
THIRD SERIES, VOL. 5, NO. 8 15 April 1972

Ginzburg-Landau Theory of Anisotropic Superfluid Neutron-Star Matter
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The Gor'kov procedure is used to obtain a generalized Ginzburg-Landau theory for aniso-
tropic superfluid neutron-star matter. The resulting equations are solved for the case of
superQuid flow past a plane boundary and the case of an isolated vortex line. The structure
of these solutions and their connection with rotating neutron stars is discussed.

I. INTRODUCTION

The theory of ultradense matter has received re-
newed impetus from the identification of pulsars as
rotating neutron stars. ' The density of matter in
the case of such a star may be as high as 10"
g/cm'. Thus a theory of neutron stars must in-
clude a theory of matter for all densities up to 10"
g/cm'. For densities less than about 4x 10"g/cm',
the ground state of matter consists of a lattice of
nuclei immersed in an electron sea.' At a density
slightly greater than 4x 10"g/cm', the neutrons
start to leave the nuclei and form a free neutron
gas in the space between the nuclei. ' This situation
persists as the density is increased until the nu-
clei dissolve at about nuclear matter density
3x10"g/cm'. For densities greater than this the
dense matter consists of a uniform fluid made up
of neutrons plus a few percent protons and elec-
trons. At even higher densities, 10" g/cm' or
more, various hyperons begin to appear and the
matter becomes a mixture of various species.

In the density range from 4x 10"g/cm' to 10"
g/cm3, a free~neutron gas or fluid is an important
constituent of dense matter and the study of its
properties is an important element in the theory of
neutron stars. The properties of normal, i.e.,
nonsuperfluid, neutron matter have .been studied
using the techniques of nuclear-matter theory' by
several authors. 4 Superfluid neutron matter has

been studied by Yang and Clark. ' They considered
the possibility of superfluidity of neutron matter
due to pairing correlations induced by the attrac-
tive interaction between two neutrons that is effec-
tive in the S, partial wave of relative motion. Such
pairing is of the conventional type studied by Bar-
deen, Cooper, and Schrieffer in their theory of
superconductivity. They found that this pairing was
a significant contributor to the energy of the neu-
tron fluid in the low-density regime. However,
due to the increasing importance of the short-range
repulsion in the 'S, partial wave, this effect de-
creased rapidly with increasing density. At about
the density of neutrons in normal nuclear matter,
the effects of pairing in the 'P, state of the two-
neutron system become comparable to those of the

So pairing, and a transition from an isotropic $0
superfluid to an anisotropic 'P, superfluid has been
predicted to occur at this density. ' This transition
can be qualitatively understood on the basis of the
neutron-neutron phase shifts. The 'S, and 'P2
phase shifts cross at a wave vector that is charac-
teristic of the Fermi momentum of neutron matter
with a density of about 1.5x10'4 g/cms. We there-
fore have the result that the ground state of neu-
tron matter will always be that of a superfluid and
that for densities less than that of nuclear matter,
this superfluid will be a conventional isotropic one,
while for higher densities it will be an anisotropic
superfluid.
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The ground-state and transition temperature of
anisotropic superfluid neutron matter have been
studied in detail by Hoffberg' and by Tamagaki. '
These works are a direct outgrowth of the work of
Balian and Werthamer" on isotropic superfluidity
due to 'P, pairing. The complexity of these two
studies attests to the many complications that
arise in an anisotropic superfluid in which the or-.
der parameter or gap is a second-rank tensor rath-
er than a scalar as is the case for isotropic super-
fluids.

In this paper we extend the study of anisotropic
superfluid neutron matter to nonuniform states at
temperatures just below the transition tempera-
ture. This is done by developing an appropriately
generalized Ginzburg-Landau theory" for the gap
tensor. This theory is developed by generalizing
Gor'kov's" derivation of the original Ginzburg-
Landau theory. The generalization involves two

major points. First the '$0 contact interaction used
by Gor'kov to obtain local equations for the thermal
Green functions is generalized to a P, contact in-
teraction. This introduces a derivative coupling in
the interaction. The second point involves the use
of a Cartesian tensor representation of the gap
tensor rather than a spherical tensor representa-
tion which might at first appear to be the more nat-
ural representation. These two points folded into
the Gor'kov procedure for deriving the Ginzburg-
Landau theory yield a nonlinear tensor field equa-
tion for the gap tensor. This equation is the ap-
propriate generalization of the Ginzburg-Landau
equation to anisotropic superfluid neutron matter.
This equation is then applied to situations in which
the system has a nonuniform state such as flow
past a plane boundary or a single vortex line" such
as may be found in a rotating neutron star.

An outline of the paper is as follows: In Sec. II
we discuss the model Hamiltonian of the system,
derive the Gor'kov equations'4 for the thermal
Green functions, and solve them for a uniform sys-
tem. Then, in Sec. III, we derive a Ginzburg-Lan-
dau equation for the gap tensor from the Gor'kov
equations and show that it reproduces the results
of Sec. D for the uniform system. In Sec.'IV we
consider two solutions of the Ginzburg-Landau
equations. W'e first consider superfluid flow past
a plane boundary and show that the properties of
the superfluid are the result of a very delicate
balance between effects produced by the flow and

effects produced by the boundary condition. The
next solution we study is the one representing an
isolated vortex line. We reduce such a solution to
radial equations and derive the major qualitative
features of the vortex from them. In the conclu-
sion, Sec. V, we discuss our results and indicate
what numerical and analytical work is yet to be

done on the problem of nonuniform states of aniso-
tropic superfluids.

II. MICROSCOPIC THEORY

—2g Tt8(r)T„&(r) d'r, (2.1)

where gt(ro) and )l)(ro) are the neutron field opera-
tors at position r and spin projection o =+&, and we
have included an external potential U(r) along with
the kinetic energy and chemical potential in the
first term In the .second term of (2.1), g is the
positive interaction strength and the T~s and T„s
are the Cartesian components of 'P, pair creation
and annihilation operators given by

Z t,(r) =y'(ro) t+,(Voo') q(ro''),

&„(r)=[&„()(goo')P(ro')]g(ro),

where

(2.2a)

(2.2b)

and

t„~(Woo') =
& [S„(oo')Vs+$8(oo')V„]

——,5„8S(oo') ~ V (2.3)

(2.4)

In E(ls. (2.1)-(2.3), we use the summation conven-
tion for repeated spinor indices, which are written
on line as arguments of functions, and repeated
tensor indices, which are written as subscripts.
We will follow these conventions throughout this
paper. The vector S in (2.4) is the vector opera-
tor that couples the two spine to the triplet state.
Its components may be easily obtained from vector
coupling coefficients. The tensor t in (2.3) is the
symmetric traceless tensor formed from the two
vectors S and V and therefore has the desired 'P,

Our microscopic theory of 'P, superfluid neutron
matter is based upon a simple model Hamiltonian
with a zero-range, attractive 'P, force between the
neutrons. We begin this section with a discussion
of this Hamiltonian. We then develop a theory for
the thermal Green's functions of this system using
the usual Gor'kov factorization'~ to truncate the
hierarchy of equations. This theory is then applied
to a translationally invariant system for which the
physical significance of the theory is explicitly dis-
played.

We consider a system of neutrons interacting
through a zero-range 'P, force which can be de-
scribed by the Hamiltonian

t 2

B=J Il (ftr) — -fl+U(r)) (lr()F2m
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transformation properties. The interaction in
(2.1) is therefore an attractive, zero-range 'P,
force which is written in terms of the Cartesian
rather than spherical components of the tensor T.

In order to derive equations for the thermal
Green functions generated by the Hamiltonian H,
we introduce the Heisenberg field operators for

imaginary tlDle defined by

}I(ro 7) = e'"]I}(ro)e '" (2.5a)

@(~ro ~} ~ Ill }I)1'(~ro)'e }'fl-

These operators satisfy the equations of motion

(«r)=]
2 +p U(F))-e(Firv)+g[[), (v«W«(rs'v)]r„(rv}+ ', W(rv'v}-[),",(ten')r„, (r~)]]8 g (2' (2.6a)

p2
(«~) =] — q+))-(r)) e(Fir~) )[i.,(re-)[t.,(%v le(r~'~)]+ l [&.,(&«'))', (~~)]e( ~'~~)], (2 8&)

where T„8(r7) and T~s(rr) are given by (2.2) with }I replacing )][) and }I replacing g~. - These equations of mo-
tion may now be used to derive equations for the thermal Green's functions.

The one-particle thermal Green's function is defined by

g(r(TT} r 0' 'T') —= —(T~[4'(roT)%'(r o T )]))

where T, is the usual time-ordering operator on the imaginary time axis, and the angulax' brackets indi-
cate an ensemble average in the grand canonical ensemble. Using (2.V), we obtain the equation of motion
for 8,

— (ro7; r'o'v') =-5(v, o')5(r —r')5(v —7')+ +p —U(r)
~
g(ra 7'; r'o'7')

-g(T,f( [f„*8(Vos")e(ro"v)]T„B(r7) + 2 }I(ro"7)[t„8(%o")T„~(r7)])%(r'o'~')]) . (2.8)

We truncate the hierarchy of Green's-function equations by factoring the last term in (2.8). In so doing, we
ignore the Hartree-Pock contributions to the single-pax'ticle energies. Those contributions may be taken
into account by using an effective-mass approximation for the kinetic energy. These approximations then
lead to the equation for 8,

~

——+ +[}.-U(r)
~
g(rav; r'o'7') -4(roo")p(ro"v; r'o'7') =6(o, o')5(r -r')5(~- r'),

BT 2M j (2.9)

h(roo") = 4 8(r)])„*8(%o")+ & [tgs(%o")4„8(r)] (2.10)

&.8(r) -g(&.8(r)}.
In (2.10), the function F' is defined by

9(ro 7; r'cr'r') =-(1',[@(roy)q (r'v'r')]) .
The equation of motion for 8' derived from (2.V} is

(2.11)

(2.12)

(ro7; r'v—'v') = - —p, +U(r) ~F(ro~; r'o'v')
8j 2isl j

-QT,[(T„8(rv)[t„[}(%o")0(ro"v)]+ & [t„s(%o")T~[}(r7)]@(ro"7)]%(r'o' v')j) . (2.13)

Using the same approximations to evaluate the last term of (2.13) that were used in obtaining (2.9), we ob-
tain the second equation for p and g,

(2.14)+ +p -U(r) 8(ro'7; r 6 T ) -+ (r&o ) g(ro' 7'; r (7 7') =0.
8j 2@i

Note from (2.10) that 4 is a differential operator and not just a number as in the original Gor'kov theory. .

Equations (2.9}and (2.14) are completed by writing (2.11) in terms of 9. This yields the relation
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A„8(r) = -g [t s(Va'o)$*(ra 7; r 'o'v)]; =, . (2.15)

Equations (2.9), (2.14), and (2.15) are the Gor'kov equations for the 3P, superfluid neutron system. As
usual, we expand the functions 8 and P in a Fourier series in the variable ~-7,

g(ra 7; r'v'v') = Tg 8(rv, r'v'; (o„)e '"~ ' ",
(2.16)

P(rvr r'v'lv') =TPP(rv r'v'&o )e '~ &' ' )

where we are using energy units for the temperature T and &o„=(2n+1)mT. We then have the equations

and

[i&o + V2/2m+ p, —U(r)] 8 (rv, r 'v'; &o) —b (rvv")F(rv ",r'a'; &o) = 5(v, v') 5(r —r'),

[-i&@+V'/2m+g - U(r)] 0(rv, r'v'; +) —t *(rvv") g(rv", r'o'; v) =0,

A 8(r) = -gTQ[t e(Vv'v)7*(rv, r'v'; v)]; -, .

(2.17)

(2.18)

(2.19)

These equations are our starting point for obtaining Ginzburg-Landau equations for b,„s(r) in Sec. III. How-
ever, before we derive the Ginzburg-Landau equations, we will discuss the solutions of (2.17), (2.18), and
(2.19) for a uniform system.

For a uniform system, we have U(r) =0 and b„8(r) independent of r. The functions 8 and F then depend
upon the variable r —r and we can Fourier transform with respect to this variable,

g(rv r'v' u&) = d A 8(vv'kar)e'"1 7 (2 )s

P(rv r'o' &o) = I d kg(vv'k(o)e'~'&' "'.
(2v)3

We then have the equations

(i&a —e„)8(ov'; k&o) —i A(kvv )F"(v v ";k'&g) = 5(v, v'),

(-iv —e~)V(vv'; k&a) —ib, *(kvv") 8(v "a'; k&o) =0,

where

(2.20)

(2.21)

&(kvv") = &„et„*s(kvv"),2m (2.22)

and

t„*s(ko'o") = 2[S„(vv")k6+Ss(vv")0„]—~5 eS(vv "}k. (2.23}

(2.24}

(2.25)

(2.26)

We can rewrite Eqs. (2.21) as

8'(vv'; ku&) = i &*(kvv, )Q (v,v''; ka&)/( i&a& —e~), -
((u'+ e,') g(a v '; k&u) + &(kvv, )&*(kv,v, )g (v,v'; k(o) = -5(o, o')(i (u + e~) .

In solving (2.24), we follow Ballan and Werthamer" and require that the gap &(kvv') be a unitary matrix
in spin space. This requirement has been shown to be equivalent to the requirement of time-reversal in-
variance on the trial density matrix. ' We therefore write

4(kvv, )e *(kov') = D (k) 5('o, o') .
If we perform the indicated matrix multiplications in (2.25) using (2.22) and (2.23), we find that (2.25) can
be written as Ax A*=0, where the components of the vector X are defined by A„=&„ek8, This means that
the real and imaginary parts of the vector A must be collinear and, furthermore, this must be true for all
vectors k. Thus, the tensor b, 6 must be real up to an arbitrary over-all phase factor. We can therefore
satisfy (2.25) by requiring 4„8 to be real and then

D (k)'= pk„& e&eqkq .
Returning to Eqs. (2.24), we find that those solutions that satisfy (2.25) can be written as
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8(mr'; k(o) =—, , ",,-) 5(o, o'),
~ +6~ +D (k

f4*(koo ')
&(&& r'k&) =

2 2 ~2(g) ~
QP +6y +D

and the gap equation (2.19) becomes

gz' ~ ~, t„s(k(r'o)tys(k(r(r')4ys
(2v)'~ „(o„'+e,'+D'(k)

where we have used (2.20) and (2.2V). The spin sums can be done using (2.23) and

S„(o'o)8$(mr') = 6„8,
yielding the result

~„,= (2 ), Q Jl cPk [,'[k.(-~,
y

+ ~„,)k, +k,(~„,+~„.)k„]—-', l„,k, ~,,k,}/[(u„'+E'(k)],

(2.2V)

(2.28)

(2.29)

(2.30)

where we have discarded terms on the right-hand side which vanish due to the vanishing of the trace of b„a.
We have also defined E(k) by

(2.31)

We can now perform the sum on n in (2.30) to get a standard Bardeen, Cooper, and Schrieffer (BCS) type
of integral equation for the gap tensor,

t ~[z(k)g2T],
2 2m' (2.32)

(2.33)

where d, is a x'eal and positive constant which is
determined by the equation

with

g ( „, E(k)&i k +3k,'
12(2w)' q 27

& E(R)
(2.34)

(2.35)

This solution with its characteristic 1+3cos'8 an-
gular dependence of the energy gap has been re-
ported earliex. ' It has been studied in detail by
Hoffberg' and has been shown by him to be the low-
est-energy solution at zero temperature. In the
second solution the Qonvanishlng compDnents of

In this equation 4„8 is real and manifestly sym
metric and traceless.

The gap tensor is a real symmetric traceless
tensor. It may be specified by giving the orienta-
tion of its principal axes and its two independent
diagonal elements in its principal-axis coordinate
system. Fox a uniform system which is rotation-
ally invariant. there is no external field that would
specify the orientation of the principal-axis coordi-
nate system. Therefore, this orientation is arbi-
trary. However, within this arbitrary coordinate
system, we can find two simple solutions of (2.32).
For the first solution, we have the nonvanishing
components of 4 given by

the gap tensor are given by

(2.38)

where d, is a real and positive constant which is
determined by the equation

(2.3V)

with

(2.38)

This solution has a characteristic sin28 angular de-
pendence of the energy gap. Note that these two
solutions both have the same transition tempera-
ture which ls given by

(2.39)

4~8=
(

~~ d kf~s(kO'(7 ){s /gal~~) . (2.40)

This degeneracy in the neighborhood of the transi-
tion temperature will be shown to be a source of
problems when we consider the solutions of the
Ginzburg-Landau equations in the following sec-
tions.

The physical significance of the gap tensor may
be easily obtained by rewriting (2.11) in terms of
momentum states for the translationally invariant
system that we have just considered. This leads to
the expression



Thus, 4 8 is just the amplitude for finding the
pairs condensed into a 'P~ bound state whose inter-
nal, magnetic quantum numbers are given in our
Cartesian representation by the indices FIp. We
may use this interpretation to give a physical pic-
ture of the two solutions of the preceding para-
graph. The first solution (2.88) represents a con-'
densation of the pairs into the state with M=0 and
the second solution represents a condensation of
the pairs into the two states with )M) =2. These
are the two natural possibilities that are consistent
with the restrictions that we have placed upon the
gap. For, we have required that the state be in-
variant under time reversal. This requires that
states with magnetic quantum numbers s)M ( must
be populated with equal likelihood. We have also
required that the gap tensor be diagonal. This sec-
ond requirement excludes the possibility of popu-
lating states with )M( =1. Therefore, the two re-
maining possibilities M=O and (M) =2 are indeed
the two solutions to (2.32). The solution which
leads to a condensation into the state with M=0 is
energetically favorable at zero temperature be-
cause the condensation is into one magnetic sub-
state rather than two. This implies a higher level
of cohexence in the first solution than there is in
the second.

III. Pq GINZBURG-LANDAU EQUATIONS

The basic equations for a a, superfluid ~eu~ro~
system are given by (2.1V)-(2.1S) and (2.10). For

[ia&+)F j2FFF+g -U(r)]Q, (r(F, r'(F'~)

= 5((F, (F')5(r - r') .

(3 1)

In order to simplify some of the expressions that
follow, we will write the solution of (8.1) as

Q, (r(F, r'(F'; &o) = 5(o', &F') Q,(r, r'; &o) . (8.2)

Equations (2.1V) and (2.18) can then be written as

spatially nonhomogeneous systems, these equations
are intractable. We therefore follow Gor'kov and
confine our attention to temperatures near the
transition temperature where ~ 8 may be treated
as a perturbation and a Ginzburg-Landau type of
differential equation for the gap tensor may be de-
rived. This gives a much more transparent and,
physical picture of the condensation in systems
where the gap depends upon position. Further-
more, the qualitative features of the gap obtained
from such a theory shouM remain valid at lower
temperatures where 4 8 cannot be treated as a
perturbation. We complete this section by writing
down a variational principle for the Ginzburg-
Landau equations which may be used to develop
approximations for the gap tensor.

Following Gor'kov, we convert Eqs. (2.1V) and
(2.18) into integral equations using the thermal
Green's function for the normal system 8, defined
by

Q (ro, r 'o'; (d) = 5(o, o') Qo(r, r '; (d) +J) d'r, Q, (r, r„(d)~(r(F(F,)F(r~(F„f'FF",&u) (8.3)

P(r(F, r'o'; (()) =Jt d'F", Q,(r, r„~)a*(r,(F(F,)Q(r, (F„r'a''; &o) . (3.4)

We now substitute. (8.3}into (3.4) and treat a as a small perturbation. Rerating the resulting integral equa-
tion for 8' once yields the expression

p(r(F, r'(F'; a&) =
JI

dsF", Qo(r, r„-(())a*(r,mF') Qo(r„r'; ar)

+Jt d'r, d'F ~d'r, Q,(r, r, ; -&())S*(r o(F,)Q0(r„r„ur)b (ri(F,(F~) Q,(r„r„-ar)b, *(rs(FIo')Q,(r„r'; (L)) .
(8.5)

This relates f to the gap operator b, . We may now substitute (8.5) into (2.19) to obtain the equation for the
gap tensor:

rr, r(F) =-r(FP j]( ('r, [) r( 0rir rr)(((FF„rr)]rr(F'rrr'r')F(F, ;F;-rd),



. . .ANISOTROPIC SUPERFLUID NEUTRON-STAR MATTER

where the gap operator & is related to the gap tensor & by (2.10).
In evaluating the terms in (8.6), we use two approximations. We first use the go that is appropriate for

the UMform system» j..e.»

8 {r r'o))= t d'k 9 (k (d)e'" ' '"
0 «) (2 )o 0»» (3 7)

9o(k, (o}«=(i' -8„) '.
For temperatures near T„ the spatial range of bo is 0.2xkuI, /AT, -10 "cm for typical neutron-star

material. This leads us to our second approximation which is the assumption that 4 8 changes slowly com-
pared to 80. This should be a good approximation for neutron-star matter for which the average interpar-
ticle spacing is about 2x10 "cm at a density of 10'~ gjcm'.

We now apply these approximations to the linear term on the right-hand side of (8.6). The spin sums can
be simplified by using

1
»~[t)~«8« = o(5~~«Des«+ 5~8«58„«) - o 5~86~«o«

and %'ritl. ng

8
f„a(Voo') = »„~.&.8 .(o(y'), etc.

EX

The Unear term in (3.6) then becomes

(3.8)

L,„8(r;(u) —=jt d'I, [])„8(v(y'(I)go(r, r„)og),(r,(y(y') g,(r„r; -(o}
P'

=«'«„««'««„«8„(«'«)s& (««')f rpr, '
(F, ra«)k„( )««' (r„r«)«-,'a ««(«)g(r„«ru)

(8.9}
where we have used (2.10) for n, , (3.6) for ])~s, and are using the notation

86y [](r )
y6, h' r f $p

(3.10)

Tile spin sum III (3.9) cRn be dolls usIng (2.29) RIld the secolld t81'111 111 the lll'tegrRl cRII be siIIlpllfied by Rll
integration by parts yielding

88o - . SBo SQQ
IIo([](rp G)) »Neo(«8«» yp y ]]I cP1 I (I ) I I) (()) (rI r; -(o) — (r, r„&o)go(r„r; -(()) rh, (](r, )8+16~ 8~8~8+1s»

(3.11)
Now, assuming that Ky(; changes slowly compared to g„we make the expansion

a„,(r,)=ay(;+a, „,„(~, r)„+by, -„„(r,-r)„(r, r)„, - (3.12)
where we have suppressed the argument r of Ay(; on the right-hand side and substitute it into (3.11). The
Recoil(i 't81'I11 on the I'IglIt-11Rnd sl(ie of (3.12) gIves 110 con'tI'Ill't1011 to (8.11) due to the spllel'icR1 symmetry
of go. The remaining two terms in (3.12) lead to the result

«(; re) =—
(-(& ),

—
jl d««'o («, «)g (I, -~)) ««. (««(& ), f d'«[)« I g ()««)][)«o g (I -t«)])a

—
30(2,)o d &lk'&a Bo{»o)}lj.k'&o Qo'(»-&)~- 2(2„)o d ~So(k, o))g,(k, -o))l

2"(ice[ []] +i'[]] nO o~~SiIOo ]v-) ~

We now turn to the evaluation of the cubic term in (8.6). In this term„we will neglect the spatial varia-
bon of i) „z and therefore we can neglect the seco~d term in {2.10). We then have
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C„(r;ao) =-
Jt

d'p, d'r, d'r, jt„(Vo'cr)g, (r, r„~)]a(r,oa,)

x g,(r„r„.-(o)a (r,o,o,)g,(r,„r„a))a(r,o,o') g,(r„r; -(u)

R~sltpt 9 $ tent fypyt pt 0 ppptpp S~l(v o)S t(0 op)SQI(ohio )pSpt((T op)

x ~y~~)*p~vp &~&'&2&'&s
' » ra~ +

The tensor contractions in this expression can be simplified using T' 4„=4 ~ .. The trace over the
spin variables can be done using the relation

S~SI = p(5~8I+ i e~svoy),
' (3.15)

where I is the unit matrix and the 0' are the Pauli matrices. This yields the result for the spin trace

tr[S„iSyiSgB„*i}= p(5 ivi5qi„i —5„.gi5yi„. +5~„t&y~g~) .
The spatial integral can be done in momentum space with the results

(3.16)

d'k ketkgikp. &p~ [Qp(k, a))'Qo(k, -~)](2m)',

Combining these results, we have

3 ) ~'&~'ho(k ~)'~0(k -~)I]'(~s s ~p p
+ ~a p ~s p +68 p ~up }

CN8{rj M) +~ggt8I+yIQ I+(l p I+pl /(p'5~tyt5)peal 5~tr 5vtpt +
5~tgt 5yt) I)'

x(5p, g, 5p,p, +hp, p, 5g~p, +58,p, 6g, p, ) p, d k[go(k ~)'go{k ~)] k3 i~~24
Performing the remaining tensox contractions in this expression yields

C p(r; a)) =
( )3)t d kk [80{k,(g}'go(k, -(g)] {2h ph*~h ~ -h„*p6 ~b, ~+24„L ~4~ —36 g ~&*„g„),

(3.1'l)
This completes the evaluation of C 8.

We now combine (3.6), (3.13), and (3.1V) to obtain the equation

&&ay -&&~+a, p p &a(+ep, a-p++ap, ap 36aa+p-, p }
+C{26 84*~6 ~ -8 +86 ~h ~+28„b*~hFp- S6 84 ~h+~~4~ ) =0,

(8.18}
where the constants are given by

X=1- g, g d'aa'8, {k,,~)8,(k,-~),
'n

dsn[k 0, 8,(k, ~)][k Y, g,(k, —~)],

(8.19)

(3.2O}

Bp =B~ —
( )~ Q Jt d 0 8@((kyle)80(kq -(d) q

(8.21)

C =
3O{2 )3+ &'~&'[80(k, ~)'9o(k, -~}]'~

This equation is the desired Ginzburg-Landau equation for the gap tensor.
The constants may be evaluated using (3.19)-(8.22) and standard techniques with the results

(3.22)
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A. = (T -T,)j2r„
'I t(3) ~~)~

' 1

(3.23)

C = m Bq ——
q (MeV fm)

where g(3) is the g function and we have used (3.19) to estimate g with the result

(3.24)g= 3 =40 MeVfms.
mk~3

The numerical estimates in (3.23) and (3.24) are for a density of 6x10'4 g/cms. In what follows, we will
ignore the small difference between B, and B2 and we will use B to denote their common value. %'ith this
approximation, g is a factor common to A, B, and C and the estimate (3.24) does not affect the equations.

In order to develop approximate solutions of Eqs. (3.18) we will now write down a variational principle
for the gap tensor. Following Ginzburg and Landau, we will identify this variational principle with the one
for the free-energy difference between the normal and superfluid state. Taking advantage of the symmetry
of 4„8 and its vanishing trace, we obtain the following expression for the free-energy difference:

d y [Ab,„*~6 8+B(6„*8„6„8„+26*„„6„„„)+~2C[2(b,„*~A„8)~-( 6„~6„8)+26„*86~h*~b~„]},
(3.25)

where we have ignored some surface terms. These surface terms imply the boundary conditions

(3.26)

on the surface, where n is the normal to the surface. These conditions are satisfied if ~ ~
=0 or ~ z „=0

on the surface. However, they must be checked for each particular geometry. The free-energy difference
b6: is to be minimized subject to the boundary conditions (3.26). When &„8 satisfies Eqs. (3.1S), the value
of'~p is given by

~I d'~[2(~ 8~ 8)'-I & 8~ gl'+2&'g&gy~ys~s l.
2g g

(3.2'I)

Otherwise, the full expression (3.25) must be used.
For a uniform system, we know the form of b„z which is given by (2.33) or (2.36). We may use (3.18) to

obtain the values of d, and d, for these two solutions with the results

(3.2S)

The free-energy densities for these two solutions are the same and are given by

&f=- =- 1-—1.5X10 MeVfmA T -3
4gC T,

Note that not only do these two solutions have the same transition temperature, but they are also degener-
ate to this order in the Ginzburg-Landau expansion. In Sec. IV we turn to solutions of the equations for
nonuniform systems.

IV. SOLUTIONS OF THE GINZBURG-LANDAU EQUATIONS

We now turn to the study of the explicit structure of two solutions of Eqs. (3.18). The first solution de-
scribes flow of the superfluid past a plane boundary and is included mainly to exhibit the structure of the
equations. The second solution describes an isolated vortex line in the superfluid and is applicable to the
theory of rotating neutron stars.

A, Flow Past a Plane Boundary

Vie-consider the situation of superfluid flow in the y direction past a boundary formed by the yz plane.
The gap tensor then depends upon y through a phase describing the flow and on x due to the boundary con-
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dition that the gap vanish at x=0. Therefore, the gap has the form

0 n(t) =()OO 0 n(i)n'"", (4.1)

where the first factor is taken out for dimensional reasons [see (3.28)], D„s is a dimensionless tensor to
be determined, t and q are dimensionless distances in the x and y directions given by

(4.2)

and I(, is the dimensionless wave vectox describing the flow,

hl = k'.

Substituting (4.1) into (3.18) yields the equation

Dot(&) + 5(ol(Dsl + $«D» ) +5sl(Do(I + $«D0(1 )+1K(D81'+ I KD82)5(op+ 'L«58g(Do(I + IKD(02}

(4 3)

s ~8(D» + '"D» "D»)+(I-K )Dna Im(2D-asD*~D ( -DriaD (D (+2Dn D*(D(8- 06aeD IDs«D) I} 0-
(4.4)

for the tensor D. In (4.4), the primes refer to differentiation with respect to ]. Study of this equation shows
that the tensor D can be written as

fl 'L Kg

D(])= i«g f,
L, o o

where f„ f„and g

-f -~)
are real functions of g. Substituting (4.5) into (4.4), we get the equations

(4.5)

Vfl"-2«'g'+3(1 —«')fl+2«'fm —(fl'+flfm+fs')fl —~(Ifl —2fm)K g'=0

3f()"—2f1"-2«g'+(3-7« )fm-(f, +f f, +f, )fm-3(Vfm-2f )K g =0,
2g" + f, '+f '+(1-2« )g--', (2f,'+ f,f +2f,'+Kg'}g=0,

(4.6a)

(4.6b)

(4.6c)

Vf, +3f, -(f,'+f,f,+f,')f, =O,

3fm" -2fl"+3f«-(fI'+ fIfm+fs')fa =0.
(4.V)

There are two solutions to these equations corre-
sponding to the two solutions for the uniform sys-
tem given by (3.28). They are f, = -2f~ and

(-0 0

0&'t(() = 0 i 0 tnnn( ')'&'(

(0 o i
(4 8)

ID 0 0'

0&"(t)= 0 i 0 «Io tnnn

I&0 o tf- (4.9}

For large g, these two solutions approach those
given by (3.28}for the uniform system with the one

where in the last equation, we have factored out an
over-all factor of a.

We first consider the solutions of (4.6) when
there is no flow and « =0. Equations (4.6a) and
(4.6b) then become

difference that the role of the x axis has been inter-
changed with that of the z axis. These two solu-
tions have the following properties: (1) They' are
degenerate for the uniform system to this order in
the Ginsburg-Landau expansion. (2) Solution one
has lower bulk free energy when higher-order
terms in the expansion are kept, i.e., at lower
temperatures. (3) Solution two has the shorter co-
herence length and therefore lower surface energy.
As a consequence of these properties, we see that
surface effects will make the superfluid transition
a two-stage transition as the;temperature is low-
ered through E,. The first stage will be to solution
two which has a lower surface energy, but the
same bulk energy as solution one at the transition
temperature. The second stage will be from solu-
tion two to one as the contribution to the bulk ener-
gy of the higher-order terms in the Ginzburg-Lan-
dau expansion dominates the surface energy . . This
should give an interesting structure to the fluc-
tuations in the neighborhood of T = T,.

Tile o'tllel' 11II11'tlllg case of Eqs. (4.6} is fol' ( && 1
and «a 0. In this limit, we assume that f, and f,
approach constants a and b and g-0. %'e then have
the equations for a and 5
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[3- 3Z2- (222+ ah +b )]a+ 2222' =0,
[3 —V22' - (22'+ah+ b')]t2 =0. (4.10)

These equations have two soluti. ons which yieM the
results

will now discuss.
For an isolated vortex, we seek a solution of the

q t' 'th yl d
'

1 y tythth
phase of mq, where m measures the circulation
about the vortex 1ine. The considerations of the
previous subsection suggest the form

D't~&-[3(l-z )]'" 0 0

(oo

(4.11) & 8(r)= 12~ & (y)&8s(q)& s(p)e"',jmqt

(4.13)

where the first factor is taken out for dimensional
reasons, the g's are rotation matrices which ro-
tate the tensor D from axes oriented along the p,
q, and g directions to the fixed ryan directions,

Comparing (4.8) and (4.9) with (4.11) and (4.12), we
see that the boundary condition at g =~ changes
discontinuously at 22=0. The tensors (4.8) and (4.9)
have their preferred direction along the x axis
which is normal to the boundary, while the ten-
sors (4.11) and (4.12) have their preferred direc-
tion along the y axis which is the direction of flow.
This competition between flow effects and boundary
effects is an important feature of the structure of
a vortex line which we now turn to.

8. Isolated Vortex Line

From the preceding section, we see that in gen-
eral the gap tensor is not real or diagonal in any
coordinate system for a situation in which there is
flow. %e can, however, describe the gap tensor
in a local coordinate system in which the real part
is diagonal and the off-diagonal part is purely
imaginary. The orientation of this local coordinate
system may depend upon position, and this is the
case for an isolated vortex whose properties we

cos+

R(cp) = sincp

(o

-sing 0

cosp 0

o ir
(4.14)

f, smo 0

D(p) = 2mg f2 0

f f.r--(4.16)

where f„ f„and g are real functions satisfying
the equations

D is the gap tensor described in its natural frame
of reference with axes along the p, y, and g direc-
tions, p is the dimensionless distance from the
vortex lane,

p = [(I&l l&)(~'+ y')]"',
and the final factor is the phase factor specifying
the circulation about the vortex. Substitution of
(4.13) into (3.18) leads to the form

m'+4 2'm'+6

g-(f '+f f +f ')f =(Vf -2f.)m'g'=0

(4.1Va)

3f,"—2f2" + -(2f2'+6f2' -2m'g')+ —
2 f2+ 3 —

2
12 VBz + 12

26m, g-(f, '+f,f, +f,')f. - 2(Vf, -2f,)m'g'=o,

(4.1Vb)

2g" + (f2 +f2 +2g )+ 2f2- 2fm+ 1- I g o(2f2 +f2fs+2f2™g)g=0~'
p

(4.1Vc)

where we have factored out an over-all factor of m in (4.1Vc). These equations determine the behavior of
the "radial" tensor D. The free energy per unit length of vortex relative to that ot the uniform system is
given by (3.2V) which can be written as
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rial�&

P dP[9 —(fi'+fifa+fa')' —2~'(2fi'+fifa+2fa')g' —~'g']
0

(4.18)

In order to gain some familiarity with Eqs. (4.1V), we first consider the special case with m=0. The
equations then become

»i"+ -(5fi'-«a')+3 '-—'I fi+ —.f.—(fi'+ fif. +fa')fi =o4) 12

p p j p1, , 123fa" —2fi" + —(2fi'+5fa')+ a fi+ ——
a fa —(fi'+fifa+fa')fa=oi

p p p

(4.19a)

(4.19b)

and g=0. Clearly, one solution of these equations is f, = f, =1. This corresponds to the first solution for
the uniform system given by (2.83). The second solution for the uniform system given by (2.36) is not al-
lowed as a solution of (4.19) because the resulting gap tensor is not independent of rp.

For nonuniform solutions of (4.19), we investigate the behavior of the solutions for small and large p.
For small p, we have, in addition to the uniform solution, a solution that behaves like

fi ~P ~ fa 8iip ~ P

where a is a constant that must be determined by numerical integration of Eqs. (4.19). For large p, there
are two solutions in addition to the uniform solution. They are given by

fi&'~-1-4v3/pa, fat'&-1+4&8/pa, p-~, (4.21)

f["-~8(1-4/p'), f,"'- -~8(1-4/p'), (4.22)

The first of these two solutions is asymptotically the solution (2.38) of the uniform system. The second be-
comes asymptotically the solution (2.86) of the uniform system in the local coordinate system formed by
the p, y, and z directions. However, it does not become a unifox m solution itself.

The free energy of a vortex in a neutral superfluid characteristically diverges like lnp, „ in (4.18). How-

ever, due to a cancellation of terms, the first solution (4.21) does not have a logarithmically divergent free
energy and, even though it approaches the uniform limit slowly like 1/p, it will have a finite free energy
in an infinite system. The second solution does have a logarithmically divergent free enex gy which is given
by

2mlAlB T1np,„=110 1 ——lnp, „MeV/fm .
C

(4.28)

The vortices with (m( =1 are the physically interesting ones, and we shall now study this case in some de-
tail. For m=1, Eqs. (4.1V) become

Vfi" + —(5fi'-4fa'-2g')+ a (-15fi+14fa+22g)+[3 —(fi'+fifa+fa')]fi —a(Vfi-2fa)g'=0 (4.24a)

3fa"-2fi"+-(2fi'+5fa'-2g')+ —a(12fi —19fa-26')+[8 —(fi'+fifa+fa')]fa-~a(Vfa —2fi)Z'=0,

2g" + —(f, '+ f, '+2g')+ —,(3f, —5f, -10g) +[1--',(2f,'+ f,f, +2faa+ga)]g=0.
p p

(4.24c)

We can get a fairly clear picture of the solutions of these equations by studying their behavior for p -0 and

p ~00
For p -0, Eqs. (4.24) have solutions that vanish like p and p . This is a special case of the more general

situation for Eqs. (4.1V) which has solutions which vanish like p
"' and p "".For nz = 1, the solution that

vanishes like p is doubly degenerate. Two linearly independent solutions are

fi=fa =+0 ~
(4.25a)
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(4.25b)

The precise form of the solution and the numerical value of the constant g can only be determined by nu-
merical integration of Eqs. (4.24). We have chosen the solutions (4.25) for their resemblance to the solu-
tions of the uniform system. Thus (4.25a} corresponds to (2.33) and (4.25b) to (2.36).

F01 p o, 'Ve have R much more complikated s1tuRtlon RQd we must cRx'efully treRt the noQllneRx' terms
in (4.25) in order to get the asymptotic behavior of the solutions. The method of expansion is as follows:
The expansions

f, =a+ a,/p'+ u, /p', f, = b+ b,/p'+ b,/p', g = c,/p' (4.26)

are first substituted into Eqs. {4.24) and the coefficients of the various powers of 1/p' are equated to zero.
This yields the system of equations for the coefficients:

g +ah+5 =3,

a(2u b+)a~ a+(a+2b)b, = -15g+14b,

b(2a+b)a, +b{a+2b)b, =12u -19b,
a(2a+ b)a, +a(a+2b)b, =1Va, +22b, +26c, - (3a+ b)a,' 2(a+ b-)a, b, -ab, '--3(Va -2b)c,',
b(2a+b)a, +b{a+2b)b~=-4a, -11b, -22c, -ba,3-2(a b+)a, b~ —(a+3b)b, —~(Vb-2u)c, ,

c, = {9a—15b)/(a'+ b') .

(4.2Va)

{4.2Vb)

(4.2Vc)

(4.2Vd)

(4.2Ve)

(4.2Vf)

The lowest-order equation (4.2Va} does not deter-
mine the leading terms a and b in f, and f,. How-
ever, the fix'et-order equations for a~ and b„
(4.2Vb) and (4.2Vc), are singular and the require-
ment that a, and b, be Oonzero imposes an addition-
al requirement on a and 5 which then allows their
determination. The two equations for a and 5 are

(4.28)

For large p this becomes

[1Vv {43)'"]/p, {4.33)

The free-energy density to be used in (4.19) is

g(AI B
« ~ pf 9- A(' +f.f.+f:)'

gC
-2(2fi'+fgf 2+2fa') g' g] -(4 3. 2}

The solutions to these equations are

a=[2+5{43) '"]'",
b =+ [2+8(43}-'~']'~'.

(4.29)

where the signs go with those in (4.29). Thus, both
solutions JlRve logax'1tllm1cRlly d1vex'gent fl ee enex'-
gies of the form

200 1 ——lry, „MeV fm

In order to determine the first-order corrections,
@re need to impose the requirement that the singu-
lar equations for a, and b„(4.2Vd) and (4.2Ve),
have a solution. The resulting algebraic equations
uniquely determine a and b once the values of a
and b are chosen. Thus, there are two uniquely
determined asymptotic solutions to Eqs. (4.24).
For the fix'st solution, @re have

f, —1.112 —85.65/p,

f2 0.8832 + 91.12/p2,

g -1.604/pn,

Rnd fox' the second solution

f,—1.662 —8.051/p~,

fn -1.794+ 9.238/p2,

g- V.000/p~.

440, l - —lory, „M8V fm.r&

However, the coefflclent of the d1vergent term 1s
smaller for the first solution (4.30) than it is for
the second one (4.31). Therefore, we conclude that
the solution with the upper signs in (4.30) describes
the vortex with lovrer free energy.

The two asymptotic solutions to the radial equa-
tions discussed in the preceding paragxaph exhib-,
it a number of interesting properties. First,
neither of the solutions approach a solution of the
uniform system. This is a manifestation of the
degenex'acy in the solutions for the uniform sys-
tem. For the vortex line, me find that the centrif-
ugal barrier splits this degeneracy, and the effects
of this splitting persist out to p =~. On the other
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hand, the solutions almost make it to those of the
uniform system. That is, the first solution (4.30)
almost makes it to the first solution of the uniform
system for which f, = f, =1, and the second solu-
tion (4.31) almost makes it to the second solution
of the uniform system in the local p, cp, z frame,
for which f, =-f, =&3. This effect is a manifes-
tation of the competition between flow properties
and boundary-condition properties that was exhib-
ited in the preceding section. From the second
terms in the asymptotic expansion, we see that the
first solution has a longer correlation length than
the second which is in accord with our results on
the plane boundary given in the preceding section.
From these qualitative considerations one might
expect that the first solution with the longer cor-
relation length would have the higher free energy.
However, the logarithmically divergent part of the
free energy comes from the cross term resulting
from the first and second terms in the asymptotic
expansions of f, and f„and in the first solution
these terms interfere destructively and in the sec-
ond solution they interfere constructively. Thus,
the solution with the longer correlation length and
destructive interference has lower free energy than
the solution with the shorter correlation length and
constructive interference. The detailed numerical
integration of Eqs. (4.24) and a variational treat-
ment of m=1 vortices will be presented in a sub-
sequent publication.

V. CONCLUSION

In this paper, we have derived Ginzburg-Landau
equations for anisotropic superfluid neutron-star

matter with 'P2 pairing, and have studied their
solutions for superfluid flow past a boundary and
an isolated vortex. Since the validity of the Ginz-
burg-Landau expansion of the free energy is re-
stricted to the temperature region near the transi-
tion temperature, these results are not immediate-
ly applicable to neutron stars which are essential-
ly at zero temperature. However, the general
features of vortices as given by the Ginzburg-Lan-
dau theory can be expected to hold for lower tem-
peratures. Therefore, the study of such vortices
within the framework of the Ginzburg-Landau the-
ory is a necessary first step toward a complete
theory of rotating neutron stars. Within this
framework, there remains a good deal of numeri-
cal work to be done. Thus, the radial equations for
f„ f„and g can be integrated numerically to
obtain some insight into the radial structure of the
vortex and a better estimate of the free energy re-
quired to create a vortex. This numerical work
will be reported elsewhere.

The basic defect in the present theory is the de-
generacy that is a concomitant of the Ginzburg-
Landau expansion of the free energy. This degen-
eracy does not exist at low temperatures. .' There-
fore, a proper theory of vortices in neutron stars
must be a low-temperature theory that is not de-
generate in lowest order. Such a theory might
start with an adaptation of the variational principle
of Eilenberger" or an extension of the work of
Bardeen et al. '6 Such investigations are now in
progress.
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