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An attempt is made to use a two-channel YÃ potential with a single nonlocal separable
@LS) form in each of the four potential matrix elements to represent the low-energy S-wave
Jj.N interaction. For each spin state equations are developed for expressing the A-channel,
Z-channel, and cross-channel potential strengths in terms of the values of the AN scattering
length and effective range both for full and for no suppression of the Z channel with gener-
al forms for the NLS potential shapes. The condition that there be no resonance due to a
bound state in the uncoupled Z channel is developed. The combined results are proposed as
a method for determining which combinations of A-channel and Z-channel NLS potential
shapes may be eliminated as not capable of representing a meson-theoretic potential model
of the low-energy AN interaction. Application of the results is made to the meson-theoretic
potential of Brown, Downs, and Iddings. With Yamaguchi forms for both NLS shapes a ~SO

resonate below the Z-channel threshold due to an uncoupled Z-channel bound state is always
obtains.

I. INTRODUCTION

Recently Satoh and Nogami' have constructed
nonlocal separable (NLS) potentials for the low-en-
ergy, S-wave, two-channel interaction (AN, ZN)
-(AN, ZN). The potential parameters in this mod-
el were chosen to give the A-nucleon (i.e., the A

channel) scattering length and effective range, the
position of the 'S, AN resonance, and, further, to
give agreement with low-energy ZN- ZN (i.e., Z
channel) and ZN -AN scattering data. The result-
ing potentials were then used in a calculation of
the binding energy of the A in nuclear matter. In
this paper we present an alternative method of de-
termining the parameters of this kind of potential
which we believe is more relevant for use in prob-
lems where the hyperon-nucleon interaction at
energies near the AN threshold is required. In

addition this method may provide a convenient tool
for judging which NLS potential shapes may actu-
ally be used to represent the hyperon-nucleon in-
teraction.

The motivation for the SN work was to estimate
the effect of Z-channel suppression in a many-nu-
cleon hypernuclear system. In hypernuclear sys-
tems the AN- ZN transition may be at least par-
tially suppressed because (for example) the final
states that conserve isospin are not as available
as they are for the free hyperon-nucleon interac-
tion." In other words, if, following Brown,
Downs, and Iddings, 4 we write the 2x2 coupled-

channel potential V as

Vhh
V=

Vzq Vzz)

where V» represents the interaction YN-XN,
then for the free hyperon-nucleon interaction ~ =1,
for this same interaction with the Z channel par-
tially suppressed 0&a &1, and e =0 when the Z
channel is fully suppressed. If Z-channel sup-
pression in hypernuclei is important -and a num-
ber of works indicate that it is" -we should con-
struct an NLS potential which not only reproduces
the correct AN scattering parameters when c =1,
but which also reproduces at least some AN scat-
tering parameters when e &1. This e &1 informa-
tion cannot, of course, be obtained directly from
two-body experiments. It can be obtained from a
meson-theoretic potential (MTP) which has had its
parameters adjusted to fit the two-body experi-
mental data.

Qur basic procedure in this payer then is to at-
tempt to construct low-energy NLS AN potentials
(a) whose parameters have been adjusted to fit
the AN scattering lengths and effective ranges at
e =0 and e =l, (b) which include the presence of
the (closed) Z channel, and (c) which incorporate
the existence (or nonexistence) of resonances be-
tween the AN and ZN thresholds. We take the in-
put information implied in (a) and (c) from BDI
who, to our knowledge, are the only authors to
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publish an MTP with AN scattering lengths (a) and
effective ranges (ro) given for values of e other
than e =1.

The choice of fitting a and ~p at e = 0 as a mea-
sure of the Z-channel suppression was made
partly on the grounds of simplicity and partly on
the grounds of treating the AN amplitude with the
Z channel suppressed in the same manner as it is
treated with the Z channel unsupyressed. For
problems such as that of calculating the binding
energy of the A in nuclear matter it might make
more sense to use some property of the e &1 NLS
AN amplitude at a large negative (= -30 MeV) en-
ergy as the property to be fit to the corresponding
MTP value. This type of criticism applies much
more strongly to NLS potentials that have been ad-
justed to fit hyperon-nucleon data at energies
~ 80 MeV above the AN threshold such as was
done previously. It might also be argued that it
would be more sensible to fit the AN amplitude
wig the Z channel partially suppressed rather than
with the Z channel fully suppressed. Here we

again plead simplicity and offer the additional re-
buttal that in the cases of greatest concern de-
tailed below our results show that. our exact fit of
a and ro at e = 0, 1 yields a fit to within 0.2% at
0&a &1.

Condition (b) above is taken into account by the
use of a two-channel formalism.

Our inclusion of condition (c) is based on the
fact that, if the low-energy AN amplitude is sen-
sitive to the presence of the Z-channel threshold
at = 78 MeV above the AN threshold, it should be
sensitive to the presence (or absence) of other
singularities near the physical region at lesser
energies. Condition (c) does not, of course, guar-
antee that our NLS potential will yield the same
AN phase shift as a given MTP for all energies
below the Z-channel threshold, but if our NLS po-
tential predicts a resonance where the MTP does
not, then such a phase-shift match would be im-
possible. This condition means that we demand
our NLS potential yield a 'S, resonance at about
75 MeV above the AN threshold and no 'S, reso-
nance between the AN and ZN thresholds. How-
ever, the MTP used by BDI included a tensor force
while we are going to investigate only central NLS
forms. Therefore, we place more emphasis on
the ayylication of our results to the 'S, rather than
.the 'S, AN interaction.

So much for the buildup. The letdown is, our
attempt failed. With the same general form of
NLS potential as was used by SN, the application
of conditions (a) and (b), and the use of the BDI
values for a and xp at e =0, 1, we always obtained
a Sp re sonance . The analysis of the equations in-
volved in this failure is what makes the attempt

worthwhile.
In Sec. II we outline the derivation of, and give

the results for obtaining the strengths of the var-
ious XN- YN potentials in terms of the shapes as-
sumed for these potentials and the values of a -=a,
and xp =-rp for e =0, 1. The equations for a, and

x„for other values of e in terms of these end-
point values are also given as is the condition for
the existence of a resonance below the ZN thresh-
old. These relations are discussed in some detail.
The general relation that must hold among the po-
tential parameters if there is to be no resonance
due to a bound state in the uncoupled Z channel is
also obtained.

In Sec. III we use Yamaguchi ' shapes for the
NLS potential in each channel. The BDI values of
Qp /pp a, , and ~„ for both spin channel s are
used in our formalisms and the numerical results
for the other parameters are obtained. The SN
values for the potential parameters are used to
calculate ap and happ and comparison with the BDI
results is made. We then vary some of the BDI
and the SN parameters for the 'S, potential and
note the effect on the 'S, resonance in the light of
the discussion of Sec. II. Finally we suggest
further lines of attack on this problem.

II. NLS Y1V POTENTIAL

The potential under investigation has the form
given in Eq. (1) with the relative YN momentum-
space representation

(k»IY»YlkY) ~»Y~»(k»)~Y(kY) ~ (2)

where k» (k„') is the relative hyperon-nucleon wave
vector for hyperon channel X (Y). If then E» is
the center-of-mass energy in the X channel and
~=Mz -MA, where M~ is the mass of hyperon X,
we have kA'=2p~EA, kz'=r'(kA'-k, '), with k,'
=2p~A, r'= (ilz/g~), and p» is the reduced mass
in channel X. We limit our discussion to physical
energies below (or at) the Z-channel threshold so
that k~' &0 and kA&kp. We take the nucleon mass
to be 938.9 MeV. and use the values M A =1115.4
MeV and Mz =1193 MeV. Then k, =281.28 MeV/c.
For convenience we define the strength parameter~
A~= pAA~~/2», Az=pzhzz/2», and A»'= p~pzhAz/
47K where A~~ = A.~~.

After using the potential given in Eq. (2) in the
coupled-channel Lippmann-Schwinger equation for
a given spin the resulting AN S-wave scattering
amplitude f~A may be written

fJA = -vA(kAI t~AI&z)I/» = &A(kA~&AA~~(kA)

where, as shown in Ref. 6,

Y~~ =~A/(1 + ~~g A)
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2kA+1/fA = -o.,+0.5r2, kA2+ ~ ~ ~, (3)

where o., =-1/a, . We now assume that a, and r„
as well as a, and r» are kn.own.

For e = 0 the equations obtained from Eq. (3) for
a, and r„as functions of the A-channel potential
parameters may be manipulated so as to yield the
relations

u2(A2 —0.5r») +u, (+2+AD) = 0

and

XA = 1/[u, (o, +A,)].
Here

-g~/vA2(kA) =A, +A2kA2+ ~ ~

vA (kA):u2 +u2kA + ' ' '
q

(5)

(6)

(I)

and g~ is the principal-value part of gA defined
above. Equation (4) is a relation among the A-
channel potential shape parameters and the values
of a, and r„, whereas Eq. (5) yields the A-chan-
nel strength in terms of a, and the parameters in

vA. For a one-parameter shape (e.g., a Yama-
guchi shape) Eqs. (4) and (5) completely deter-
mine the parameters in V«.

For ~ =1 we may now obtain equations for a, and

r« from Eq. (3) and, with the help of Eq. (5), in-
vert them to yield the following expressions for
A.z and A.x '.

~z = -[I —&(gz.k'/gzo}] «z. (8)

2 &(+x +0)[gz2k /(gz } ]
u, (o., +A, )(n, +A, )

(9)

where the dimensionless parameter $ is given by

(o., +A, )(n, —n, )
k,2(n, +A2}[2(r„—r„)+u„(n, —a,)] ' (10)

'rA = A. A + E A,» gz (1 + rz gz )

with

2 i vA (q)q dq«=g, q'-k, '-iq'

2 " vz'(q) q'dq2, q'+r'(k, '-kA') '

In this last relation we have taken advantage of
our restriction kA (k, . The multiple-scattering
interpretation of this form of fA~ is manifest.

The expressions for the A-channel scattering
length and effective range for a given spin as func-
tions of the suppression parameter may be found
from the expansion in powers of kA',

a, =N, /D, ,

r2, =r +»2M, /D, ,

where

N, = (o, +A, ) e2(o—., —n, ),
M, = e2 (o.,+A, )[-', (r„-r„)(n, +A, )

+u„(a, —o.,)(1 -e2)],
D q

= CK2(G~ +A 2) + E A2((X~ —
C22 ) .

(12)

(13)

The point to be brought out here is that no Z-chan-
nel potential parameter appears explicitly in Eqs.
(12) and (13). The A-channel scattering param-
eters a, and r„for all 0 & e & 1 are determined by
a„r„, a, , r», and the parameters in vA(kA).
In particular, if vA(k~) is a one-parameter shape,
that parameter is determined by Eq. (4), and Eqs.
(12}and (13) then yield a, and r„. Conversely, it
is fruitless to try to determine the parameters of
vz(kz) by further fitting of a, or r„at values of e
other than those used already.

Finally, to check whether or not a resonance
exists at an energy between the A- and Z-channel
thresholds we look for values of kA = k, + ik, that
cause rAA, and hence fAA, to become infinite. We
find kA such that

&+rAgA=o ~

For a resonance in the region of interest, kA not
only satisfies Eq. (14}but k, is negative and close
to the real kA axis and the AN phase shift goes
through —,'w at a value of kA &kp.

Several remarks about Eqs. (3)-(14) are appro-
priate at this point. First, we look at the signs of
the terms in Eqs. (9) and (10). From Eq. (6) and
the definition of g it follows that Ap &0. From a
number of experimental and theoretical sources' '
e, & 0. From BDI or SN and the results given in
Sec. III o, (0, (a, —o.', ) &0, and (r„-r„)&0. We
are not claiming these last three inequalities hold
for all the MTP that fit the on-shell YN data, but
we are restricting our discussion to cases where
they do hold. In such cases the sign of $ is the

with u, —=u,/u, . The quantities gz, and gz, are de-
fined by the expansion

2
&z =gzp+gz2kA + ~ ~ ~ i

they depend only on the shape vz(kz) and the differ-
ence in threshold energies of the two channels in
the form rk, .

The first use we make of Eqs. (5), (8), and (9) is
to eliminate A, A, A, z, and A,~' from the general
equations for a, and r„ in terms of the potential
parameters that are obtained from Eq. (3). With
the additional use of Eq. (4) to eliminate A, we ob-
tain



same as the sign of the quantity in square brackets
In the delloIIllllRto1' of Eq. (10). FI'0111 1'ts defllll-
tion, for tAA to have the correct A-channel thresh-
old behavior, '

uo & 0. Thus, if vA'(kA) increases as
O'A increases, from zero, u, & 0, u„& 0, this square-
bracketed quantity & 0, and finally $ &0. For
u, &0-as is the case with the most commonly used
shapes" —both signs of $ are possible, with g &0
if (roo - r») is too small relative to

~ ao - a,
~
. In ad-

dition it follows from the above definitions of gz,
gzo, Rnd gzo fllkt gzo & 0 Rlld gzo & 0. EqllR't1011 (10)
now exhibits the possibility that for u, & 0, A.x' & 0.
It may be the case that we cannot fit the model
ased h878 to the gtv8n valaes of aors rooq al q

and
r„ for any shaPes vA(kA) and vz(kz).

Second, rather than deal with the general condi-
tion for resonance in Eq. (14), we shall limit our
discussion here —although not the calculations in
Sec. III- to the existence, or rather nonexistence,
of a AN resonance below the Z-channel threshold
due to a bound state in the uncoupled Z channel.
If the Z channel were uncoupled from the A chan-
nel (i.e., if we set 8 =0 after we have determined
all the potential parameters) then by an interchange
of the A and Z subscripts in the above definitions
of f~A and rA~, we see that a bound state in the Z
CI1annel exists at

kzo= -r (ko'-ks') &0,

that is, at kA=k~, such that

where g» is the value of g~ at kh=k~. For the '80
state no AN resonance below the Z threshold of
any kind is either predicted by meson theory or
discovered experimentally. In particular a '80 res-
onance due to a bound state in the uncoupled Z
channel does not exist. For the '80 state we must
have

1+A~g~&0, 0 «kA «k'0.

From the definition of g~ given above it follows
that for 0 «kA «k0 gz is a positive monotonic in-
creasing function of AA. Even if it turns out that
Az & 0, the inequality (15) will be satisfied for all
0 «kA «k0 if it is satisfied at RA=00. Therefore,
our no-resonance condition becomes

where g» i.s the value of g~ at the Z-channel
threshold, i.e., at kA =@0. With A.~ given by Eq.
(8) and with some algebra, inequality (16) may be
written

k & 0 = gzogzl& gz rgzako ~

2

where

2 t" vz'(q)x'dq
II J q'+x'

and for completeness we exhibit

2 "vz'(q) q'dq
g&0 ~ q2+~20

2 ""vz'(q)q'x'dq
(q'+ x')'

oo

gp~ =-
W 0

with x =xk, .
The remarkable thing about inequality (1V) is the

simplicity with which it exhibits the dependence of
the "no-resonance" condition on the two channels.
The left-hand side of the inequality depends only
on th nput information Ql Goy F00 t and 101
(available from a meson-theoretic potential) and
the shape v~(kA), whereas the right-hand side de-
pends only on the shape vz(kz) and the existence of
a mass difference between the two channels. For
a given set of input parameters (i.e., a given 'So
MTP) and a given vA (vz) there may be none, one,
or only a few vz (vA) for which this inequality is
satisfied. In other words we have a method for
eliminating certain combinations of shapes vA(kA)
and vz(kz) as being incapable of representing the
given '80 MTP. ' Whether this method is a useful
tool depends on how discriminating it is, which
may to a large extent depend on the actual values
taken on by e„a,, x«, and x„. Along this line
we point out that the simplest way to avoid a Z
bound-state induced resonance is to have A.z ~ 0.
From Eq. (8) this would be the case when

$ - (gzJgz.k.')»,
where the rightmost inequality follows from the ex-
plicit expressions for g~ and g~, given above. In
such a case, as it must for consistency, $ & Il for
any shape vz(kz).

III. APPLICATIONS

For our first application of the method discussed
above we used Yamaguchi shapes for both vA(kA)
and vz(kz), so that vx(kx) =1/(kx'+Px'), for X=A
or Z. For a given spin we have five potential pa-
rameters A.A, P~, A. z, Pz, and Ax. The first two
of these we fixed from the values of a0 and ~«,
i.e., from Eqs. (4) and (5). The variable Pz was
chosen as the free parameter. For a range of
values of P z Eqs. (8) and (9) were used to deter-
mine A.z and A.x. For each value of Pz we used Eqs.
(12) and (13) to find a, and r„at 8 =0.25, 0.50,
and O.V5, and we solved Eq. (14) to find the kA-
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TABLE I. NLS potential parameters for the BDI values
of a and rp at e =0 and e =1. For all spin-zero cases
1/p~ =0.80145 F and A&& =-2.0557~ 10 MeV . For all
spin-one cases 1/Pz —-0.918 36 F and A~ -—-7.4829&& 104
MeV2.

(Pg/P p) Spin

-Z ~~/10'
(MeV2)

~~z/1o'
(Mev2)

0.5

1.0

2.0

3.0

6.0

55.714
43.897

11.382
9.8301

2.8730
2.7751

1.4269
1.4624

0.502 28

1.2011
2.2091

0.702 17
1.3065

0.485 26
0.818 72

0.337 07
0.637 30

0.224 65

plane poles of v« that would yield an AN resonance
below the Z threshold. For the input parameters
we chose the values of a„rpp ay and r„given
by BDI.

In Table I we give for both the 'S, and 'S, states
the values of the potential parameters we obtained
using the BDI input. The first column of this table
gives the ratio of the Z-channel range parameter
1/Pz to the A-channel range parameter 1/P~. For
a simple one- or two-pion-exchange model this
ratio would be 2.0. The sign of A, ~~ is arbitrary.

The values of the BDI input parameters for both
spin states are given in Table II as are the BDI
values of a, and rp, for 0&a &1. The values of a,
and r„we obtained for 0 & e &1 after matching
exactly the BDI values at e =0 and ~ =1 are also
given in this table. For the spin-zero case we ob-
tained an excellent fit (within 0.2%) at all e. The

spin-one parameters are more rapidly varying
functions of c than are the spin-zero parameters,
so that the over-all agreement with the BDI values
is not as good, the discrepancy being as large as
5%. Again we point out that our results in Table
II are obtained for all values of P~ and indeed these
same values would be obtained no matter what the
shape of vz(kz).

When we went to test for AN resonances below
the Z-channel threshold, we found that all the po-
tentials whose parameters are given in Table I as
well as all those for much larger values of Pz pro-
duced such a resonance. The 'S, resonance actu-
ally occurred at a slightly lower energy (i.e., k~
= 180 MeV/c) than the 'So resonance. According to
the BDI MTP that we are fitting, no 'Sp resonance
should exist below the Z-channel threshold, while
the 'S, resonance should appear much closer to
this threshold (i.e., at k~= 270 MeV/c) and it should
be due to a cooperative effect between the chan-
nels, not to a bound state in the uncoupled Z chan-
nel. To eliminate the resonance we allowed r« to
vary away from the value given by BDI and re-
peated our calculations. Because we did not treat
the tensor force used by BDI correctly we do not
press any conclusions based on results obtained
for the 'S, channel, but merely present these -re-
sults for completeness.

In Table III we present the spin-zero results and
in Table IV the. spin-one results for the determina-

TABLE III. Existence of an uncoupled Z-channel
bound state and a AN resonance for spin 0 as a func-
tion of rpp The parameters ap, a&, and rp& are kept at
the BDI values.

rpp (F) 1/P p (F) P h /P p $ (/g kg (MeV/&)

TABLE II. AlV' scattering lengths and effective ranges
as functions of the Z-channel suppression.

3.67 0.80145 0.5 0.595 0.364
1.0 0.407
3.0 0.486

205.3-i1.312
208.0-i1,346
211.7-i1.399

BDI

a, (F)

BDI

rp~ (F)

Ours

3.64 0.796 57 3.0 0.950 0.776
6.0 0.844

30.0 0.924

261.5-i1.125
266.2-i1.179
272.4-i1.299

1.00
0.75
0.50
0.25
0.00

1.00
0.75
0.50
0.25
0.00

-2.25
-2.15
-2.08
-2.04
-2.03

-2.12
-1.35
-1.00
-0.86
-0.81

-2.25
-2.151
-2.083
-2.043
-2.03

-2.12
-1.416
-1.049
-0.866
-0.81

Spin 0

Spin 1

3.47
3.56
3.62
3.66
3.67

3.31
4.49
5.66
6.56
6.92

3.47
3.554
3.618
3.657
3.67

3.31
4.255
5.409
6.470
6.92

3.63 0.794 94 8,0 1.186 0.969
6.0 1.053

30.0 1.154

3.62 0.798 31 3.0 1.578 1.288
6.o 1.401

30.0 1.535

3.61 0.791 68 0.5 2.376 1.441
1.o 1.608
8.0 1,924

3.58 0.786 77 0.5
1.0
3.0

280.7-i0.040
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TABLE IV. Existence of an uncoupled Z-channel
bound state and a AN resonance for spin 1 as a func-
tion of zoo The parameters ao, a&, and r 0& are kept at
the BDI values.

roo (F) 1/Pz (F) PA/P~ $ $/g kz (MeV/e)

6.92 0.918 36 0.5
1.0
3.0

6,32 0.867 60 0.5
1.0
3.0

5.72 0.814 54 0.5
1.0
3.0
6.0

0.414

0.609

1.144

0.259
0.290
0.345

0.377
0.422
0.504

0.702
0.784
0.937
1.018

175.8-i11.81
177.6-i12.04
180.1-i12.40

209.9-i11.37
212.9-i11.67
217.5-il2.24

266.6-i7.537
272,3-i7,259
283.3-i5.630

5.42 0.787 04 0.5 2.022 1.235
1.0 1.379
3.0 1.649

tion of AN resonances below the Z-channel thresh-
old. For both tables we have kept a„a, , and re
at the BDI values and varied happ as shown in the
leftmost column of each table. The first value ~00

in each table is the BDI value. In both Tables III
and IV the column on the far right gives the value

kn of k~ for which fAA becomes infinite. By look-
ing at the AN phase shift for values, of kA&kp we

checked that the values of k~ shown did yield a AN
resonance belch the Z -channel threshold. In this
column the spaces with three dots are those for
which no resonance exists below the Z threshold.
Even in such cases a resonance may exist above
this threshold, but the investigation of this point
was outside the limits of this paper. " The second
and third columns from the right in these tables
contain the values of the parameters g and $/g
discussed in Sec. II. In both Tables III and IV for
each value of ~«we have tested for a resonance
at a number of values of the ratio of the range pa-
rameters (1/Pz)(1/PA). The results shown in these
tables exemplify the discussion given in the Sec.
II.

From Table III we see that not only does our fit
of the potential parameters to the BDI parameters
predict a 'S, resonance, but also, from the values
of t/q, we see that this resonance is due to a
bound state in the uncoupled Z channel. As we de-
crease the value of happ we finally come to a value
(3.63 F) for which, if the Z-channel range param-
eter is large enough, the resonance disappears.
For even smaller values of r,o, all values of 1/Pz
give a resonance-free result. Finally, happ gets so
close to x» that as discussed in Sec. II A.~' becomes
negative. We note that the presence or absence of
the resonance is extremely sensitive to the value

a, = -1.6523 F, rp, =3.1717 F (18)

Using the SN case-A spin-zero potential param-
eters, we calculated

0 1'1 9 F 00 (19)

$ =1.903, $/g =1.371. (30)

The value for $/q in Eq. (20) indicates that the SN
values of a, , a„and happ are not that far away
from values that would give a 'Sp resonance. To
check this out we first varied a, away from the
value given in Eq. (19) and then varied r«away
from the value given in Eg. (19). The results are
shown in Table V.

For the first four rows of Table V happ + and

of r„. A decrease in r„of less than 2% is suf-
ficient to make the resonance disappear.

We have shown that a takeo-channel NLS potential
with I'amaguchi shapes cannot reproduce the BDI
MTP lou -energy AN scattering parameters with
the Z channel both unsuppressed and fully sup-
pressed, and at the same time reproduce the res-
onance structure of the BDIpotential for energies
below the Z-channel threshold. Because of the ex-
treme sensitivity of this resonance to the value of
the input parameters, which themselves are not
all well determined by experiment, ' it is possible
that this form of NLS potential still could give a
proper fit [in the sense of conditions (a), (b), and

(c) given above] to a MTP that is adjusted to yield
slightly different values of a, and rp, at e = 0 and
e =1. In any case sticking to the BDI values we
would like to see if the result just stated may be
extended to other than Yamaguchi shapes. From
the values of $ and $/g given in Tables III and lv
we see that in all cases g &1. If we consider the
'S, state we have in addition from Table III $ =0.595
with a Yamaguchi shape for vA. Thus if we could
show g&1for all shapes vz(kz), the Yamaguchi
shape for vA(kA) would be ruled out. Even being
able to prove g & 1 for a restricted class of shapes
vz(kz) would be a very useful result We .have not
been able to prove q&1for all vz(kz), nor have we
been able to come up with a counterexample. Vfe

have only been able to show by direct calculation
for a few common one-parameter shapes that q & 1.

Next we turn to the NLS potential used by SN.
These authors, using a Yamaguchi shape in each
channel with PA=Pz, fit a, and ro, at e =1and the
AN amplitude below the Z -channel threshold. The
values they used for their potential parameters are
of no particular interest here, but the values they
used for a, and r„ were (in both the 'So and the SS,

states)
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TABLE V. Existence of an uncoupled Z-channel bound state and a AN resonance
for the SN case-A spin-zero values of a& and r0& as functions of a0 and r00.

a0
(~)

00

(F)
k~

(MeV/c)

-1.458 91
-1.358 91
-1.258 91
-1.158 91
-1.158 91
-1.158 91

3.7877
3.7877
3.7877
3.7877
3.6877
3.5877

0.749 36
0.733 98
0.717 43
0.699 55
0.686 70
0.673 71

0.171
0.349
0.718
1.903
7.096

0.104
0.211
0.433
1.271
4.725

114.3-i1.811
162.0-i3.115
225.3-i3.940

~„were kept at the SN values, while for the last
three rows a„a„and ~„were kept at the SN val-
ues; i.e., the fourth row from the top contains ail
SN values. As indicated in the third column from
the left the SN condition P ~ =PA was used through-
out the table. The three columns on the right con-
tain values of the same variables given in the cor-
responding columns of Tables III and IV. Again
the sensitivity of the existence of a resonance to
the values of the parameters is evident. An in-
crease of less than 10% in a, (or of less than 3'%

in 1/PA) is enough to cause a resonance to appear
A decrease in r„of less than 5~% is enough to
make the fit of the NLS potential to the input data
impossible.

Comparing our 'Sp BDI results of Table III with
our SN results of Table V we can say that the
former yield a resonance because (r« r)oi-s too
large for the accompanying value of ~a, —a,

~

while
the latter is resonance-free because this is not the
case. Because of the sensitivity to these scatter-
ing parameters, however, one could not tell this
was so merely by looking at the values of the scat-
tering parameters in the two cases. Turning our
SN results around we would expect, on the basis of
of the BDI results, an MTP adjusted to give the SN

values of a, and re to give either a value of happ

larger than that in Eq. (19) and/or a value of a,
more negative than that given in Eq. (19).

Further investigations in this whole area are

clearly called for. It would be highly desirable for
such work to have a number of different MTP 's
whose values of a, and r~, for 0 ~e & 1 are known
and all of which have the same values of a, , re,
and the AN phase shift at energies uy to the Z-
channel threshold. It would then be possible to in-
vestigate how the form of the low-energy half-off-
shell AN amplitude is correlated (if at all) with
the values of ap and ~pp.

The main question of interest as far as the work
described here is concerned which still has not
been answered is, can an NLS potential of the form
given in Eq. (2) be found which fits the 'S, BDI
values for a, , spy a„~pp and the AN resonance
structure below the Z-channel threshold P Other
questions of interest are: How dependent are our
results on the particular shapes used for vA(kA)

and v~(kz)? Can the problem of the nonexistent
resonances be avoided by choosing an MTP of the
BDI form adjusted to fit slightly different values
of a, and x» or by using a different form of MTP
(e.g., one that incorporates a two-pion-exchange
term or one with soft-core potentials) so that a,
and ~pp are changed from the BDI values even
though a, and x„are not? Can the resonance prob-
lem be avoided by using sums of NLS potentials in
some of the matrix elements of Eq. (1)? A number
of these questions are at present under investiga-
tion. %e expect to report further results in this
area at a later date.
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A previously suggested method for representing a meson-theoretic AN potential by a two-
channel separable potential is shown to limit the shape of the separable A-channel potential
for arbitrary shape of the separable Z-channel potential.

In the preceding paper' it was proposed that, in
view of the apparent importance of suppression of
A-Z conversion when a A is bound in a multinu-
cleon system, "for such problems a simple phys-
ical way to represent a given AN meson-theoretic
potential (MTP) by a two-channel nonlocal separ-
able (MLS) potential was to choose the NLS poten-
tial to (a) have the same AN scattering length and
effective range as those of the given MTP, (b) to
have the same AN scattering length and effective
range as those of the given MTP when in both po-'

tentials the Z channel is fully suppressed, and (c)
to have the same resonances below the Z-channel
threshold as predicted by the given MTP; e.g. , for
the '8, AN potential there should be no such reso-
nance, and in particular there should be no bound
state in the uncoupled Z channel to cause such a
resonance.

In Ref. 1, as here, attention was focused on the
So interaction so that the complications of a tensor

force were avoided. The very common form of
NLS two-channel AN potential

ble shapes for vA and vz. In particular it was
shown that with Yamaguchi' shapes for vA and vz,
the use of conditions (a) and (b), and the use of the
MTP of Brown, Downs, and Iddings (BDl),' con-
dition (c) was violated; i.e., such an NLS repre-
sentation of the BDI potential as given by Eqs. (1}
and conditions (a}, (b), and (c) was impossible
with Yamaguchi shapes for v& and vz. In this note
we wish to present results of a much more general
nature.

The limitation on the shapes vA and vz obtained
in Ref. 1 could be written as an inequality, $& q.
Here $ is a dimensionless parameter which de-
pends only on ko (the value of k~ at the Z-channel
threshold), on the AN scattering length a, and ef-
fective range ro, at the values e =0 and e =1, and
on the potential shape v&, while q depends only on
the shape vz and on k, . Explicitly

(n, +A, )(o., —c.,)

k, '(n, +A, )[-,'(r~ —r„)+u„(o, —n, )] '

where o.&=1/a&, u„ is defined by
&&.UAz

V= (1a) v„'(kA) —= u, [1+u„kA'+ 0(kp') + ],

where in momentum space (c =k =1)

$„III„,li „&
= v„(k.)v, (k,), (lb)

and 4, is defined by

g'/v„'(k, ) = X, +—X,k, '+ O(k-, ') + ~ ~,

x, y =A or Z, and e is the suppression parameter
(i.e. , 0&a&1, e =1 yields the completely unsup-
pressed, free-particle, hyperon-nucleon inter-
action, and e =0 yields this interaction with the
Z channel fully suppressed), was chosen for in-
vestigation. It was then shown that the conditions
(a), (b), and (c) imposed a limitation on the possi-

with

OO

g'= P(q' —kA') 'v—A'(q)q'dq.

On the other hand, q =I,I,/I, I,, where

2
I, = — vr'(q)R, dq, j = 1, . . . , 4

0


