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The energy eigenvalues of a generalized equation for the motion of the spin-1 particle in a
homogeneous magnetic field are solved by using a very simple method. From the explicit ex-
pression of the eigenvalues, it is found that the spin-1 theory is consistent when the anoma-
lous magnetic moment s(II ) is a nonpolynomial function of the magnetic field strength ~H( that
obeys certain conditions. Hence, the usual way of writing the spin-1 equation, with constant
anomalous magnetic moment, is inconsistent. A particular form for ~(H ) which gives con-
sistency for spin-1 theory is discussed. Some physical implications are also presented.

I. INTRODUCTION

The question of the consistency of theories of
charged particles moving in an external electro-
magnetic field has been with us for a long time. '
The present status of the question is that, for
charged particles with spin less than or equal to
one, theories with minimal electromagnetic cou-
plings are consistent, while for spin higher than
one they are believed to be inconsistent. " Another
related subject is the energy eigenvalue problem
which startedas early as when Dirac first proposed
his spin--,' theory. ' Only recently have the exact
eigenvalues of the spin- —, and spin-1 equations with
anomalous-magnetic-moment couplings been ob-
tained by using the conventional method of solving
the differential equation ' and by a new method
proposed by Tsai and Yildiz. ' From the eigen-
values obtained, it is found that, ' for the spin-1
case, the energy eigenvalues can become pure
imaginary for sufficiently high magnetic field
strength H. The occurrence of complex eigenvalues
for spin-0 charged particles moving in an electro-
static potential has also been known for a long
time. ' The spin-1casediscussed in Ref. 6 furnished
another example of complex energy eigenvalues
for particles moving in a static field. Since the
energy eigenvalue for a system is a physical quan-
tity and should be real, the appearance of the com-
plex energy eigenvalues implies that both the spin-
0 and the spin-1 theories are inconsistent. The
physical interpretation of these inconsistencies re-
mains unknown.

The purposes of this paper are (1) to introduce
an improvement of the method of Ref. 6 for cal-
culating energy eigenvalues, and (2) to show that
spin-1 theory becomes consistent when the anom-
alous magnetic moment s(H') is a nonpolynomial
function of the magnetic field strength H that obeys
certain conditions. In Sec. II, we present an im-
proved version of the calculation method introduced
in Ref. 6. By introducing a new identity, we show
that instead of working on the quartic characteris-
tic equation [Eq. (24) of Ref. 6], we need only con-
sider a quadratic characteristic equation [Eq. (11)
of this paper], which greatly simplifies the algebra
of calculation. The eigenvalues of the spin-1 vec-
tor theory with some additional (nonminimal) gauge-
invariant coupling terms are solved by this improved
method. With the resulting eigenvalues, we
show in Sec. III how the inconsistency arises in the
eigenvalues of Ref. 6 and how to construct a con-
sistent spin-1 theory. A particular case which
gives a consistent theory is also discussed.

II. ENERGY EIGENVALUES

In this section, we will solve the energy eigen-
values for a more general spin-1 equation by using
a method improved over that of Ref. 6.

The usual way of writing the spin-1 equation with
anomalous-magnetic-moment coupling' is

(m'+ s"v,)Q„—s„(s'P„)+ieq(1+ a)E„,P" =0, (1)

where w" =(1/i)a' —eqA', A" is the electromagnetic
potential, E„,= 8 „A,—B,A„, and a is the (constant)
anomalous magnetic moment of the spin-1 particle.
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However, there are other nonminimal gauge-in-
variant coupling terms of higher order in the elec-
tromagnetic field of the form

aFq„F' "Q«+ bF„„F""F)„(ts'+

which take into account the magnetic polarizability
of the spin-1 particle and are expected to contrib-
ute in the strong magnetic field. Therefore, for
the motion of a charged particle in a homogeneous
magnetic field, a more general form of the equa-
tion can be written as

(m'+ w'7],)(t)„-w„(w'(t)„) +ieq[1+ «(H')] F„,st)"

e'
+—.X(H')F„.F"'4~=0,

(3)

In Eq. (3), «(H') and y(H') are possibly infinite
polynomials that result from using Eq. (4) in the
form (3), which has been added to the left-hand
side of Eq. (1). We can unify the cases of infinite
and finite polynomials by letting «(H') and y(H') be
as yet arbitrary functions, and by considering the
infinite-polynomial case to be the result of a for-
mal series expansion of these functions about the
point H' =0.

Using Eq. (3) instead of Eq. (1), we start the
calculation paralleling Ref. 6. Equation (3) im-
plies the subsidiary condition

m'w" (t)&
—m" [1—z(H')]ieqF„, Q'

g2
+—.X(H')~~F, F""y„=o.

where we choose H to be in the g direction and
have used the identities

F]~F~~ =H(H~ —6 ~H,

H]F;) =0,

Fop -0, F~2 -H .
(4)

In the following, we omit the arguments of «(H')
and X(H') for notational convenience and consider
the case when m, =p, =0 for simplicity. Then, with
the help of Eqs. (4) and (5), the spatial component
of Eq. (3) becomes

) 2 2

(p )'y; = (m'+P)(I), ——,m; ieq(1 —«) 7(„F„~Q'+—,H'ltv~ (t' +ieq(1+ «)F,«(cs'+ , ]iF„F"—qts, ,

which can be rewritten in the matrix form as

(q)'q=(m'air' —eq(1+a)S H+eq, (rr —eqS H)S H

eq - e - e2 . 2
——(1 —«)(S 7()'S H- —]tS H(S Tr)'S H- —XS H Pm2 m' m'

where p is a three-component column vector and S is the spin matrix for the spin-1 system in the repre-
sentation (S&);,=i e.;», so that we have

m, s(& =[P6;J —eq(S H);&] —[(S )T)']&» F(& =i(S H);&,

$,S)S«+S«S.,S, =6;,S.«+6,)S;, (S H, (S v) ] =(w —eqS. H)S H,

which were used to arrive at Eq. ('I).
With the help of the identities (recall 7(s =0)

(S %)'(S.H) =-,'(P-eqS A)S H+-,'HlV,

N, =S m, +S, m, S, =S,+ i ~, 7t, =m, +i@2,

Eq. (7) can be further simplified to the form

(q )'qr = (m'+rr' —eq(1+ e)S H+ (1 —e)(rr' —eqS H)S H2m2

2
——,a(m'e-', (ir' —eqq H)](S H)* —(ra, SS )ar )qr, (8)

where

eq(1 —«)H e'y
4m'

and we have used the identity

N~= -S3N, .



Equation (8) is the equation from which the energy
eigenvalues are to be solved. Note that Eq. (18) of
Ref. 6 can be obtained from Eq. (8) by letting }( =0.

To obtain the energy eigenvalues, we proceed as
follows. We first rewrite Eq. (8) in the form

which can be obtained directly from Eq. {8). Ex-
plicitly, the eigenvalues are, for 8, =0,

(p')' =m'[1+ (2n+ 1)E],

and for S, =+I,

{p')'=m' 1+q+-,'(I —«)g'-X('(I+-,'1))

q = (q')* - (««' + «' - « q(1 + «)q) H

+ q- (1 K}(P-—eq8 H)8'HF3
——.qfq«'+l(«' —«q5. H&&(q rq&'),

Multiplying Eq. (8}from the left by -(n+PS, )N
and making use of Eqs. (9}and (10) and the rela-
tions

+-,'qq, () - «)(q+q- x&'
~ —K

(q q*)*l)——x'q'i() —«)'&)"' '

[3+@—X5'/(I —«)]'

(13)

Note that (P')' is real, since

[x,y] =ax,

«=q()-«&«qq H()+ (q'-q qq H&«&
2$Ã

2+~ X qs 2 1 X

= —(3+9) — + R(&) ——4 )(I+/) -0.xnk
K

[s,', x,] =0,

[P —2eq8 H, X,]=0,

%'8 obtain

y'y+&[-(n+ pS,}lq ] y -(n'- p'S, ')X 'y =O

ox'

[y'+ay+@] =0,

vrhere we have also used

y=-(n -Pss)X
=4{n'-P'S,')[S,'{P)'+3(eq8 H)'-4Peq8 H].

It is the use of the identity, Eq. (9), that provides
the improvement over the calculation in Ref. 6;
there the equation analogous to our Eq. (11) [Eq.
(21) in Ref. 6] has a term proportional to N+ on
the right-hand side, and the procedure that pro-
duces Eq. (11}from Eq. (10) is iterated to elimi-
nate N„resulting in a quartic characteristic equa-
tion. In view of Eq. (9), this is unnecessary; the
quadratic equation [Eq. (11)]contains only the com-
muting operators S, and P (see Ref. 9) and may be
solved algebraically for the eigenvalues.

The eigenvalues can be obtained by solving Eq.
(11}with the weak-field physical boundary condition

(p')'- m'+P —eq(1+«)S~+0(F') as If-o,

IH. CONSISTENT SPIN-ONE EQUATION

Equations (12) and (13) are the energy eigen-
values of the more general spin-1 equation, Eq.
(3). The consistency of the theory requires that
(p )~ o 0. However, as we will show below, not any
choice of «($'} and )t(g') satisfies this requirement.
For example, the results of Ref. 6 may be re-
produced by setting X(g'}=0, and «(p) =«=const in
Eq. (13). In that case. and for n =0, we have

(p ) /m = 1 —K$ fol' qsg =+1
q

{P')'/m'-3«g as (-~ for qS, =-1,

which implies that the condition (P')' ~ 0 holds only
when z =0. A similar result clearly obtains if
K($ ) ls a (filli'te) polynomial fllnctioll of $ . Tllis is
unlike the spin- ~ case, where the theory ls consis-
tent for any value of the anomalous moment. %8
have encountered many attempts to explain this dif-
ference. ~

It has been suggested that the inconsistency of
the spin-1 theory with constant-anomalous-mag-
netic-moment couplings is related to the instability
of the vacuum in such a theoxy, or to the constancy
of the magnetic field over an, infinite pex iod of
time, ox" to the omission of radiative corrections
in the calculation. These "expl.anations" beg the
question for jLf they ale accepted then we must
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which implies that

«(g') - 1/g. (14)

No finite polynomial (in II) of nonminimal gauge-
invariant terms in Eq. (3) can satisfy Eq. (14).

(ii) For the other states, since q» $ & 0, we
have the conditions

1+q+-,'(1 —«)('» 0,
I q++ -,'(I —«) &' » —,'(1 —«)'(4 4q +]')+,

which, in view of Eq. (14), are equivalent to

1+@»«(« —1)g'. (15)

Another condition for a particle with anomalous
magnetic moment is

also explain why the spin--,' calculation is immune
to these problems. There is also the notion that
perhaps spin-1 particles are necessarily composite
in some fundamental sense, and decompose in a
strong magnetic field. This last is not satisfactory
either, but provides a clue —we might naively ex-
pect the particle to become distorted first and this
raises the question of magnetic polarizability.

In the following, we propose a way to avoid this
inconsistency and to construct a consistent spin-1
theory. One notes that the usual way of writing
the spin-1 equation, Eq. (1), is valid only in the
weak-magnetic-field case. For the general case,
especially in a very strong magnetic field, we can-
not neglect the magnetic polarizability of the parti-
cle." As will be shown below, the inclusion of the
latter is necessary and gives rise to a consistent
spin-1 theory.

We ask ourselves: For the energy eigenvalues
of Eq. (3), is there any choice of «((') e0 and X($ )
such that (P')' is positive definite'P The answer is
yes, and we find it is sufficient to discuss the case
when y(g') =0. In this case, the conditions for Eq.
(13) to be positive definite are the following:

(i) For the ground state with n=0 and qS, =+1,
we have

(p')' =m'(1 —«]),

«(5') = «'/(1+ k«"5'), (16)

where a is an arbitrary number, satisfies condi-
tions (14) and (15). With this choice, the ground-
state energy is found to be

(p0)I ~Q(1 «z ~)2(] + «2g12)-1

which is similar to the spin- —,
' case.

In summary, a simplified method to calculate
the energy eigenvalues for a general spin-1 equa-
tion has been presented. It has also been shown
that the complex energy eigenvalues for the mo-
tion of spin-1 particles in a homogeneous magnet-
ic field, discussed in Ref. 6, are artificial and are
due to the exclusion of magnetic-polarizability ef-
fects; explicitly, they are due to the fact that the
anomalous magnetic moment did not vanish in very
strong magnetic fields in the case of constant ~.
The conditions for a consistent spin-1 theory have
been stated and a simple example satisfying those
conditions has been presented. We hope that a
similar argument can be used to avoid the incon-
sistency of the electrostatic potential-well case of
Ref. 7 and the inconsistency of the spin--,' theory
discovered by Johnson and Sudarshan ten years
ago. ' We also hope that our discussion here may
shed some light on the phenomenological theory
of strong interactions; i.e., in order to extend the
known low-energy phenomena to high energy, we
suspect from this that we cannot use polynomial
interactions but should use nonpolynomial interac-
tions.

From the above discussion, we see that any
choice of «($') which satisfies conditions (14), (15),
and (16) guarantees that (p')' » 0, and hence yields
a consistent theory. From Eqs. (14) and (15), it
is easy to see that

I
«(t') I

~ I/5.
This implies that if the nonminimal couplings are
added as a power series in $, they must form an
infinite series that sums to a nonpolynomial func-
tion that satisfies Eq. (17). The particular choice

«(g')- «' =const&~ as $-0. (16)
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The problem of an electron moving perpendicular to an intense magnetic field is ap-
proached from the framework of quantum mechanics. A numerical solution to the related
rate equations describing the probabilities of occupation of the electron's energy states is
put forth along with the expected errors involved. The quantum-mechanical approach is
found to predict a significant amount of energy broadening with time for an initially mono-
energetic electron beam entering a region of an intense magnetic field as long as the
product of initial energy and magnetic field is of order 50 MG BeV or larger.

We consider an electron with momentum P mov-
ing perpendicular to a constant homogeneous mag-
netic field of magnitude H. Where H, is the Dirac-
electron-magnetic ~field interaction Hamiltonian,
the solution 4 of the Dirac equation [if(d/dt)

H,]% =0 yield-s stationary-state wave functions
with energy eigenvalues'

E„=mc'(1+2nH/H, )"', n=0, 1, 2, 3, . . .
where

m -=rest mass of an electron,

c =speed of light in vacuum,

H0 =-4.414 &&10"G.

The charged particle's interaction with the local
photon field provides the mechanism for sponta-
neous transitions from state n to lower or upper
states. We shall be concerned with the downward
transitions only because we expect the effect of
upward transitions on the energy of the particle at
time t to be small.

Regarding the electron-photon field interaction
Hamiltonian'

2

X

as a small perturbation, where

e =charge of an electron in absolute value,

L, -=side of Born periodicity cube,

X =photon wave vector,

h = Planck's constant,

n =Dirac velocity matrix,

a * =—photon creation operator,

t =elapsed time,

r =—position vector of electron,

we may find the transition rates A.„„character-
izing a transition from state n to state n' according
to

Here 4 „represents the system state vector after one-photon emission, and 4„represents thei system


