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We develop a new low-energy theorem for E&3 decay as the momentum transferred to the

lepton pair vanishes. Saturating the axial-vector channel with the pion and the baryon-anti-
baryon intermediate states, we obtain the result $(0) = —1 while at the same time preserving
the Callan- Treiman relation.

I. INTRODUCTION

It has been known for some time' that the tri-
angle graph for m decay leads to reasonable agree-
ment with experiment, both in magnitude and in

sign. ' Adler' has recently given a justification of
this triangle approximation from the viewpoint of
current algebra. ,

Here we show that the current-algebra triangle
approximation for K„decay also leads to good
agreement with experiment. Because of the change
of the over-all spin-parity (normality) of the K„
vertex as compared to the m' —2y vertex, the K,3

current-algebra triangle analysis must proceed
differently from the m analysis and does not have

the perturbation-theory basis as does Adler's
work. '

Our approach divides the problem into two parts.
In the first part, we obtain the axial-vector Ward
identity of current algebra and then formally solve
it (Sec. II). In the second part, we saturate the
axial-vector channel with a complete set of on-
shell intermediate states (Sec. III), and then de-
velop a new soft-pion theorem at zero momentum

transferred to the lepton pair so as to enhance the

importance of the triangle graph in the unitarity
saturation (Sec. IV). The result of this theorem is
the ratio g =f ( )/0f, ( )=0-1, which seems to be the

accepted experimental value. Both the magnitude
and sign of the triangle graph are important in

reaching this conclusion.
The large negative value of g is hard to under-

stand by saturating the vector (lepton-pair) chan-
nel, ' which casts doubt upon the Callan-Treiman
relation. " Since the latter relation also follows
from the axial-vector Ward identity (in the soft-
pion limit), we believe it important to verify that
this Ward identity follows from very general as-
sumptions -other than the local commutation re-
lations of current algebra. ' Following the ideas
outlined in a previous paper, ' we show in the Ap-
pendix that the axial-vector Ward identity is a con-
sequence of axial-vector current conservation.
Given the validity of this Ward identity, it is then
the triangle graph which resolves. the apparent con-
flict between the Callan-Treiman relation and

II. SOLUTION OF THE WARD IDENTITY

Following the massless-pion approach to partial
conservation of the axial-vector current(PCAC), '"
we consider the process of Fig. 1, K'(k) -A„'(q)
+ V,'(b, ), related to the K» decay X'(k)-ii'(q) + I'+ v.
The normal (no e„„~)three-point vertex function

M„, is related to the two-point K» decay amplitude
iV2 fxk~ (where fz =—120 MeV) via the "axial-vec-
tor Ward identity, """

q"M„„=~~if«k, , (1)
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with k=q+6 and V'= V' —iV'.
Usually one derives Eq. (1) from the chiral com-

mutation relation of Gell-Mann, ' ' symbolically
written as [A, V] =A. We prefer to think of E(I. (1)
as a consequence of axial-vector current conser-
vation in a world of massless pions, first-order
weak processes with massless leptons, and the
isotopic structure (charge algebra) of lepton cur-
rents. ' We carry out the derivation of (1) in the
Appendix.

Here we point out that the axial-vector Ward
identity can be solved in the form

-I .
Mpu =~pffft[q qp(qv+ &v) -8'pm]

+ $z(&' W'yv —I~pqu)+4(q 8'pv qpqp), (2)

where P, , and $, are arbitrary scalar functions.
Clearly multiplication of Eq. (2) by q" yields
E(I. (1). This structure of the vertex function was
suggested byM~p of Ref. 9» or by App of Ref. I3~
leading to the solution of the "factor-of-two prob-
lem" of pion photoproduction. The important point
to note about E(I. (2) is that there is no k„k„ term.
This is due to the vector Ward identity (knowledge
of M„„b,") in conjunction with the Callan-Treiman
relation. It is clear that this solution, E(l. (2),
uniquely determines only the q&k, coefficient of
M„,. However, this is precisely the knowledge we
need, as saturation of the axial-vector channel will
now demonstrate. Our procedure will be to deter-
mine the coefficient of q&k, and in particular to ig-
nore the coefficient of k& k, on the grounds that oth-
er diagrams will make its total coefficient vanish.

III. SATURATION OF THE AXIAL-VECTOR
CHANNEL

First we pole-dominate the axial vector by a
massless pion [Fig. 1(a)]. We define the K'- v'
+ L++ p amplitude as~2

Sq,. = i(2(()45'-(k —q —b, )Hq,

= f(27()45'(k —q —a)(G/v 2 ) sineM„j",

a„.= (C/Wa) sine &v'~V„'-*'~ X'&f',

M„= -(v'( V„(Z'&

= (-1/&2)[f.(f)(&.+ q.)+f (f)(&.—q.)],
(4)

(v)+ (1 iYs)~o) ~

with 8 the Cabibbo angle„t =6' the square of the
invariant momentum transferred to the lepton pair,
and f, (t) the X» form factors which become f, —1

and f -0 in the SU(3) limit. Further defining the
pion decay amplitude by

(o I &( li('(q)& = ~f.q„,
where f,= 83 MeV, we can pole-dominate the K'
-A„'+ V„' amplitude as in Fig. 1(a),

M'„„=if„(q„/q') M,

= ~2' ~ [[f.(f)+f (f)] &.+[f.(f) -f=(f)]q.) .

Next we saturate A'„(q) by the BB (B= baryon)
state according to Fig. 1(b). In line with the ap-
proach to m'- yy,"we expect the NN state to be-
come important at low momentum where the A pole
controls the K'- P+P+ V' amplitude. When the PP
state is "tied" to the axial vector, the resulting
triangle diagram ls given by Flg. 2, with neutl al

coupling —,'ig„y„y,. In analogy with the nucleon ax-
ial-vector vertex function, the NN state accounts
for the g„ term, whereas the pion pole accounts
for A&, the induced pseudoscalar term.

There is one important difference. between the
mo —yy and K» decays. Strangeness conservation
rules out the "exchange" K» triangle graph and
this indicates that the hyperon ZZ, =, etc. inter-
mediate states must also be taken into account.
There are ten such triangle graphs of which nine

approximately cancel because of SU(3), D+-', F cou-
plings. The remaining hyperon triangle graph is
indicat:ed in Fig. 3, and its magnitude is essential-
ly equal to the nucleon triangle graph so that it is
the effective exchange diagram for this process.

Using the Feynman rules we theri compute the
contribution of the BB triangle graphs to be

FIQ. 1. The decay K(k) A(q) + V(A), with saturation
of the axial-vector channel by the x (a) and BIT (b) inter-
mediate states. The x means gz coupling.

FIG. 2. Domination of the ÃÃ intermediate state hy
the PpA triangle graph as 4 0.
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AI&„= —,'g„g(2») ' d'x Try„y, [y ~ (x+ k) -m] '
y, (y r -m) '

y, [y (r + 6 ) m—] ',

with the SU(3) coupling factor f given by"

S~Az' fu &z'=- I'~=-Oz'
(8)

mined,

if» —q„k,
W2 q' (10)

where g'/4»=15. The loop integral in Eq. (7) di-
verges logarithmically, yet the coefficient of the

q&k, covariant is finite. This coefficient we ex-
tract from either the Feynman rules or dispersion-
theory rules, and with the help of the Goldberger-
Treiman relation mg„=f,g we find

MB s fT g qU I/

v2 4»' m'

In order that these triangle graphs completely dom-
in3te the BB intermediate states, the momentum-
transfer variable b. must be small (see Sec. IV) in
the sense that

a' —(mA' -m»') «m„' and b.' —(m -.
' —mz') «m„'.

Besides the BB intermediate states one should
include higher-mass single-particle states, B&m

states, and NZ, AX, Z~Z* states, etc. In the
p yy problem, Adler and Bardeen" have shown
that the cr model justifies ignoring all but the sim-
plest nucleon triangle graphs. We believe there
exists a current -algebra-preserving field-theory
model which justifies ignoring such states in the
E)3 problem as well, and we shall simply ignore
them.

IV. SOFT-MESON THEOREMS

In the soft-pion limit q-0, the leading q
' terms

of Eqs. (10) and (11) dominate, and we recover the
Callan- Treiman relation,

f, (m, ')+f (m, ') =f,/f. , (12)

where f»/f„f, (0)= 1.28 from—a single-Cabibbo-
angle theory of K» and m» decays. The BB inter-
mediate state s do not enter the sof t-pion q - 0 lim-
it, in contrast with m' decay where they lead to a
resolution of the PCAC puzzle of Bell and Jackiw. '~

If instead we look at the soft limit 6 - 0, i.e.,
q-k and q'- m~', the soft-"vector-photon" theo-
rem of Low" tells us that the triangle graphs of
Figs. 2 and 3 dominate the intermediate process
E' B+B+-V'(6). ln this limit we again equate the
coefficients of q„k, in Eqs. (10) and (11) to obtain a
new soft theorem,

2m 2

f,(0)+f (0)—= —»-&~, ', =1.3 —1.3=0.
7T m»

whereas from saturation of the axial-vector chan-
nel we have

r
M~ =M~ +Mp + ~ ~ ~

if, — q„k, if, g' q„k,—
~2 [f+(~)+f (~)] ~--~2 4.. .+

We are now in a position to find soft-meson E,3

theorems by equating the coefficients of the covar-
iant q„k, . Usually the Callan-Treiman relation is
found from the coefficient of k, in the axial-vector
Ward identity, but in addition we will obtain new
information by examining M„, itself. From the
solution of the axial-vector Ward identity, Eq. (2),
we see that only the coefficient of q„k„ is deter-

+o

Solving Eq. (13) for the ratio $ gives"

(14)

which is now the accepted experimental value. '
Finally we remark that our soft limits q-0 and

6-0 give form factors which are off their physical
mass shell. Defining the K„ form factors as
f, (t, q', k'), the q-0 limit involves f, (m»', O, m»')
instead of f, (m»', m, ', m»'), whereas the a -0 lim-
it involves f, (0, m»', m»') instead ot' f, (0,m, ', m»').
We assume the extrapolation in the q' variable is
valid in either case, though the latter extrapolation
is eight times the former,

f, (m„', 0, m»') =f, (m»', m„', m»')
&

f, (0, m»', m»') =f, (0, m, ', m»') .

(15)

FIG. 3. Domination of the ZZ intermediate state by
the Z+Z+. "exchange" triangle graph as 4—0.

We stress that no extrapolation in t =6' is neces-
sary to obtain $(0)= -1; this is a new low-energy
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theorem at 6=0 (and q'= mr' ). This limit does not
allow a replacement of m~' by q' in (13), which
would otherwise contradict (16). Furthermore,
note that the kaon is always on its mass shell in

our approach, so that PCAC applied to the kaon
need not be considered.

V. CONCLUSION

We have treated E» decay by saturating the axial-
vector channel with the v and BB intermediate
states. The effective triangle graphs arising from
the B& intermediate states give good agreement
with experiment. The only remaining question in

our on-shell approach is why other two-particle
baryon states such as the hZ do not contribute sig-
nificantly to the axial-vector current triangle
graphs of E».

In particular we have developed a new soft-pion
E» theorem to show that the triangle graph must
be taken into account when f„(t)+f (t) is evaluated
at t =0 rather than at t =m~'. The Callan-Treiman
relation is then consistent with $=-1 if we assume
that the form factors vary slowly in q' for fixed t.
If we were to extrapolate the form factors in t from
t = m~' to t = 0, the triangle graph would indicate a
raPid variation in t for fixed q'.

This picture complements the work of Banerjee, "
Kang, '9 and Fubini and Furlan' who keep the pion
on its mass shell and demonstrate that a rapid
variation in t of the divergence form factor, dip-
ping near t = (mr —m„)', is consistent with the
Callan-Treiman relation, $=-1, A. + small and pos-
itive, and the SU(2)xSU(2) symmetry of the had-
ronic Hamiltonian. " Furthermore, Fubini and
Furlan obtain a modified Callan-Treiman relation
on the boundary of the physical region t = (mz —m, )'.

When this relation is linearly extrapolated back to
t =0 using the experimental value of A, „even ig-
noring symmetry-breaking effects, Fubini arid
Furlan show that E is altered from its usual cur-
rent-algebra value' of $ -0 to the range $ --0.4 to
-0.7. Their extrapolation is in t with q'= m,';
ours is in q' with t = 0.

These combined viewpoints consistently give the
Callan-Treiman relation, $

- -1, and a negative
slope for the divergence form factor [A. = X, + m,'
x(rnid' -m, ') '$], which would seem to rule out"
pole models of the divergence form factor, as well
as "weak PCAC"" with an SU(3)-symmetry-break-
ing Hamiltonian.

ACKNOWLEDGMENTS

The author has benefited from discussions with
M. H. Goldhaber and G. Furlan. He is indebted to
Professor Furlan for giving him a manuscript of
his forthcoming book with S. Fubini on current al-
gebra. He also wishes to thank M. Suzuki and H.
Stapp for their careful consideration of the deriva-
tion of the axial-vector Ward identity from axial-
vector current conservation.

APPENDIX

We derive the K» axial-vector Ward identity
from the assumptions of axial-vector current con-
servation and massless leptons. Consider the pro-
cess K'-A&+ l'+ v described by the amplitude M&'.

The superscript on the axial vector, 0, here re-
ft rs to the entire charge state I, + ~ Y'=3+8/& 3 .
Then expanding the amplitude according to Fig. 4,
we write

M&= (G/&2)M&„j" sine- (G/&2)(0~ J'„~K') u&»[y"(I —ty, ) (-y l —y q) 'ty&y, ]v&&~, (A1)

where A and WonM&~ indicate the axial-vector
and weak [W= (V-4)' "]nature of the currents.
Note that the axial-vector current A'„'' ' tags only
on the cgg~ged lepton line in Fig. 4. In (Al) we

have used the notion of universality to replace the
electromagnetic current eJ"' ~3by the weak cur-
rent (G/v 2 )j"' ~~

In our massless-pion world, the principle of

axial-vector current conservation states that

q MD=0. (A2)

Note that q M'W 0 because it is the total" current
that is conserved and 4710 in K» decay means
that M'„has hypercharge current, leaving the dia-
gram corresponding to Fig. 4. Applying (A2) to
(Al) and using the Dirac equation for massless lep-

FIG. 4. Axial-vector
Ward-identity diagrams,
The spiral line indicates
the first-order weak inter-
action.

K

k

I+q
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tons, we find

0=(G/vY) j' [q "M~&v„sine+&0( Jv„(E+&]. (A3)

Since (A3) holds for any value of q, we can equate
separately to zero the vector part of the term in
brackets,

(A7)

tor current for the process K -A„+ v + v. Now
the vector current carries off the SU(3) quanta
6 —i7, and because the "charge-selecting" axial-
vector current 3 +8/v 3 does not tag on (neutral)
neutrinos, we obtain

pMs+8] ls 6-&7 0
P 'P ~

q "M"„„sine= &01 J',"Iff'& .
Then using

&0 ( J,"[Z'& = -sine &0 ) A p "[K'(k)&

(A4)
The SU(3) solution of (A6) and (A7) for all com-

ponents separates the isovector and isoscalar
parts of the axial-vector current and is

= —sin Hid 2f k„, (A5) q "M'„'„=-if""(-if~k„), (A8)

with fr- 120 M—eV corresPonding to our normaliza-
tion of (5) along with the Goldberger-Treiman re-
lation mg& =f,g, we find

with the general K» process defined by

M„'~ = -&"(q) I V.'Iff'(k)&

=if"' If.(i)(k. + q.)+f-(i)(k. q.)]. — (A9)
q~M""~34 *'= iV2f„k, (A6)
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