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The one-loop graph in the dual-tube model is constructed. The conditions for no diver-
gences or new singularities are exactly those found by Lovelace for factorization of the
"Pomeranchukon" in the strip model. Loops correspond to electrostatics on multiple tori
only if spurious particles are permitted to circulate in the loops.

The usual dual-resonance model can be under-
stood in terms of an electrostatic analog in which
the ether is a two-dimensional strip. ' Resonances
correspond to long, thin strips and loop diagrams
to annuli. External particles correspond to
charges on the edges of the strip. Singularities in
the scattering amplitude are associated either with
an accumulation of charges corresponding to ex-
ternal particles, or to singularities in the shape
of the ether surface. ' For example, the one-loop
diagram corresponds to an annulus of ether with
either all charges on one boundary (planar loop) or
some on each (nonplanar). When the hole shrinks
to zero, one gets a divergence' (planar case) or
the "Pomeranchukon" singularity4 (nonplanar).

Almost a year ago I proposed a model' with a
different kind of duality than that of the strip
model. In the strip model only planar channels
are dual to each other, while in the new model all
channels are dual. The ether is a closed two-

dimensional surface (a sphere for the tree dia-
grams) and resonances correspond to tubes in-
stead of strips, with external particles entering as
charges anywhere on the surface. I conjectured
that higher-order diagrams would correspond to
electrostatics on multiple tori (spheres with n
handles). It was further conjectured that the dif-
ficulties in the strip model coming from shrinking
the hole in the annulus might disappear in this
model.

In this article I calculate the one-loop diagram
in the tube model. We shall see that the electro-
static analog applies only if one permits spurious
states to circulate in the loop, but that, whether
or not they are permitted, there exist choices of
dimensions and assumed Virasoro-type gauges
for which there are no divergences or new singu-
larities. For the case where these spurious
states are projected out, the dimensionalities are
exactly those I ovelace found for the factorization
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of the "Pomeranchukon" in the strip model.

Benching of the Loop
The n-particle loop amplitude may be obtained

either from the amplitude for an excited state
~- ~+n scalars, analogously to Ref. 3, or from
n propagators and vertices, in analogy to Ref. 6.
The factorized form had been found by Yoshimura'
and by Del Giudice and Di Vecchia, ' though we use
a slightly modified form

V(q) =2m exp[qg(2~) '~'(s, + &„)]

&( exp[@+(2x) '~'((2t+ bt)]

D(D(=(mrrV'f d'cu(s( ' n~™cPI""~.

Here a„and b„are two infinite sets of (four-vec-
tor) harmonic-oscillator lowering operators,
A, = Pea„a„and H is the four-momentum of the
resonance. We notice that the propagator auto-
matically projects out states with g, cB&, which
cannot couple to the scalars. We shaB let D be
the number of dimensions of each of the oscilla-
tors and E be the number of oscillator dimensions
made spurious by sets of Virasoro identitiese

FIG. 1. The toroidal ether for the one-loop graph,
pictured as an annulus v6th points z on the outside
boundary identified with zgz on the inside.

(again for each of the oscillators). We then find,
in the usual way, '

L= d~kTr Vq Dk+q ~ ~ DP-q yq ~p

I
a-'1 00

OQ

d'sv n ~'~'
z,. -«'~ 1-n" '+ ~& z~-z, "'~ 1 -zo"z,. z. -"~,

i= j. i=1 r=X i, j r=l

where z„=i. This form may be visualized in terms of solving electrostatics on an annulus as in Fig. 1,
with the point z on the outside boundary identified with the point mz on the inside. Each of the terms in
the last two products corresponds to the exponential of the interaction energy -q,.(f,.lnju, . —u,. j, where e((,
is the position of the ith charge or one of its images under z m"z. This is equivalent to sewing a tube of
length -lnjs(j to m~e a torus, but first giving it a twist through an angle of argm Thus it is not exactly
electrostatics on a torus.

From this picture it is possible to see several symmetries of the integrand. The first is a periodicity
in each lnz; with period lnm coupled with k- 0+ q;, which just corresponds to taking the charge around the
torus back to where it was. This is similar to the periodicity" in nonplanar loops in the strip model when
all of the charges on a given boundary are multiplied by av. Ahother is under all z,. -1/z, , k- -0, zo- m
These may be shown explicitly. There is also an apparent symmetry of the tube under zv- m ', but I have
been unable to show this explicitly. The integrand is, of course, miserably defined for ja(j &1.

Even if, as 1 shall assume, this s( integration may be confined to jwj &1, one may be horrified" by the
exponential blowup of the last product at the infinite number of points zo =e'", 8 rational. To investigate
this, let us evaluate the k integral by the usual blind application of a Wick rotation, to get"

d2ze so ~ 2m' -ln zo D~' 1-M1"

r=j
n-I 3,((inc,. - 1nz„.)/2i, m'~')

x2 '" D jz, j
'd'~, exp[(ltepq, hu, )'/21njzuj]Q

i=1 (cg s~(0, I )

The integrand is a single-valued function of m and rhay thus be considered a periodic function of
r=(2wf) 'luego. I define new variables

7'=-1/~, n'=e'"",
g; =exp(7'tnt, .)
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FIG. 2. (a) Fundamental regions of the modular group. The region marked E is the one I choose to integrate over.
(b) The regionE in the w plane [w= exp(2~i7)] .

and use the Jacobi imaginary transformation to show that the form" of the integrand remains unchanged if
D=26, E =2, (6)

which are exactly the conditions required by Lovelace for factorization of the Pomeranchukon in the strip
model. I assume these peculiar dimensions and note that after the ~ integrations, the integrand becomes
invariant under the transformations ~- T+1 and 7 - -1/T which generate the modular group. " In attempt-
ing to integrate over IsuI(1, i.e., IReTI&~, Imv &0, we are integrating over an infinite number of copies
of the fundamental region IRe~I &-„ Imv &0, Iv I

&1. See Fig. 2. We handle this new periodicity exactly as
the others, restricting ourselves to one fundamental region. The fundamental region has only the singu-
larity at ur = 0, and all the singularities on the natural boundary Iw I

= 1 are excluded, being simply images
of zan=0.

Thus for the peculiar case D= 26, E = 2, the loop diagram has no divergences" and no new singularities.
The form for the loop amplitude is

d'~2 ™I~l'(2v/-h I~I)"Hll-~"I "
F r=1

8 1
&& II I~;I 'd'~; exp[(Reg& In&;)'/2 Inl ~I] 'Q

Itt t & t z t & x a = z

The tube model in a 26-dimensional space is clearly not to be confused with the world we live in. In
addition to the absurd dimensionality it has no apparent place for isospin with suppressed exotics. None-
theless, the elimination of some of the difficulties is encouraging, especially in light of the possibility that
alterations in the Born term may change the details of dimensionality. To the extent that the Born term is
the Pomeranchukon tree diagram of the usual model (it is similar but not identical) it gives an explicit
verification that no new troubles arise when sewing Pomeranchukon loops.
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We derive a new expression for the dual N-point function integrand which is invariant under

the action of the projective general linear group PGL(N-2, C). The (N-1)(N —3) free complex
parameters of the group are used to make the integrand independent of the values of (N-1)
points of complex dimension (N-3) which appear in the integrand. These points uniquely

specify the location of a11 2(N-1) (N-2) hyperplanes which appear as branch singularities of
the integrand when it is viewed as a function on (N-3) -dimensional complex projective space.
In contrast to the Koba-Nielsen formalism, the PGL(N-2, C)-invariant foxm of the N-point
integrand allows transformations which mix the gV-3) integration variables and permits
greater freedom in the placement of the branch singularities while preserving a simple hy-
perplane structure for the singularities.

I. INTRODUCDON

A large portion of the literature dealing with the dual N-point functions' has made use of the appealing
Koba-Nielsen description of the N-point function integrands, The purpose of this payer is to introduce a
generalization of the Koba-Nielsen formalism in which the N-point integrands become invariant undex the

projective general linear group PGL(N- 2, C). When the dual N-point integrands are written in

PGL(N-2, C)-invariant form, we may move the branch singularities of the integrand wherever we please
in (N- S)-dimensional complex projective space. We therefore view PGL(N- 2, C) as a natural singularity-


