infinite-momentum frame. A
much more natural operator is

U I'I! p» = Crl'0~ -p ~ -&)
~ (84)

where C, =(i)'~C~r is a phase factor. This is just
what we would expect for a nonrelativistic time-
reversal operator —U, simply reverses the parti-
cle momentum and flips its spin.

APPENDIX C

n& ~ ~ ~ n2 ~ 8 g (g ~ ~ ~ 8
(s) 2S 2S & 2

(C I)

It is not difficult to see that the space of totally
symmetric spinors is left invariant under these
transformations and that the representation of
SL(2, C) defined in the symmetric subspace by
(Cl) is S'~'~. A suitable" orthonormal basis for
the symmetric subspace consists of the 25+ 1 vec-
tors ((X), & =-S, . . . , S, defined by

We wish to derive an expression for the matrix
elements of &~a'~(A) in terms of the matrix ele-
ments of the matrixA6 SL(2, C). To obtain such an
expression we consider the reducible representa-
tjon Q ' )(Q~ / ' )( ~ ~ ~ &(Q ~ ' wjth 25 factors of

This representation acts on the space of
spinors $ „...„,where each index a takes the

1 2S
values a-', , according to the rule $-g'=D(A)$:

PermutatIOnS
(C2)

Here there are S+X factors of 6,&, and S-X factors of 5 „,. The desired matrix elements of S!a'!(A)
are simply

(C3)

Thus the matrix elements of & ' (A)~ „are polynomials in the matrix elements A„,A, , A „A of A.
It is not difficult to compute the coefficient of the general term (A„)'(A, )'(A, )'(A ) in this polynomial

by a straightforward counting argument. Imagine inserting the expression (C2) for $(x)* and $(X) into (C3).
We see that the coefficient of (A„)'(A„)'(A, )'(A )' is

[(2S)!(S+A. ')!(S-X')!] '"[(2S)!(S+A)!(S —A)!]

times the number N of permutations of the indices in $(A')* and $(X) which contribute a term (A, „)'(A, )'
&& (A, )'(A )' to the sum. That is, N is (2S). times the number of ways S+X' white balls and S —X' black
balls can be put into a white box with S+ I, slots and a black box with S —A. slots so that a white balls are in
the white box, b white balls are in the black box, c black balls are in the white box, and d black balls are
in the black box. Clearly, N is zero unless

a+b+c+d=2S,

a+b- c- d= 2A. ',

a —b+c —d= 2X.

(C4)

If this condition is satisfied, then

), (S+X')!(S —A. ')!(S+X)!(S—X)!
aIbt ctdt
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us

S (A) =[(S+X')!(S-X')!(S+X)!(S—X) t]' 'Q' (&tbictd~) '(A )'(A ) (A )'(A )
aP,g, tf

where the sutn includes ail those values of a, b, c, d in the range 0, 1, . . . , 2S which satisfy (g4).
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It is suggested that the weak and electromagnetic interactions be incorporated into a
theory based on an SU(3) SU(3) gauge-invax'iant and parity-conserving Lagrangian, in which
the lepton fields form a Konopinski-Mahmoud triplet p, , v, e-. The unobserved effects
which would be produced by 10 of the 12 charged vector bosons in this theory are suppressed
if the spontaneous breaking of SU(3) SU(3) down to SU(2)(3) U(1} is much stronger than the
spontaneous breaking of SU(2) 8U(1) down to electromagnetic gauge invariance. The result-
ing theoxy is for most purposes equivalent to the previous SU(2)U(1) model, but with

mixing angle now fixed at 30 . In consequence, the mass of the charged vector boson which
mediates the known weak interactions is now predicted to be 74.6 GeV. This model also
provides a natural mechanism for producing an electron mass of order um&.

Several years ago it was suggested' that a re-
normalizable theory of the weak and electromag-
netic interactions might be constructed from a
gauge-invax iant Lagrangian by allowing a spon-
taneous breakdown of the gauge symmetry. This
proposal has now been revived by a number of
theoretical studies, ' which tend to confirm the
renormalizability of models of this general class.

There are many possible presumably renormal-

izable models, bp, sed on different underlying sym-
metries and different patterns of symmetry
breaking. However, particular attention has been
given to a simple model' of the weak and electro-
magnetic interactions, based. on a previously sug-
gested' SU(2) 8 U(1) gauge group, under which the
left-handed leptons transform as two independent
doublets (v~, g )I, 'and ( ev)~, while the right-
handed leptons transform as two independent sing-


