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In several earlier papers the author developed an approximation method for finding the
Lorentz-covariant equations of structure and motion of interacting particles (represented by
singularities) in Einstein’s theory of the nonsymmetric field. In these earlier papers two
specific procedures were suggested for investigating a particular form of partial differential
equation which appears when carrying out the approximation method. One of these two
specific procedures was Lorentz-covariant at each stage of the analysis and one was not..

In both cases the final result was Lorentz-covariant. In the earlier papers, when applying
the approximation method to specific particles, only the noncovariant procedure was used.
In this paper we illustrate the use of the Lorentz-covariant procedure by applying this pro-
cedure up to fourth order to the case of interacting simple neutral particles —particles
which interact only through the gravitational field.

I. INTRODUCTION

In several earlier papers' we developed a gener-
al method for finding step by step to any order of
approximation desired the Lorentz-covariant equa-
tions of structure and motion of particles repre-
sented by singularities in Einstein’s theory of the
nonsymmetric field. We called these particles
ideal particles. In one of the earlier papers (paper
II) we applied the above -mentioned method to the
case of certain simple ideal particles located in a
perfectly isolated region of the continuum? and
found, in the second and fourth orders of approxi-
mation, respectively, an electromagnetic and a
gravitational interaction between the particles.

In the first of the earlier papers (paper I) two
specific procedures were suggested for investigat-
ing the solutions to a certain form of partial dif-
ferential equation which always appears when car -
rying out the general method for finding equations
of structure and motion. One of these two specific
procedures was Lorentz-covariant at each stage
of the analysis. The other procedure was not. In
both cases the final result was Lorentz-covariant.

In paper II we made use of the noncovariant pro-
cedure to find the Lorentz -covariant equations of
structure and motion of various types of interact-
ing simple ideal particles. In this paper we shall
make use of the Lorentz-covariant procedure to
find the fourth-order Lorentz-covariant equations
of structure and motion satisfied by interacting
simple ideal particles which are neutral and spin-
less to second order. We are reinvestigating this
problem -which was investigated in paper II using
the noncovariant procedure —in order to illustrate
the Lorentz-covariant procedure and in order to

(K3

prepare ourselves for later investigations of more
complex interactions.

A Comparison with the Havas-Goldberg Method.
Before we proceed with the investigation the author
would like to compare his method for finding the
Lorentz -covariant equations of structure and mo-
tion of particles with the method of Havas and
Goldberg.® Both are methods for finding the equa-
tions of structure and motion of particles in Ein-
stein’s gravitational theory* if the particles are
represented by singularities in the fundamental
tensor field (metric field) g, .

The author regards the essential difference be-
tween the two methods as arising from the fact
that Havas and Goldberg make use of the Dirac 6
function to represent certain singular properties
of the fundamental tensor field —when particles
are represented by singularities —while the author
does not make use of such functions.® Through the
use of d-function notation involving the introduction
of a singular matter tensor (energy-momentum
tensor), Havas and Goldberg express integrability
conditions on the field g, at each order of approxi-
mation as conditions on the singular matter tensor
and the field g,,. These conditions determine the
general form of the singular matter tensor and the
equations of structure and motion of the particles
(singularities) at each order of approximation.

Unfortunately, using the Havas-Goldberg method
certain terms in the equations of structure and mo-
tion are not fully determined through the formal
use of the method (certain terms are found to be
formally infinite if the field g, is infinite at the
positions of singularities representing particles)
and must be determined by some auxiliary proce-
dure. The author finds the particular auxiliary
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procedures suggested by Havas and Goldberg for
evaluating these terms —the Bhabha and Harish-
Chandra procedure and the Riesz procedure -arti-
ficial and unsatisfactory.® Be that as it may, no
one using the Havas-Goldberg method, as far as
the author knows, has ever been able to obtain the
complete equations of structure and motion of par-
ticles beyond the lowest order of approximation
involving interaction (the fourth order in our nota-
tion), and the method has been in use for nine
years.

In contrast to Havas and Goldberg the author sat-
isfies the integrability conditions on the field g,
at each order of approximation by actually solving
the field equations to that order in the immediate
vicinity of each particle (singularity). This is suf-
ficient to satisfy the integrability conditions as it
has been shown by the author’ that if at each order
the field equations are satisfied in the immediate
vicinity of each particle in the region under inves-
tigation, then the integrability conditions on the
field g, to that order are satisfied over the entire
region.® In the process of solving the field equa-
tions to a certain order of approximation in the
vicinity of each particle, and thus satisfying the
integrability conditions on the field g,,, one finds
the equations of structure and motion satisfied by
the particles (singularities) to that order of ap-
proximation. There are no calculational difficul-
ties in solving the field equations in the vicinity of
each particle but the method does involve much
tedious labor in the higher orders of approxima-
tion. The equations of structure and motion of
particles are, however, uniquely determined by
the process and contain no ambiguous or infinite
terms.®

In this paper we shall solve the fourth-order
field equations in the vicinity of certain simple
particles in order to satisfy the integrability con-

ditions on the field g,, to that order, and in order
to determine the equations of structure and motion
of the particles to fourth order. All terms in the
equations of structure and motion are easily found.
No terms are ambiguous or infinite and no auxil-
iary procedures for evaluating the terms are in-
troduced.

If instead we had used the Havas-Goldberg meth-
od to determine the equations of structure and mo-
tion of the particles to fourth order we would not
have solved the field equations to the fourth order
in the vicinity of each particle but only to the sec-
ond order. We would be applying one of the special
procedures suggested by Havas and Goldberg to
determine the terms in the equations of structure
and motion which are formally undetermined using
their method of satisfying integrability conditions
on the field g,,. In their paper Havas and Goldberg
actually find the equations of structure and motion
of particles to the fourth order using the Bhabha
and Harish-Chandra procedure although they sug-
gest it would be more satisfactory to use the Riesz
procedure. Using their method and the Bhabha and
Harish-Chandra procedure Havas and Goldberg ob-
tain the same equations of structure and motion to
the fourth order (excepting radiation reaction
terms’®) as we obtain using the author’s method.!

What then is the advantage of the author’s method
over that of Havas and Goldberg? First, the au-
thor does not have to introduce special procedures
to evaluate formally undetermined quantities —pro-
cedures which the author finds arbitrary and un-
justified.!? Second, the author’s method, in con-
trast to the Havas-Goldberg method (and other
Lorentz -covariant methods of which the author is
aware), presents no special computational difficul-
ties (other than tedious labor) in going to the high-
er orders of approximation.!?

II. THEFIELD (a7¥(i0)

First we must reinvestigate, this time using the Lorentz -covariant procedure, the solutions* [4])/’(';{”) to

the Eqs. (1.63) of paper II, thatis, to the equations’®!®

I _
Oy = ra1tuw + O(K°®), (1)
where
1 3 » »
(41w = 2121V po,ul2 W= %[2]7,;1 2170t [21%up,0 217+ (217 up  21o' P = [21%up,0 27,0 = (21%wp,0 1277°7, u
A A 1 . .
- *i”luu [21Ypon [217°° +%"7uv [217po,x e+ ér’uu 217, p[21Y f e [21Ypo [21Y e, (2)

with

[21Vw= ;}?;)])’pw
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and
(P)mG=O(K2), (’)rh‘;:O(K“), (4)
(’)u"=0(l<°), ®) 5P =0(x?). (5)
We shall only be interested in those solutions to (1) for which p,7),” takes the form®’
[4]7(’,';{,)' V= ;(’) s ? [ea1Cllra) ™ ]y +;(’)aﬂv (’)[[4]C{,(ru)' Nagy
+§)(’) et P Lea1Clut (7)™ e +ZP) P @ iy P 1CH1 (1) gy +O (), (6)

where (?C! and (#)Cl,,; are understood to be func-

tions of ¥ only, and
g’)]CI[uu] @ur=0. (7

We shall agsume that solutions to (1) satisfying (6)
always exist.!®

The field r,yy,, appearing in Egs. (1) can be brok-
en up in the following manner:.

_(»
[z]'ypv‘ézl')’;ﬁ“'* !2]7;:" (8)
where
If _ (9) (9) ., ext _ (€3]
{g)]'}’;ﬁ - gz)]yuw [2]751’5 _psz [21 Y- (9)

The field (%3 in (9) can itself be split into two .
parts,

(i = B + B (10)
where

Oyt = 5Py atv + (Y ret)» (11)

Bysdtn= 4P a(Py aav = DY ret) (12)
and

Pa=Pay,-Paw. (13)

We therefore write

- 0
(21w = g)]ylsw*' éz)]yl':v’ (14)
where
— (), self
Eg)]yfw‘ %a]yuv *, (15)
t
Bhvm= Dt + Qi - (16)

The field fg)]yﬁ,, is singular along the world line of
the pth particle while the field [(g)]y,’}u is nonsingular
along this world line.

We shall assume that over the region of the con-
tinuum we are investigating Eqs. (1) have a solu-
tion ()¢5, which satisfies (8) and can be expanded
in a Lorentz-covariant power series (Laurent se-
ries) around the world line @ £P of an arbitrary
particle in the region, that is in a power series
in P ¢, where

®e= O —Vpr Yz, Py o PP, 17

f
The power series expansion in ® ¢ need only exist
in the immediate vicinity of the world line of the
pth particle.”® The vector 7 is understood to be
a spacelike vector.

As discussed in paper I the world line of the pth
particle is parametrized by the quantity @7 de-
fined through the equation

a® 2=17p,,d(p)£pd(p)£v- (18)

We can extend the domain of definition of the quan-
tity 7 to include the neighborhood of the world
line of the pth particle through the use of the equa-
tion

(’)7’,, (. 0, (19)

which is understood as defining surfaces of con-
stant ® 7 in the neighborhood of the pth particle.
The quantity ‘?7 will then be known as the proper
time in the neighborhood of the pth particle. We
see from the above definition that surfaces of con-
stant @1 in the neighborhood of the pth particle
are planes perpendicular to the world line of the
pth particle.

If in the neighborhood of the pth particle we dif-
ferentiate (19) with respect to x° we find

(p),,p.o (SO (»),yp (#),,p 0=0. (20)
Making use of

» ») (p),,.,c’ (p)up’(’:(p)up(p),r,o

- ¢
¥p,0=Mpo = "Up

(21)
this means that
W7 =Py [1-PeP(au)]?, (22)
where
»,
(f)(ad):(p)ap(’)dp’ (p)apz(Tep' (23)

All quantities in Eqs. (20)-(23) are understood as
evaluated at proper time ® 1 in the neighborhood
of the pth particle.

From the above we see that the parameter 7
will be a well-defined single-valued function of po-
sition in the neighborhood of the world line of the
pth particle if that neighborhood is restricted to
those points of proper time @1 for which
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(P)€< (l’)(ad)-l . (24)
When expanding the various quantities appearing
in this paper in a power series in ®¢ we shall al-
ways consider ourselves working in such a re-
stricted region surrounding the pth particle. The
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stood as evaluated on the surface P g, and all ex-
pansions in P ¢ in the neighborhood of the pth par -
ticle will be understood as being over this same
surface.

In order to investigate the solutions to Egs. (1)
satisfying the conditions (6) we shall expand (43¢,

planes of constant ®) 7 in such a restricted region
will be denoted by (g, From now on whenever the

quantity Pe appears in this paper it will be under - when expanded in such a power series in @ e

Pii= PUm®/c®u,u, e '] +0(k*),
By o= P[(m€/c®)au,u, €3] +0(x*),
B2 p0=PL(mC/c)Ba,aguym, = Uyt oty t, +1 ooty t,)€2] +0(k?),

we find as the power-series expansion in ®¢ of ,; by

- - ~ PO, A
[4]tuu= (P)[(mG/C 2)2(%(1;10‘1) Uy uu"'énuv)e 4= [z]y[slv po[21Y po =7 [2])/flv po[21Y po-

~ 1 < po ~ p,0 ~ p, ~ O,
+ 302100, w217 PO u+ 2121700 w1217 P u 1.0 121707 F 121Y30,0 20700+ 121V 0 12170 P

in a power series in P ¢ in the neighborhood of the
pth particle. Making use of (14) and the fact that

(25)
(26)

(27)

~ 0, ~ po ~ ~ p,0 ~p, ~
+[2]Vrs/p.0[2]7u p_{zlyfszp,c[z]yp ,u"[z]')’;p.o[z]'ypa,u"[2]720,v[2]7’up ‘[z]')’;o.u[z]?’upo‘i[z]ys,u[zj’)’,y

- = po S PN,0, L .Y -
=501 el M 1o A 2177 e 1po A 1217 7 F i 1207 A 1207 +0(€7 )] +O(k®) .

We are using the notation g)lf’uv and g)ﬂ.’uv ,» in (28) to denote the fields
the world line of the pth particle.

Since the equations

O D= PLn%/ ) (@, +im,)e],

(0) 0

O P, = PLm®/c?(w,u,)e™],
my [(:)](P?‘U= (p)[[Z]YZu 00 [2 ]7-’ pc] ’

») _(® 0o
Bt = P17y po 121771,

o g)]‘/’ LKA po = P, Wivp 217 0l

have the solutions?®

Pot,=Plm®/c??(fa,a, - fu,u,)e ] +0(k%),
(R 0h,= PLom®/c?(~su,u)e?] +0(k?)
B d,=P[mC/c?)Fa,a,n17 P u,u)e™ +0(€)] +0(k®),
g)]q)ﬁ,ﬁ (p)[(mo/cz)(%apacax (217 po')‘uu“u”’“%ap[z]?po Mg Uxwuy
T INTI A 'X“puc Uy Uy, + 30 (517 Py 1) +0(€)] +O(x%),

E:)] Puykrpo = (p)[(m G/Cz)(%a P (277 k) ,oly uu)"' 0(6)] +O(K8) )

we see from (28) and (29)-(38) that every solution [417(’,’3{,) to (1), expandable in a power series in P¢ in
the neighborhood of the pth particle, can be written in the form

(28)

Pyn, and #yn, | evaluated along

(29)
(30)
(31)
(32)

(33)

(34)
(35)

(36)

(37)

(38)
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[on

= OlmC/c®P(Faya, +Fuyu,)e? +(m®/c?)(-30,a o 1,17 P uyu,)e™
+(mC/c?) (=10 o x (217 P DUy s, + 508 (217 P Mg Uy,

- 20,7 " ')\“G“X“u“u =30 1217y ,0 WU =30, (317 0 0 U°
+ 3Ny A p 217 °° Mig iy +30 (2170 ¥ U +50, (2170, U U°
- 5w o 1217 *° Py g+ }éa o (217" Uy + 50 6 (517 U 1y
+30° (1P, ot + 30 117y, Uy = 30 (317 p0 w8ty
-za’ (21700 .v“ouu“ %09[2]7-’. pUp Uy = %au 217y —8a, [217,p
+41 @7 (217, +0(E)] + a3y fuiny + O(K°) (39)

where (,77(%, is a solution to the homogeneous equations
CPrayrm=0- (40)
Note that for such a solution?!

P A -~ ~ X
ta¥eh = PLomC/c®)(=1a17p A8 U™ + 3121700, w8 4° = S1a17p0 06 1wy

+31217 o8 Uy = 31217 €T +O(€)] + 14 1¥ () T +O(K®) . (41)

As previously mentioned we are only interested in the solutions ,yy}y) to (1) for which ;)" takes the
form (6). If we expand the right-hand side of (6) in a power series in (P e we find

[4]‘)’6{,) V= (p)[[,l]ClI,G-l +a" [4]C{'uu]€-2 + [4]C{pu]u"€" +O(€°)] +O(K6) . (42)

Comparing (41) with (42) we see that we shall only be interested in those solutions 41, of the form (39)
to Eqs. (1) for which

¥l = PlaCite ™+ 1 1C e + C iy’ €1 +0(e)] +O(x°) . (43)

The quantities [,;C* and ,,Cf" ; in (43) are understood to be functions of ’7 only. If we choose
[41%u [41% [w]

(a1 = P/ c®)(1a17 p0 4 4wy 1, = § (o170, .)€ "] + (i +O(1%) (44)
where ;s is a solution to the homogeneous equations

Dz[dy(huv) =0 (45)
and

4™ 2 @ g0 D1 1CH1) " rer w2 Doy Plia1Chrw) ™

"'Z’; DG ot (’)[[430’['“,,](714)"],,,"’ +Z’;maadv @ [[ﬂc'['uu](”“)-l]adv v +0(x%), (46)

(Ctw) @u=0(k%) (47

[the quantities )C and (C},,; in (46) and (47) are understood to be functions of 7 only], we have such a

set of solutions to Eqs. (1) as with this choice of [4]7/({“,,) both (40) and (43) are satisfied. In fact we find for
[41017. and [4]C[’}’:v]r

11C" = [1Ch + M/ ) (217 p0 20 U Uy = 31,17 p 4w, (48)

[dcfav] “la ]C’[‘uv] . (49)
This means that (4, where
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[4]’)’(?1{/):'(’) [m®/c?P(fgapa, + fruyu)e™® +(mC/c®) (=300 o (17 Pyt + (317 p0t" uuy 1, — 217 u)e™
+(mG/c2)(__;.apa 00217 po'xuu“u"'i'ax 217"’ "‘upuouuu,,

= 30, (217 P Mo Un Uy Uy = 30 (2170 U U = 5 (2 1Fpu ,o%" U

+%ﬂpua o217 po ')‘uo 22N "%au 121700 .uupua "'%au[z]?po M uu’

= M 217°° ')‘“p"o + 300 (217 "8 Uy + 30 (217, U Uy

+30° 121%p,0% %, +30° (51700, 0 Uy = 307 (317po w U,

- %ap [2]7-’po ,uuoup - %ap 1217 p Uy Uy = %au 2170~ ta v [2]77-11

+81y, @ (517,0) +O(€)] + a1y +O(K°), k (50)

and for which one finds
= PLenC/c®) (=312 17m 0" 4% = 312170 p U U° + 31517 p0 8 u°
+ 312170 WU U Uy + 3 1o17 p 0P Uy = S )€ +O(E0)] + (il ¥ +O(K®), (51)

is the most general solution to (1) expandable in a power series in ¢ for which [4])/(’,‘;{,)"’ takes the form
(6).2 We see that with this solution to (1) the #Cf and {#C},,; appearing in (6) have the functional form

8’]0{, =P [(m®/c2) ‘%[2]70;1 pulu’ - %[zlﬂp ot u’ + %[21'790 pufu’®
-~ A - -~
+51217p0 2 U U Uy + 51517 p Py = $117,) ]+ DICE, (52)

(it =EiChun- (53
Different solutions to the inhomogeneous equations (1) satisfying (6) differ from each other by a solution
to the homogeneous equations (45) satisfying (46)—-(47). In papers I and III we discussed the fact that these
different acceptable solutions to Eqs. (1) reflect only the fact that one can use different coordinate sys-
tems in the region under investigation or a different definition of those quantities (in this case the mass
and spin) which describe the structure of the particles in the region. There is thus no important loss in
generality in choosing

(Ci=0, {ACh=0 (54)
in (52) and (53). Also, since along the world line of the pth particle
Bviip =0, (55)

we can, making use of (16), replace the quantities 7, , in (52) by {y&,. This means, assuming Eqgs.
(1) have a solution which satisfies (6) and can be expanded in a power series in ®¢, that there is a solu-
tion ﬁ]y(ﬁ’u) to (1) such that over a perfectly isolated region containing only simple ideal particles which
are neutral and spinless to second order,

L) '"=§) D, D1 Cllrn) e +§) D4 ooy P[(1CHrw) ™ ]y +O(K"), (56)
where
(DCk=PLm®/c®) =321 8l puu® = Srayvii, ot u” + 5121758
Ve U’ w ™ puf uy =ty )] (57)
The fields [z]qu’ft in (57) are understood as evaluated at the position of the pth particle.
III. EQUATIONS OF STRUCTURE ANb MOTION

The fourth-order equations of mass, motion, and spin associated with interacting simple ideal particles
in an inertial system which are neutral and spinless to second order are found from (56) and (57) to be??
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» pu _(® Fus (58)
(’)(éu,,—éupu"u,,+§,,pu"up)=0, (59)
where
@p, = O (mCu, + $,u), (60)

1 o,1 . ext o_1 t ,P,0 _1 ext ,p, 0, \ 1 t 1
(’)f,,.=(’)[mc(i[z]‘)’g’ﬁ,pu')u +§[2]y,f;,"0upu —a[21Ypo p% U —2[2)Ypo AW U U Uy =g ™ ,pupup"'Z[g]Ym,p)],

(61)
and
(P)Suu(l’) V= (. (62)

The above equations are identical with the equations of mass, motion, and spin found for similar particles
in paper I1.2* In that paper, however, we used the noncovariant procedure described in paper I to find
them.

APPENDIX A: SOLUTIONS TO CERTAIN EQUATIONS
The fact that (34)—-(38) are solutions to Eqs. (29)—(33) in the neighborhood of the pth particle is easy to

ve;i'fgﬁ the definition of #° given in (17) we find evaluated on the surface P¢
By o=npo=PE, o, (A1)
where
(9 Ep,c = E (t>)7.,o= (’)up(” T (A2)
We are using the notation
CORSCT (A3)
From (22) we have, expanding (’)1'0 in a power series in e and making use of (5),
D7 =Dy +0(x?). | (A4)
Combining (A1), (A2), and (A4) we find evaluated on the surface P¢
(’)rp,(,:npo =Py, Py, +0(k?) . (A5)
From the definition of e given in (17) we have
BeWe =By Opp (A6)
Making use of (A5), (A6), and the definition of (P given in (23) we find on the surface ?¢
Pe ,=-Pq, +0(x%). (A7)
From the definition of ‘P a, given in (23) we have that
(p)ap'o = (p),rp'o (-1 _ (p),,.p (’)E,o (D=2 (A8)
Making use of (A5) and (A7) we find from (A8) on the surface o
(p)ap‘a - ((’)ap ®q o +Mpo = (!’)up ")uo)(’)e'l +0(k?). (A9)
It also follows from (4), (5), and (A4) that on the surface @
(p)mc,a = (#)y;,6 (® T o= o(kY), (A10)
By, o= P4 O7 =0(k?), (A11)
(PF) 0= P(F 7.0 =P (T ptuo) +0(K?), (A12)
(PP e o= Py xee-T,0) = P Ty rvptt®u0) +O(K7) . (A13)

Making use of the relations (A7) and (A9)-(A13) one can easily verify that (34)-(38) are solutions to Eqgs.
(29)-(33) in the neighborhood of the pth particle. It is also easy to show that in the neighborhood of the pth
particle at proper time ?7
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D(a,0,e7?) o= P[(da,a, @+, +0, Mo — QU = 0, U, uo)e ] +O(k?), (A14)
(’)(aua,,e‘l)'o=(P)[(3aua,,ao+apn,,o+a,,npc-—auu,,uo—a,,u,,uc,)e""]-a-o(lcz), (A15)

» _ &
( Naya,ap)q= ( )[(3apa,,apa0+a,,a,,npo+a,,apn,,o+a,,ozpn,w

— 0, Uy U = OO Uy U — O, O Uy Uo)E™ ] +O(KP) (A16)

(p)(au),o = (p)[(apa ot Myo — Uy uc)e_l] +O(K2) ’
(p)e-z,0 - (’)[Za o 6—3] +0(k?),

(1’)6—1‘o= (b)[a oe-z] +O(K2) .

(A17)
(A18)

(A19)

The relations (A14)-(A19) will prove to be useful in verifying (41), (48), (49), and (51).

APPENDIX B: A COMPARISON WITH THE RESULTS
OF THE NONCOVARIANT PROCEDURE

It is easy to show that the field ,yl, in the
neighborhood of the pth particle obtained here by
means of the Lorentz-covariant procedure is
equivalent to the field p,y7(,, of the paper II Appen-
dix B obtained by means of the noncovariant pro-
cedure.

On the surface ¢ we know that ®#” and P uP
take the form?®

rS=x°%—(E)x, 7ri=ct-—ct*, (B1)
us=(E"%)x +O(E" £M)x, u'=1+0(E"E")x,
(B2)
where we are using the notation
t=x*/c, t*=£t*/c, (B3)
£ =dt/cdt, E'"S=d%E/c?di?. (B4)

The quantities £° and £’° on the right-hand side of
the Eqs. (B1) and (B2) are understood as evaluated
at time ¢*. This is indicated by the subscript £ *.
The expression O((”7 £) in (B1) and (B2) means a
term whose power -series expansion in £ begins
with £7 £,

From (B1) and (B2) we see that the condition

(»),,p ®,uP=0 (B5)
on the surface o implies

c(t=t*)=(r° ") x+O(E" E")px - (B6)
Making use of the Taylor -series expansions

(E)x=E = E"c(t = t*) +O((£ - %)), (B7)

(E)x= 8" =& %c(t = t*) +O((¢ - £*)), (B8)

which are assumed valid in the neighborhood of the
world line of the pth particle, it follows from (B6)
and

£ =0(k%) (B9)

that in the neighborhood of the world line of the pth
particle

c(t=t¥)=rSE5+0(E™ E™M) +0(k?) . (B10)

The condition (B9) follows from (5). All quantities
on the right-hand side of (B7), (B8), and (B10) are
evaluated at time ¢.

From (B1), (B2), and (B7)-(B10) we find for
®yp, ®yp and Pe in the neighborhood of the
world line of the pth particle on P¢

(’)'rs=xs—(p)§s, (P)1,4=(p)1,s(P)§/s, (B11)
Bys=Wprs Doy, (B12)
B (Bys @B ysyir2 (B13)

All quantities on the right-hand side of Eqs.(B11)-
(B13) are understood as evaluated at time ¢. We
are neglecting the terms O(? £7 ® £y and O(x?)
on the right-hand side of Eqs. (B11)-(B13).
Making use of the Taylor-series expansions

(Fu) %= Puw = (Pu) ac(t = £ %) +O((t - £ ¥)),  (B14)

(T’uu.)\)g* = 7;111 A (Tﬁw .)\),4C(t - t*)+0((t - £*)?) ’

(B15)
(m)yx=m—m 4c(t - £*) +O((t - 1 ¥)?), (B16)
we find from (B10) and
m ,=0(k*) (B17)
that in the neighborhood of the pth particle
(D)= P [T, =7 7y 1£°1, (B18)
((p)'}jpy,)\):*= (p)['?py,)\ _7’5"}7‘“/,)\4‘5,3]’ (B19)
(Pm),x=Pm . (B20)

The cohdition (B17) follows from (4). All quanti-
ties on the right-hand side of (B18)—(B20) are
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evaluated at time ¢. We are neglecting the terms
o(P g™ @ty and O(k*) in (B18)—-(B20).

Through the use of (B11)-(B13) and (B18)-(B20)
it is easy to show that the field 5, given in
(50) and found in this paper by means of the

[on

Lorentz-covariant procedure is identical, if we
choose 141¥,)=0, to the field 4;7{,,) given in Ap-
pendix B of paper II and found by means of the non-
covariant procedure.

ic. R Johnson, Phys. Rev. D 4, 295 (1971); 4, 318
(1971); 4, 3555 (1971); 5, 282 (1972). The papers will be
referred to as papers I, I, III, and IV, respectively.

2The terms “simple ideal particle” and “perfectly iso-
lated region of the continuum” are defined in paper I. It
is assumed that the reader is familiar with the earlier
papers I, II, III, and IV. Unless otherwise indicated,
the notation used in this paper will be the same as that
used in the earlier papers.

SP. Havas and J. N. Goldberg, Phys. Rev. 128, 398
(1962). Several methods have been proposed for finding
the Lorentz-covariant equations of structure and motion
of particles in Einstein’s gravitational theory. The
method most widely used and discussed at the present
time seems to be that of Havas and Goldberg. For a brief
discussion of other methods and their weaknesses see the
author’s papers I and II and the references therein.

“In papers I-IV the author’s method is actually devel-
oped for Einstein’s theory of the nonsymmetric field.
Since Einstein’s gravitational theory is a special case of
his theory of the nonsymmetric field the author’s method
is also applicable to the pure gravitational theory.

SAnother difference is that Havas and Goldberg treat
the acceleration of a particle as of zeroth order in «
while the author treats it as of the same order as the
mass of a particle (the second order in our notation). In
this regard we agree with the previous work of Kerr
[R. P. Kerr, Nuovo Cimento 13, 492 (1959)] and Carmeli
[M. Carmeli, ibid. 55B, 220 (1968)]. For the point of
view of Havas and Goldberg in this controversy see Ref.
3. For the point of view of the author see papers I and II,
especially Appendix E of paper II.

It should be pointed out that this controversy does not
affect the final form of the equations of motion of parti-
cles but only the order at which certain terms appear in
the equations of motion. For example Havas and Gold-
berg obtain radiation reaction terms in the lowest order
in which interactions among particles appear while Kerr,
Carmeli, and the author insist that such terms should be
treated as of higher order and do not have physical mean-
ing in that order of approximation.

®Havas and Goldberg would presumably disagree with
the author on this assessment. See Ref. 3 for a discus-
sion of the procedures.

Using the Bhabha—Harish~Chandra procedure one intro-
duces infinite renormalization. Using the Riesz proce-
dure one represents particles by singular solutions finite
along the world line of a particle. Such singular solutions
are, in the author’s opinion, artificial constructs. Using
the author’s method particles are represented in the us-
ual way by singular solutions infinite along the world line
of a particle. No infinite renormalization is required us-
ing the author’s method.

"See Sec. V B and Appendix A of paper I.

8This is true even though in the immediate vicinity of
each particle the solutions to the field equations at each
order do not approximate solutions to the full field equa-
tions. See Sec. V B of paper I.

9There is, of course, always a certain ambiguity in the
higher orders of approximation due to the freedom one
has in choosing coordinate systems.

Ygee Ref. 5.

The equations of structure and motion we obtain are
identical to those obtained earlier by Kerr, Carmeli, and
others. If we neglect spin, the equations of motion are
just the usual geodesic equations, to second order in «,
for the motion of a test particle in a gravitational field.

123ee Ref. 6.

137 series of papers leading to the equations of structure
and motion of neutral particles to the sixth and eighth
order of approximation are being written by the author.

Y1 an inertial system the field Y(uv) to fourth order is

given by ryv(uy)>

LYY (o) =LY + LY +OTaYdw »
where

S Yo =41 € FLOEHn — Muw [I€F"P -

The field denoted by [417(’;‘,’,1,) in the above equations is
identical to the field 41¥(#,) of paper II. The field de-
noted by r41¢5}) is identical to the field 4)7v(},) of that
paper. The field 6 Yy does not affect the equations
of motion of particles to the fourth order and will not be
considered further here. For a further discussion of all
of this the reader is referred to papers IT and III.

15There is no loss in generality in assuming terms of
order five in k do not appear in Egs. (1.63) of paper II.
We shall thus replace O(x%) in those equations by O(x®).

6Indices will always be raised and lowered with the
Minkowski metric 7, . We shall use the abbreviation
y= 77”"1/,,0 in this paper.

1'The reason for this restriction is discussed in Sec.
V B of paper I.

18Arguments of the existence of such solutions are dis-
cussed in Sec. VB and Appendix A of paper I.

1%A1though we shall investigate ,1y¢kl) in the immediate
vicinity of the pth particle it is only assumed that 7 un)e

LY =CaYED *LOYED * L0k Taehu = N Laed?,
approximates solutions to Einstein’s field equations at

. “distances” sufficiently far from the world lines of par-

ticles. A knowledge of [ 43(k%) near the world line of
each particle in an isolated region of the continuum is
still useful, however, as it will allow us to determine

4 yd;{,)'" throughout the entire region. A knowledge of

[4] y(*,;{,)'" throughout the entire region is all that is needed
to determine the equations of motion of particles to the
fourth order of approximation. See Sec.V and Sec. VI of



5 MOTION OF PARTICLESIN. .. V. .. 1925

paper I. See also paper III and Ref. 14 of this paper. Appendix B of this paper.

20These solutions are easily verified. See Appendix A 3To see how these equations follow from (56) and (57)
of this paper. see Sec. V and Sec. VI of paper I. Also see paper III.

2 This is easy to verify. See Appendix A of this paper. %1n the case where the spin is zero, Eqs. (58)—(62) are

221t is easy to show that the field [437({1{,) in the neighbor- just the usual geodesic equations, to second order in «,
hood of the pth particle obtained here by means of the for the motion of a test particle in a gravitational field,
Lorentz-covariant procedure is equivalent, if we choose %In this Appendix we shall often suppress the super-
[41Y(uw) =0, to the field [4]7(;1111) of paper II Appendix B script (p) for ease of writing.

obtained by means of the noncovariant procedure. See



