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We use the unitarity sum to rederive in a simple way an explicit formula for the p-co mixing
phase in terms of ~e~, r» 1 &, and m~2-m&2. We then present a systematio study of the
condition imposed by T (or CPT) invariance and unitarity on the relative phase and strength
of the mixing. It is shown that the departure from T invariance in the p-v system is, in
principle, directly demonstrable through the measurement of the p-co mixing phase in e+e

The connection between the phase discrepancy and the breakdown of microscopic
reversibility is also discussed. Finally, bvo possible graphical representations for the p-~
mixing parameters which exhibit directly the condition imposed by unitarity and time-rever-
sal invariance on the relative phases and strengths of the p-~ mixing are given.

I. INTRODUCTION

The discovery oi the 6-parity-violating effect"
u-2m' seen as an interference dip in the p-& spec-
trum has reactivated the proMem of p-ru mixing in
recent years. ' ' In this paper, we wish to report
a systematic study of the condition imposed by
time-reversal invariance and unitarity on the
phase and strength of the p-~ mixing and present
a simple method of calculating the mixing phase
from the so-called unitarity sum.

Although the problem of p-co mixing has often
been claimed' to be equivalent to the neutral-kaon-
decay problem and the phase of the p-v mixing has
been estimated previously, "nevertheless, we teel
that the connection between the two problems has
not yet been thoroughly explored and the role of
the unitarity sum in the determination of the p-v
mixing phase has not yet been fully exploited.
Here, we wish to reveal gradually through our dis-
cussion this close connection between the two mix-
ing problems and then use the Bell-Steinberger
unitarity sum to obtain an explicit formula for the
p-ro mixing phase in terms of the p and v masses
and widths, assuming CI'7.' invariance. The result
obtained by us as mell as those reported recently'

seem to show that the theoretical estimated phase
of the p-~ mixing is not in excellent agreement
with its earlier experimental value. ' There has
been an attempt' to correct this discrepancy by
considering (i) not only the mass mixing of p and
e vector mesons but also their vector mixing' and
(ii) the energy dependence of i'h e p width, but the
situation is not improved much. On the contrary,
the new estimate might even widen the discrepancy,
taking into account the fact that in the latter esti-
mate, the p-+ mixing phase may be smaller than
112 which is the value estimated in Ref. 3. We
are, therefore, content with the mass mixing
alone. In view of this difficulty, we believe that
it would be interesting to consider a detailed in-
vestigation of the condition imposed by unitarity
and tlQle-reversal invar1ance on the mixing phase.
This condition might serve as a guideline for fu-
ture experiments measuring the phase concerned.
The results of this investigation will be reported
in a subsequent section of this paper. Besides, we
show' that the departure from T invariance in the
electromagnetic interaction would, in principle,
be directly demonstrable through the measured
phase of the p-co mixing in e'e - n'm alone,
should the accuracy of the determination of that



phase be improvable and that the time-reversal
asymmetry estimated with the earlier measured
phase of the Orsay group' seems to be signifi-
cant. These arguments ean be made much more
easily by using the unitarity sum of the p-~ mix-
ing. %'e are then tempted to connect the phase

serepancy M the p-v IMxxngy should this dls
crepancy ever exist, with the breakdown of a mi-
croscopic reversibility.

Finally, a plot of all the results above in a graph
to give an off-hand look at the situation would be
very desirable. ' We shall discuss the graphical
representation of time-reversal invarianee when

only the relative phase and strength of the p-v
mixing in e'e - w'm is accessible to good mea-
surements. Also given is the graphical represen-
tation for the case when the relative phases and
strengths of the p-ar mixing in both e'e - w'w and
e'e - Sm are assumed to be determinable from
experiments. The latter is somewhat less practi-
cal and more academicaQy oriented because of the
difficulty in the experiment of e'e - Sw at least to
our knowledge. Nevertheless, we still like to con-
sider it as an alternative graphical representation
of the p-v mixing because it also yields equiva-
lent information to the former about the conditions
imposed by unitarity and T invariance in the p-&u

mixing.

II. ALTERNATIVE METHOD OF DERIVATION
OF THE p-u MIXING PHASE

While in the problem of neutral kaon decay, the
CP noninvariance effect mixes states of opposite
CP eigenvalues, here, in the p-e system, the G-
parity-violation effect mixes states of opposite G

parities. 1t is well known that in the Id'-Z mix-
ing, with CPT invariance, the K~ and X~ mixing
states are given by'

IC.w&=[21
( p ji~ [(1+&}IIf'&+(1

When the interaction responsible for the CP non-
invariance mixing is turned off, the mixing coef-
ficient e will be zero and I Id~ s) become states of
definite CP eigenvalues

Now, in the p-co mixing problem, it is more
likely that the counterparts of

I Id/ and lid,'& shouM
be I P') and I aP& which are states of definite G

parity. %'e may therefore write

where I a& and I a& are two "fictive states" which
are the counterparts of I Id'& and Ig & in the neu-
tral-kaon-decay problem and introduced just for
convenience. They must satisfy the following con-
ditions:

G represents the G-parity operator. It should be
stressed once that the introduction of these, fictive
states I n& and

I a& is actually not strictly neces-
sary. We use them here however to make our
argument more simple and the one-to-one com-
parison between the two mixing problems as lucid
as possible. Since both I po) and Ice~) are states of
positive CP eigenvalues,

I o& and
I n& also satisfy

the following conditions:

When the electromagnetic interaction responsible
.for the G-violating effect is turned on, there oc-
curs a mixing of the G-parity eigenstates and with
CPT invariance, we obtain the counterparts of
Eq. (1}for the p-a& mixing problem as

I p =
[ 1,„,[(1—e) I n& + (1+e) I n& j, (9a)

I+&=[2 1 ~ ~

[(1++}In& (1 E}l &ju~ (9b)

In fact, Eqs. (Qa) and (9b} csn be derived by the
following argument. With CPT invariance, we
have

&enlwlen& =&nlwln&, (10}

where 0 =CPT operator and S' is the mass matrix
of the p-~ system. Applying conditions (I}and

(8) to the states In& and la&, we deduce that W

must be symmetric in the subspace of I a& and
I a&

states:

In this connection, the condition imposed by CPT
invariance is equivalent to the one by T invariance,
It should be noted that the CP7.' invariance condition
makes the diagonaL elements of the mass matrix in
the neutral-kaon-decay problem become equal in-
stead. Thus, with CPT invariance, I p& and I &u&

can be given in the following form' .'

I p'& =
&I o&+ I ~&}0 I p&=((pp, ) p)uw

(pin)+allo&),
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1
l ~&=(i pin, iq)2).&~ (el ~&+Pl ~&) (13)

By setting p = 1 —e and q = 1+&, (9a) and 9(b). are
obtained. Making use of (3) and (4), we may de-
duce from (9a) and 9(b) that

) p& =(„i, i.)i&. (-~
I
~'& +I p'&),

1
I ~&=(]+ ie p)1/2(l~'&+e t&o'&)

(14)

(15)

These are exact forms for the mixing states ) p&

and ) &d& in terms of the definite Q-parity states
) p'& and ) «&'& with its mixing parameter e. In this
connection, the mixing states ) p& and ) &u& do not
have a definite G parity, but, rather, are predom-
inantly in the positive- and negative-G-parity
states, respectively. Since ) e )' is very small as
confirmed by experiment () e P = 0.36/&&), ) p& and

) &d& may approximately be written as

I~&=-~l~'&+ I p'&,

I ~& = ~
I
p'&+

I
~'&

(16)

Through the one-to-one correspondence between
the two problems of p-~ mixing and neutral-kaon
decay, it becomes clear that there should also be
a Bell-Steinberger sum" for the p-+ mixing
problem written explicitly as follows:

[rpm p+ r m + i(m ' -m, ') j &p ) (o)

=g&f I T I ~&&f IT I p&*.
f

(18)
Note that the counterparts of M~, M» & y~, and
1
—,y~ are m ', m ', F m, and F m, respec-
tively.

We are ready now to use the unitarity sum to
derive the explicit formula for the p-~ mixing
phase in terms of F, F, m, and m ." Let us
assume that the G parity is conserved for all the
matrix elements of )

p'& and ) sP) states This a.s-
sumption is similar to the requirement of CP in-
variance for all the matrix elements of )E ) and

) Id'& in superweak theory "In oth. er words, the
electromagnetic interaction is considered here as
negligible compared to other strong interactions.
The taking of zero values for the G-parity-violating
transition amplitudes of ) po& and ) «&0& is equivalent
to the neglect of the imaginary part of W o~o com-
pared to its real part. This can easily be verified.
This neglect w'as indeed considered by Gourdin
et a/. ' in their derivation of the p-co mixing phase.
It is, therefore, not surprising to see that we
shall obtain exactly the same result as Gourdin
et al. , although our method of derivation is certain-
ly much simpler than theirs in the sense that we

can avoid several complicated approximations
made by these authors. Besides, within this as-
sumption, our expression for the p-e mixing
phase is an exact one. It should also be noted that
the unitarity sum has been used before to obtain
the p-+ mixing phase'4 although there again, some
approximations have already been made in the
derivation. With the assumption of G-parity con-
servation for all the matrix elements of ) po) and

) aP&, the right-hand side of Eq. (18) has the sim-
ple form

�

& 2 &&~l& ln'&&' -~' 2 1&~I&l~'&I').
&n =& &n =-&

(19)
where for convenience the set of decay states ) n)
are chosen to be of definite G parity, either with
g„=+1 or g„=-1. The real part of Eq. (18) can
then be written as

-2(m„'-mq') Ime

=Ref( Z 1&~I&~l ~'& I'- r 1 &~1 &
I ~'&&) .

Vn =j &n =-&

Besides Eq. (18), unitarity also requires

2~,m, =Z)&s)T) p&)',

2I' m =P ) &n ) T ) «» )
.

(20)

(21)

(22)

If we again choose the complete set of states ) n& as
the set of definite G-parity states, we obtain

1+ Iel' r.m. -r,m,tan
1 [ei' m ' nz'

QP P

(24)

Thus, using the unitarity condition and the fact
that the G-parity-violating transition amplitudes
are small, we can obtain an explicit formula for
the phase of the mixing. With )

c)' very small, the
phase of the p-& mixing parameter is

cu u P=an F
(d P

(25)

which is exactly the same result of Gourdin et al. '
For the purpose of direct comparison, we shall
use the values given in Ref. 1:

m~=773 MeV, FR=111 MeV,

m =783 MeV, F„=12MeV, (26)

2(i'.m. —I,m, )

&n I r I rP&
& Zl &~ I

& I
~'& &')-

'n =& &n=-&

(23)
Equations (20) and (23) yield



to find that

P, = 101' (mod 180'). (2V)

It is worth noting that the uncertainty in the value
of the p width does not modify significantly the
value of P,. If the relative phase of the photon-
vector-ineson couplings f~z and f &

is taken to
be of the order of 10,' the relative phase of the p
and co production amplitudes in e'e - m'm is then
equal to 111'(mod 180') compared to the experi-
mental value of 164 +28 .'

where ~ and e' are mixing parameters. In terms
of the states of definite 6 parity ~P') and

~
/d &, we

have

1
I P) (I i

P P)l/8 ( I P

1
I ~& =(„~,~.}„.(I ~'&+ ~ I p'&}. (31)

The difference between the off-diagonal elements
of the mass-matrix W in the

~ n& and ~a& basis is
equal to the difference of the off-diagonal elements
of W in the (p'& and ( co') basis:

&KIWI ~& —&~ IW I ~& =&~'IW IP'& —&P'IWI ~'&

(32)

The definitions (3) and (4) of
~
po) and

~

ru') have
been used to obtain (32). Since in &p ~

W
~

aP& and
&t~'i W

~
p'&, only the electromagnetic interaction

can cause a nonzero connection between two states
of opposite t" parity, the time-reversal invariance

III. TIME-REVERSAL INVARIANCE IN

THE p-m SYSTEM

In this section, we shall present a systematic
study of the condition imposed by time-reversal
invariance and unitarity on the relative phase and
strength of the p-&o mixing. We shall then point
out that the experimental values of the relative
phase and mixing strength obtained in an earlier
experiment by the Orsay group~ appear to violate
the condition set by T invariance and unitarity.

As is well known, the electromagnetic interac-
tion which does not conserve the 6 parity mixes
states of opposite G parities with each other and
in the most general -case, without considering any
kind of invariance for electromagnetic interaction,
one can write the mixing states

~ p) and [ ur& as

lp& [2 1 ~ p ] [(I-~'}In&+(I+~')l~&1,1

(28)

1
I ~& =

[2(l, ~, p)] .[(I+ ) i ~& - (I - «)
~ n&],

of the electromagnetic interaction would make

and hence, from (32), the mass matrix W will be
symmetric in the

~ a& and
~ a) subspace. This

would then imply

(33)

(34)

As was stressed before, this condition is also im-
posed by CPT invariance. Thus, the T (or CPT)
noninvariance in electromagnetic interaction would

imply a difference betmeen c and c'. Conversely,
the observation of a clear-eut nonzero value for
one of the expressions Re(e —e') and Im(e —e') is
sufficient to consider seriously a possible time-
reversal noninvariance in the eleetxomagnetie in-
teraction. There also exist the following relations:

Re(e —c')
&Pl & (I + i+ iR)1/2(1 + i

+z in)1/2

Im(E'+f }
&PI ) (I + i & in)l/8(l+ i

+t P)l/2 '

Since both [eP and (e')' are usually expected to be
very small, to the order of a good approximation
of 0.38%, one may have

Re(e —e') =Re&pi(o&,

im(e+e') =rm& p~ ro&.

(3V)

(38)

(41)

and the angle Qv must be such that cosQv) 0 and

singv(0. The real and imaginary parts of Eq.
(39) yield

(I 5')"+'Re&p~(u&=(in ' /n~') '-
x QQ g g g (g) pg P p

Thus, the observation of a nonzero value for.
Im&p ~ &u& would demonstrate a G-parity violation
in electromagnetic interactions independently to
any symmetry assumption, while the nonzero
value for Re&p i &u& would directly demonstrate a
time-reversal noninvariance.

The BeB-Steinberger unitarity sum for the p-+
mixing" may now be used to estimate the upper
and lower limits of Re(pi a&&. This unitarity sum

may be written in the following form:
(1+8')'"&p l(o& = i(~ ' --m ')-'

xe-"vp&ni r ) ~&&n ) T (P&*,

(39}
where

Fp Slp + FQp SlQp

2 281fd SgP



(1+5')'"Im(p (or& = -(m„' -m~') '

xaee '~& n T(u n T p*,
(48)

respectively. It is not very difficult. to find that
the contribution to the sum on the right-hand side
of E{Is.(42) and (42) comes predominantly from the
2m channel. A relatively small but finite contribu-
tion may also come from the 3m and my channels.
A contribution from all the remaining channels n
is very small (probably much less than a few per-
cent with the upper limits of available data" ), be-
cause of the smallness of both I &n I T

I ~& I
and

I(n(T (p) I. It is possible to write

q„=&2m(T(ur& j&2vr(T(p&, (45)

I~ „is the partial decay rate of ~ into the channel
n, and {()„is the relative phase of (n(T I ~& and
(nI T(p). The partial decay rates r„„and r~„
provide the magnitude of the product (n(TI(d&
x (n I

T I p&* and thereby a limit on the absolute value
of the sum on the right-hand side of E{I.(44).
Therefore, E(I. (42) can be put in the following
form:

g&n(T(a)&&n(T(p)+ =g„r~ „mp

+g (m. m)'&'(r. „r „)'~'e',
(44)

where q is the ratio of the 2v decay amplitudes
of p and &, spectively,

Re(pire)={(+IF) '"(m„'-mq') '()m(e '+q.,i'~,.mq)+ g (m m)'"(i' „('p „)"'sin(A, —{ )). (46)

For the purpose of direct comparison, are choose the values of Ref. 1 for I", 1"p, m~, and mp which yield
Qv = -81'. It is worth noting that the uncertainty in the value of the p width does not modify significantly
the value of pv. If time-reversal invariance is conserved, then Re&p I &u& = 0 and E(I. (46) implies that

Im(e '~vq, „)= — Q (m mp)'"(r „r~„)'"sin({())„-Qv),
mp p-2r num

(4V)

which leads to the following inequality:

(o ((sin(y„, -y )( M„ (48)

(m. m,)'~'(r.„„,)'~'(r „)'~'~ O.45 x�l-',
OSl p

(50)
while for the Sm channel, using the experimental
result l „-0.8VI' together with the fact that
the value of jq„( is very small and presumably
of the same order of magnitude as (O„,(, i.e.,
(q„(60.06, we derive

(m„m,}'"(I" „)'"(r,„,„)'"s0.56x10 *.
Plp p

(51}
All the contributions from other channels are very

g (m„m,)'"(r „)'"(r „)'",1

mp p-2g n~21

(49}
is the relative phase of the p-({) mixing and

(O„,I, its mixing strength. If some partial decay
rates are not known, the experimental upper limits
furnish a corresponding upper bound. The great-
est contributions to M~ likely come from the 3g
and vy decay channels Wit.h I' „z e(lual to 9.4%
of the total decay rate r and r~, z % 0.2% of r~,
%'e obtain

small because of the smallness of the partial de-
cay rates of both p and ~. A conservative estimate
based on poorly knovm upper limits of the corre-
sponding partial decay rates yields an upper limit
for such contributions probably not more than
0.19x10 '.

Therefore, the greatest value of the upper limit
for ( sin({()) —(3e)~) I must correspond to the small-
est value of (o„„(,i.e., ()} (=0.04 and hence

I sin(4(() Aw) I
~ 0 288 (55)

(r~ „rp „m mp)"'so. 19xlo '.
p p nP27r, gfI, F)'

(52)
Consequently, we may obtain an upper limit for
M~ as

M, s1.2x10 '.
This upper limit for M~ may be lowered if more
precise data for the partial decay rates of p and
e are available. The restriction on q will then
be strengthened accordingly. In order to satisfy
the T-invariance condition, the value for
I sin((()„—{t)v) I must be such that

(sin(y„„-y )(~1.2xIO-'/(n. , (. (54
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V9' ~ P ~ 119'. (5V}

Conversely, one can, in principle, use Eq. (46)
to estimate the value of Re(p I a&& with the measured
values of I q I

and P „,and may thereby conclude
that time-reversal (or CPT) invariance in the p-v
system is conserved or not. As an illustrative ex-
ample, we compute Re(p I e& with the earlier re-
sults of the Orsay experiment. ' The earlier Orsay
experiment' provides the following values for I lt „,I:

I
= o.oe+ o.o2 (58)

Iy„-y ls20'.
Consequently, unitarity and time-reversal invari-
ance require Q „„to stay in the following range of
angles (mod 180'):

and, for the p-v mixing phase in e'8 - m'm,

n~ =164'a 28'. (59)

If the estimated relative phase of the photon-vec-
tor-meson couplings f z and fpz is accepted to be
of the foQoming ordex, "

4~ —4p= 8'+ 2'i

the Qrsay experiment then yields an experimental
value for (((( as

-(4. -4p}
=156'+30 .

Equation (46) implies that the value of Re( p I &o& lies
within the following upper and lower limits:

(62)

orq numer1cally~

Re(PI(u& =(1+5') '"(m„'-mp') 'rpmp[lq I sin(P„—Q(p)+1,2 x10 '].
Hence, with the central values of (t( and lq„, l obtained by the Orsay experiment, i.e., $„„=156'and

Iq,„l=o.oe, we obtain

Re(»' —»)=(1+5') '~'(m '-mp') 'rpmp(5. 08x 10 '+ 1.2x10 ')= (4.46+1.0V}x10 ', (64)

The deviation of Re(»' —») from the zero value is
at least greater than 3.4 &10 ' and can be consid-
ered as rather great compared to I» I-0.06. Even

if the smallest value allowable by the Orsay exper-
iment is taken for sin($„- Qv), the value found

for Re(»' —») still is of the order (2+ 1.0V) x10 '.
Thus, Eq. (64) shows that it is possible to detect
a time-reversal noninvariance in electromagnetic
interaction with a careful measurement of the rel-
ative phase and strength of the p-v mixing in
e'e -m'w, provided that some impxovement can
be made in the accuracy of such a phase determin-
ation. With the statistically poor data available,
T (or CPT) invariance seems to be violated.
Whether the fault should be blamed on the time-
reversal noninvariance in the p-v system or on

the breakdown of vector-meson-dominance theory
ls a matter of taste. To oux' pre]udiced vlemy it
w'ould be safer to leave the vector-meson-domi-
nance theory intact and explore a possible T non-
invariance in electromagnetic interaction to ac-
commodate the situation. It should also be re-
marked that if the G-parity conservation is not

violated, Re(»'-») will identically be equal to zero
regardless of the time-reversal nomnvariance.
Thus, the observation of a small value for Re(»'
—») might also trigger a possibility of G-parity

conservation. This situation, however, can occur
only if e and e' are both equal to zero and there
were experimental evidences showing that this is
not the case [it was possible to estimate a value
of about O.Oe for I» I (R,ef. 1)].

IV. BREAKDOWN OF MICROSCOPIC

REVERSIMLITY

In this section, we shall investigate the relation-
ship between the time-reversal noninvariance and
'the bl'eakdowll of microscopic reversibility of the
p-v mixing system" and then show that the non-
zero value for Re(»' —») may be considered as
equivalent to a kind of microscopic nonreversibil-
ity.

Inversion of Eqs. (80) and (81) yields

lp'&=(I+«') '(I+I»'I')'"(lt»+»'l~&), (65)

After a time t has elapsed, the amplitude of a p
state changes by a factor

e, = exp[-(r pmp+imp') t],
while that of an &o state is multiplied by
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8 =exp[-(F m +im ')f].
Therefore, according to Eqs. (65) and (66), a state
created initially as I p'& will be found after a lapse
of time t to have transformed into

I p', ~& =(1+«') '[(8&+«'8~)l p')+»'(e~ -8&) I ~'&],

(6V)
while the initial state I &so& will transform during
the same time into

I&'. t&=(1+«') '[(8 +»»'ep)I4&')+»(8 -ep)IP'&] ~

(68}
Consequently, the probability to find, after a time
t, that a. p state has changed into an aP state is
I
»'/» I' times the probability to find that an ~0 state

has transformed into a p' state. Thus, the proba-
bility for a vector meson produced with a negative
6 parity to transform spontaneously into one with
a positive Q parity should be different from that
for a 6 =1 vector meson to reappear spontaneously

into one with 6 = -l. Obsexvation of this effect
manifested through I

» I
&

I » '
I

would directly demon-
strate the failure of reciprocity, i,e. , T invari-
ance.

In a similar way, we can show that the nonzero
value for Re(»' —») may be regarded as equivalent
to the breakdown of microscopic reversibility in
the transformation of the fictive states

I n& and I n).
ln fact, inversion of Eqs. (28) and (29) yields

I n& = [2(1+«')] '([2(1+
I
»' I')1"'(1-») I p&

+[2(1+ I» I')]'"(1+»')
I ~)]

(69)

I ~& = [2(1+«')] '([2(1+
I
»' I'}1"'(1+»}

I p&

—[2(1+ I » I')]"'(1—»')
I ~ &].

(VO)

After a lapse of time t, the states created initially
as I n& and

I a) have transformed into I n, t& and

I n, f&, respectively, with

I & t) =[2(1+«)] '([(1 —»)(1 —»')e +(1+»')(1+»)e ll &&+(1+»'}(1—»)(e -e ) I &&)

I n, t& =[2(1+«')1 '((1+»)(1—»')(8, -8 ) I o&+ [(1+»)(1+»')ep+(1 —»')(1 —»)8 ] In&1. (V2)

The probability for an n state to transform into
e after time t is

I(1+»')(1 —») Pie, -e I'
CCK 4 I 1+&c' I' (V8)

while the probability for an o. state to change into
z in the same time is

I(1- ')(1+.) P Ie, -e.P

4ll+»» P

called "superstrangeness" and then consider I n&

and I 8& as states of positive and negative '"super-
strangeness, " respectively. The superstrange-
ness quantum number will perhaps be conserved in
the absence of all kinds of interaction. When

other interactions are turned on, the superstrange-
ness is no longer conserved and the vector meson
states I p ) and

I &g ) of definite G parity ought to be
defined as incoherent mixtures of these opposite
superstrangeness states:

P -(t) P„{t) 2[Re-»(1-+ I»' I') -Re»'(1+ I» I')]
P -(t)+P „(t) (1+ l»i'}-(1+ I»'I'} —4Re»Re»'

= 2Re{pl a&&, (75)

I
~'& =~2 ( I o.& —

I ~&),

I p'&=~2 (le')+ ln&).

(V6)

(VV)

tothe lowest order of I»l and I»'I. Consequently,
the breakdown of reversibility in the transforma-
tion of lo» and ln& states is equivalent to the non-
zero value for 2(Re» —Re»'), i.e., the discrepancy
in the p-co mixing phase.

Although it was possible to relate the 7.
' nonin-

variance manifested through Re(»' —») eO to the
breakdown of microscopic reprocity in the trans-
formation of the states

I n& and
I n&, admittedly,

the physical concept of these states has not yet
become clear to us. Highly speculatively, we may
tentatively create a new' kind of quantum number

Within this assumption, the breakdown of reversi-
bility discussed above may be seen as the inequal-
ity between the probability for a positive super-
strangeness state

I n& to change into a negative
superstrangeness state I n& and that for

I n& to
undergo the inverse transformation,

V. GRAPHICAL REPRESENTATION OF TIME-

REVERSAL INVARIANCE IN THE p-u MIXING

The condition imposed by T (or CPT) invariance
in the p-co system on its mixing phase and
strength can best be seen by plotting it on a graph.
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%'ith the available data, "the upper. limit of the sum
on the right-hand side of Etl. (83) is estimated to
be 0.77x10 ', i.e.,

being within the curved rectangular box A, the al-
lowed strip for q, „ is widened with its boundary
lines now displaced from t by

M', ~ 0.77x 10-', (84) I =—[lq, „l,.„sin(y, ,"-v-y )-M', ]=1 (88)
and the value of C is given by

C=O.BVI' /I', =9.4x10 '.
Consequently, unitarity and time-reversal invari-
ance require

I&l l»n(0. -4 w) l«»x &o
'

where Pz is the phase of g. In Fig. 2, the complex
vector g has to lie in a band of width 2M~ = 1.50
x 10 whose IQedian line is the t axis. One deduces
that for a given g„„the limits between which q3~„

must lie, if g is to be in the unitarity T-invariance
band, are straight lines parallel to the t axis and
displaced by

h, = [-lq„l sin(y„'* —m- y )+M',],1

respectively. These are shown by dot-dashed
lines in Fig. 2. %ith

lq..l..=0 o4, . lq, .l. =0 08, .
(f)

Illsx —I88

the numerical values of 5, are

(89)

(90)

a, =—[lq, .l sin(y„„—v —y~)+I', ],1
, (87)

5 =0.111. (91)

respectively. These are shown with dashed lines
in Pig. 2 with the central value of q„, vrhereby

a, =0.617 and a =0.453. The complex vector @3~
must, therefore, be within a band reflected through
the x axis from the one just mentioned. For q„

The corresponding strip is shaded and indicated
by 8 in Fig. 2. Since the experimental value of

l q„ l
which might be obtained from the experiment

with e'e - 3m is unlikely to be very much greater
than lq„„l, the condition set above on q, „seems
to demonstrate that time-reversal invariance is

I
I

I

I

I

)I84
~,48

I tl

I
i
I ) I

I
(

I

I

(98 I
I

I

9
l

&ss

9
3

Io~ X

FIG. 2. The curved rectangular box A indicates the experimental value g«given in Ref. 1 with its central dot corres-
ponding to the central value of q«. Unitarity and time-reversal (or CPT) invariance require S to fall within a narrow
strip whose median line is t and whose width is 2M+. With the central value of q«, q&~ is required to be within a band
limited by dashed lines, while with other experimental values of q«given in Ref. 1, q3~ must stay within a widened
strip limited by dot-dashed lines, shaded and indicated by B, if the conditions imposed by unitarity and T invariance
are to be observed.
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8 = cos —ln„ I
sin{pm~ —v —Pz) -M'r

~n3. ~ C

(93)
Actually, time-reversal invariance requires not

only g3~ to lie within the strip 8 mentioned above
(this is the consequence of Re& =Res'), but also
imposes a second condition which is either

I
e

I

= le'I or 1m' =Ime'. If the transition amplitudes
via e.m. interaction from the states of definite 6
parity lpo) and l&P& to Sv and 2v states, respec-
tively, are negligible, I

~ I
=

I
~'

I implies

Inn, I
= ln" I. (94)

In fact, the p and w states can be written in terms
of lp'& and I'cg'& as

not conserved. It is worth noting that even if In, „I

exceeds 5, but is smaller than 5„ the phase Q„
is still limited to be in the following range only.'

90'+4w —8 - 4s. -90 +4w+e.

with

when g,„ is in the left-. half of a plane divided by
the I; axis and if

M'
I sin(P, „—Qv —180')

I
& C+ Iq„ l

(103)

which, with the avaUable experimental data, yields
similar conditions imposed by unitarity and 7." in-
variance on P,„as obtained previously:

V9' ~$„„~119(mod 180'). (104)

Rigorously speaking, usually (SwlT lpa) and

(2 vlT I&/& though small, are not, however, iden-
tically equal to zero. Therefore, without exclud-
ing these terms, Eqs. {97)and (98) yield

QL+ 6
~Ã'F f ~P ~L

In. , I&- [In..I sin(180 + y —y..) —I',1,
(102)

when q„„is in the right-half of the plane. Condi-
tions (101) and (102) imply

I p&= I
p'& —~'

I
~'&

I ~& =
I
~'&+ ~ I

p'&.

Prom Eqs. {95)and (96), one obtains

(2m i T I aP& + e(2v I T I p')
(2m i T I po) —e'(2m i T Ice )

(95)

{96)

(97)

. Qm-6
~3% $ + pe y

2

respectively, with

~, =(»I T
I
~'&&(» I

T
I p')

and

(106)

(3v I T I po) —e'(3 v I T I aP&

(Sv I T I aP&+ ~(Sv I T I p')

Consequently, if (SvlT Ip') and (2vlT Iu&'& are neg-
ligible, Eqs. (97) and (98) become

(98)

and

I n„ I
&—[ ln „„I sin(y„- 180 —y ) -M', J,

(101)

respectively. Hence, the time-reversal invariance
condition e I

=
I
e'

I
may be expressed equivalently

by ln„ I
= n„l. Thus, Eq. (94) says that n, „, be-

sides being confined into the allowed shaded strip
gg, must also lie within a circular strip of external
and internal radii equal to 0.08 and 0.04, respec-
tively. With the existing experimental value for
q«, indications are that time-reversal invariance
may be violated, because this kind of symmetry
imposes, with such a value for q«, a value for
In„l very much greater than In„„l, and this of
course cannot be accommodated by condition (94).
For a given value of ln„, I, the conditions imposed
by T invariance are to be observed if

~.=(Svl T I p'&&(»IT I
~'& . (108)

The T-invariance condition Ill= le I
is now equi-

valent to

In.. ~I = Ins. ~—I ~

Equation (109) says that the complex vector e must
lie within a curved rectangular box A, ' obtained by
displacing the curved rectangular box A. by -a,
while Eq. (110) means that -e' has to stay within

a strip 8' obtained by the same displacement of
the shaded band 8 mentioned previously, if Res

In current practice, one considers the 6-violating
transitions of I

&o'& and I po) to 2v and Sv channels,
respectively, as possible only through an emission
and absorption of at least a virtual photon'; con-
sequently, it is expected that (2vlT I &a'& is one or-
der of n smaller than (2vlTlp). So is (SvlTlp)
relative to (Sv IiT I &uo&. o, is the e.m. structure
constant with its numerical value, 37 0.72x10 '.
Thus, from Eqs. (105) and (106), one can have
approximately

(109)
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=Res and unitarity are to be satisfied simulta-
neously. Now, to fulfill the second condition im-
posed by T invariance, ~e( can be equal to (e'(
only if the allowed area B' of -c' overlaps the
circular strip of external and internal radii equal
to 0.04 and 0.08, respectively, and centered at 0'
which is obtained by displacing 0 by -a. It is
quite obvious that these requirements yield the
same conditions (103) for the phase p„, because
the whole new figure, referred to the figure of the
previous case when e is neglected, just appears
to be displaced altogether by a very small length
—Q.

In brief, in the graphical representation I (Fig.
1), unitarity and time-reversal invariance require
q„, to lie near the t axis at an inclination of

1 P P QJ QJ

mb) mp

to the positive real axis. The distance of g„, from the
t axis is the measure of the magnitude of G-parity-
violation amplitudes in decay channels other than
2m and can be bounded by a quantity M~ determined
by the partial decay rates (or their upper limits)
of those modes. In the graphical representation
II (Fig. 2), unitarity and time-reversal invariance
require

snZ O~x+ 'rl3%

P ~3fl'

to lie near the polar axis t at an inclination P~
= -81' to the positive real axis. The distance of
Z from f is a measure of G-violation amplitudes
in channels other than 2w and 3m and can be bounded

by a quantity M ~ determined by the partial decay
rates (or their upper limits) of those modes. This
restriction on Z implies that corresponding to an
experimental value fo.".. g„determined by the
earlier Orsay experiment, ' g„must lie within a
shaded band limited by the dot-dashed lines and
indicated by B in Fig. 2. Besides, time-reversal
invariance also requires g„ to have its magnitude
of the same order as ~q„~. It is unlikely that
these two conditions can be satisfied simultaneous-
ly with the available experimental value' for q, „.
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