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Solution of the Scalar Wave Equation in a Kerr Background by Separation of Variables*
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The effect of the Kerr gravitational field on wave phenomena is explored by examining the
inhomogeneous wave equation for a scalar massive field in a Kerr background geometry. The
equation is separated in Boyer-Lindquist coordinates. The angular functions are spheroidal
harmonics, and the radial equation is reduced to a one-dimensional Schrodinger equation
with an effective potential.

In recent years the physical importance of the Kerr geometry' for a rotating body in general relativity
has been increasingly recognized. Rather than describing only a restricted class of rotating bodies, this
geometry appears to be the universal limit reached by gravitational coQapse of any body with nonvanishing
a~ular momentum. 2 It is therefore important to understand how particles and waves behave in this geom-
etry. Particle geodesics in the Kerr geometry have been studied3 ~ by exploiting the conservation laws
which result from the Killing vectors and the Killing tensor which this geometry possesses. The analogous
result for waves is the separability of the scalar wave equation in the Kerr family of geometries, as dem-
onstrated by Carter. Our purpose here is to give the details of this separation explicitly, specialized to
the Kerr metric itself, which appears to be the physically most significant case.

%e adopt the Boyer-Lindquist' coordinates which express the Kerr geometry as

ds'= —dr'+ p'd8~+ (r'+a') sin'8+ am sin»8 d@'- a sin'8dgdt - 1—

Here M and J=+aM are the geometrized total Kerr mass and angular momentum, ' respectively, and

4 =r' -2Mr+ a', p2 = r 2+ a2 cos28.

The determinant of the metric tensor takes the simplified form

det(g„„)—= g = -p» sin'8.

The corresponding contravariant metric is

—p- g + + sin 20 g2g 1 g 2 r2+g2 2 g2sin2g (4)

The wave equation for a scalar field 4 of mass p, and source T,

Q4+ p,24 =4nT,

can now be written by using the familiar formula

( g)-1/2 gpv( g)I/28 8

sx& . sx"

The result is
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8 se a' 82e 4Mra 82 C (r'+a')' 8'@
,+p'r'4+ . —sine —+ . ,syst b, st' sin8 88 88 sin'8 sp'

+u sin28-
2 + p,2a2cos28@ =4pp2T.

Here we have grouped terms so as to display explicitly the known' separability of this equation.
To solve the homogeneous equation (T = 0) we make a separation ansats in which the Q and f dependence

is given by the usual eigenfunctions appropriate for an axially symmetric and stationary background geom-
etry,

C =Z(r)e(8)e'"&e ' '

By the usual argument we then find the separated homogeneous equations, with separation constant Q,
chosen so as to agree with Carter's' definition of the constant of the particle motion,

8 Bg +[a%' —4Mram&u+(r'+a')'~'+!J. 'r'b]ft =(Q+m'+~'a')& Jt,8+ Bf'

1 8 . 88 2 2 2 2 m
sin8 ~8 88 sin28

sin8 —+ a'(&o'+ p.') cos'8 — . , e = -(Q+ m')e.

(9a)

(9b)

Consider first Eq. (9b). It depends only on the Kerr parameter a and not on the mass M ««backgr«nd
geometry. But in the case M =0, ac0, the Kerr solution represents flat Minkowski space, and the Boyer-
Lindquist coordinates become the familiar oblate spheroidal coordinates. Equation (9b) is therefore the
same as the flat-space angular spheroidal equation. Its eigenfunctions have been studied to some extent. ' '
To COQQect with Qotatlon and Meixner-SchKrfke nol IQallzatlon conventloIl of Refs, 8 and 9 we define the
eigenvalue s

Q+m2=A. ,
RIld Ule elgenfunctlons

e= S~((-'Lc, cos8)

c2 a2(~2+ ~2)

The eigenfunctions form a discrete set and go over into Legendre polynomials in the limit e =0. The inte-
gers l and m have their standard ranges, but the eigenvalues A. , cannot be analytically expressed in terms
of I and m. Eigenvalues and eigenfunctions have been tabulated, and expansions for large and small c'/P
are known. As a consequence of the angular equation (9b) the eigenfunctions satisfy orthogonality relations.
If we define the spheroidal harmonics

2I+1(l -m)! '"
(13)

these relations take the standard form

Z, *g,id cos8 d =5)),6 (14)

The radial equation (9a) can be written as a one-dimensional equation with an effective potential by de-
fining a new radial function u and a new measure of radial distance x*,

u = (r'+a')'"R, dr*= (r' +)&a'dr.
This r* coordinate was chosen so that t sr* is the retarded (advanced) null Kerr coordinate. We then

find

-d u/dr*2+ (V-Z)u =0,

4Mram(o —a m'+ a [A. , + ((o'+ p, ') ]as(3r' -4Mr+a') 3S'r '
+Q (r'+ a')' (r 2 + a2)8 (r 2 + an)4

This potential depends nontrivially on the energy e' of the field. Appropriate boundary conditions for the
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solutions of (16) have been discussed by Matzner'0 for the Schwarzschild case (a =0). An analogous rea-
soning for the present case demands that only ingoing waves exist at the one-way membrane r *--~.

To treat the case when a source is present we expand the solution in terms of spheroidal harmonics and
harmonic time dependence,

C(r, 8, P, t)=(r2+a~) '~' P u, ,(r)ZP.'(8, P)e ' 'd&u'.
r 'm'

The basis functions Z, .e ' ' are orthogonal in the sense of the scalar product

(f,g) =— f*gd(cos8)dgdt.1
27r

(18)

To obtain the inhomogeneous radial wave equation which describes the case where a source is present, we
insert the expansion (18) into the wave equation (7) and take the scalar product with another basis function,

(Zpe ' ', 4p'( + p')4) =4m(Zpe '"', A( r'+a' cso'8)T)

or

d ~~rm2'"+(V E)u, -„= 2A(-r'+a') s"
~IZED*(8, $)e'"'(r'+a' co s28) Td(c os 8)d@ dt. (2o)

Thus the problem of finding the scalar field due to an arbitrary given source in a Kerr background is re-
duced to one inhomogeneous ordinary differential equation.

This separation and reduction of the scalar equation is of interest not only in its own right, but also for
the vector" and tensor (photon and graviton) wave equations. These equations are thought not to be separa-
ble in a Kerr background; however, in the limit of high orbital angular momentum (high l), the contribution
of the spin would be expected to be negligible, as it is known to be in the Schwarzschild background case.
Thus the high-l limit of Eq. (20) probably has more universal validity than the scalar case for which it was
derived.
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