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We calculate the radiative corrections to the mo ~ ye+e decay ovex the whole range of the
Dalitz plot, with Qo xestrictions on the radiative photon energy. The corrections are found
to be negative and large in magnitude in the region of lax'ge invariant mass of the Dalitz pair,
Rnd sIQR11 but positive fox' small values of the sRIne quantity. TI18 total correction to the
decay rate, defined by I' (m ~ ye+e )/I'{x yy) is positive Rnd agrees with the results of
px'evlous calculations.

Radiative corrections to the general process

A~Be e

were calculated recently by Lautrup and Smith, '
using the soft-photon approximation. In this paper
me concentrate on the specific decay
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and include the hard-photon corrections so that our
results are valid over the whole range of the
Dalitz plot.

Interest in this process stems mainly from the
possibility it affords of measuring the strong-in-
teraction effects at the pion vertex. Since these
effects are small, radiative corrections become
important in such measurements. '

The branching ratio I'(w -ye'e )/I'(v -yy) wa, s
calculated by Dalitz in 1951 with the result (ne-
glecting strong-interaction effects):

I'(v'-ye'e ) 0 011851(v'- yy)

Radiative corrections to the decay rate were
calculated analytically in Ref. 1 and the result
agrees with a previous numerical evaluation by
Joseph4:

r(vo-yy)

Experiments performed so far (or possible ex-
periments at the Los Alamos Meson Facility) use,
however, the differential decay rate, and hence
require radiative corrections to the latter. Such
experiments are designed to detect only the Dalitz
pair, with no attempt at measuring the photon
energy, which is necessary for the application of
the soft-photon approximation in the radiative
corrections. ' The problem is further complicated
by the ambiguity due to the identity of the radia-
tive and decay photons. These difficulties are
solved by removing the restriction that the radia-
tive photon be soft. This we do in the present
calculation.

In Sec. II we introduce our kinematical variables
and present the lowest-order differential decay
rate and the virtual-photon corrections to it. The
discussion here follows almost identically the one
in Ref. 1. Section III contains the matrix element for
the bremsstrahlung corrections, and a discussion
of phase-space integrals. We present our results
in Sec. IV. In Appendix A we give the spin-and-
polarization sum of the square of the bremsstrah-
lung diagrams, and list some phase-space inte-
grals in Appendix B. Finally, in Appendix C we
discuss the infrared-divergent integrals.

II. LOWEST-ORDER DIFFERENTIAL DECAY

RATE AND VIRTUAL CORRECTIONS

In this section we quote the necessary definitions
and main results of Secs. II-VA of Ref. 1 as applied
to the pion decay.

The process m -ye'e is presented, in lowest
order, in diagram (1) of Fig. 1. The momenta of
the pion, photon, positron, and electron are de-
noted by p, k, q„and q„respectively. The in-

variant mass squared of the Dalitz pair (in units
of m, ', m =pion mass) is

fx+0a
2 ~

mn

The variable y is defined as

2p (q, -e.)
m, *(1—x)

(2.1)

(2.2,)

We also define the matrix element. for the decay
of wo into two photons (which may be virtual) by

f(p /m~, k, /m~, km /m, )

pvpa 1 2kl 2 y
p v p a

where F is a dimensionless constant, and f(p'/I
k, '/m, ', k, '/m„') is the "form factor" of the v'

normalized to

(2)

(4) (5)

FIG. 1. (1) Lowest-order diagram for the decay m

ye+e . (2), (3) Virtual corrections. (4), {5) Brems-
strahlung corrections.

f(1,0, 0) =1.

The decay rate into two real photons is given by

r, =r(+-yr) = m„iEi'
64m

We can write for the lowest-order differentiaI
decay rate
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1 d'I'(v'-ye'e )
I 0 dxdp

= —
l f((, 0, x) I'

4 (( +&'+ —
)

For the electromagnetic vertex in diagram (3)
we write

(F(2)+F(s)) qa q). )( F(2)
I

(2.3)

1 di'(v'-ye'e )
I'0 dx

= —; lf((, o, *)!' ~3„P((+2„)

where (m = electron mass)

p (2) o! 1+2p
in/

v 4p

1 2'P [Li,(1-&)--,'v'+-,'In'&]
2p

+ 1 + ln+ ln
1+p' m

4m' ( r' "'
p=i1 ——

X

The limits on x and y are given by

(2.4)

where the dilogarithm Li,(x) is defined as

» X» p-y--p
"ln(l —f)Li,(x) =- djp

t

The radiative corrections to d'1"/dxdy are writ-
ten as

d 2F cad d IF
=5 x, ydxdy ' dxdy

and X is the photon mass (infrared cutoff}. [Note
that in E~(') defined in Eq. (5.5) of Ref. 1 the factor
—,'v' should read -', ))'.] .

In terms of these functions we have

(2.5)
5. ,(x, y) =5,(x) +5,'(x) +5,"(x,y), (2.7)

dp IRd

= {)(x)—.
dX dX

5 is naturally divided into two parts,

& = &~t+ &b.em

5~t is obtained by considering the interference of
diagram (1) with diagrams (2) and (3) of Fig. 1,
which contribute through the second-order renor-
malized photon spectral function and the electro-
magnetic form factors of the electron. ' The former
is given by

11"'(x)= —[a- —,'P'+ P(-,' -~P') Iny], (2.5)

5,(x) = -211'"(x),

5;(x) = 2(F,'"+F,'"),

5. (x) =5,(x)+5,'(x)+5,"(x), (2.S)

5,"(x,y) =2''(x) 1+/ +J' /X

[Equation (5.8) of Ref. 1 contains a misprint. It
should have a factor of 2 on the right-hand side to
agree with the equation for 62'(x, y).]

Similarly,

with y = (1 —P)/(1+ P).

HI. BREMSSTRAHLUNG CORRECTIONS

%e compute 5b, through

d 2pbrem d 3~
5~ (x, y) =

dxdg dxdg
(3.1)

d'I' " /dxdy is obtained by considering diagrams (4) and (5) of Fig. 1, plus two others obtained by inter-
changing the radiative and decay photons. The amplitude is given by

M= ' *,' " u(q, )[(((,(-/, —j({,-m) 'g, +g,(g, +$, -m} 'g, ]o(q,)+(k,-k,),e'F f(1,0, l,'/m„')
1

(3.2)

where I, =q, + q, +k„a,„=e„,~sr,"k~Pl, , and e~(k, ), em (k,) are the polarization vectors of the photons with
momenta k„k„respectively.
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As discussed in the Introduction, the strong-interaction effects are expected to be small, hence we ne-
glect the variation of f(1,0, l,'/m „') with respect to the photon momentum k„ i.e. ,

f(1,0, 1,'/m, ') =f(1,0, x+2k, (q, +q,)/m„'). =f(1,0, x).

In fact, one usually writes

f(1,0, x) =1+ax+ ~ ~ ~

where a is the "slope of the form factor",' hence we are neglecting terms of order ax 5b, which is surely
justifiable since a is a small number. '

The differential decay rate is given by

dl' ' =
4 2 , Q [M ~'d'q, 6(q,' -m')d'q, 6(q,' -m')d 'k, 6(k,')d'k, 6(k,')6'(p —q, —q, —k, —k, ) . (3.3)

spina, pni

%e have suppressed all the 8 functions in Eq.
(3.3).

Vfe define Tr by

IM['=(' ) Tr. (3.4)

The structure of Tr, which is essentially the
trace of the y matrices occurring in ~M ~', is best
seen by examining the various propagators in-
volved. There are six of these:

A. =kq'qj, B=kj' q2, C =k2 q~, D =k2«q2,

E = (qs + qn + ks ), E = ( qi + qn +. kn)

so that our five independent variables become g,
y, xz, A, and 8, since

C =L'q~-A, D =L 'q2-B~
(3 5)

E =m, x+2A+2B, E=m, n(l - x )-2A —2B,

I -p —qq —q2 —kq+k2,

l. q, =-,'m„'[(1 —x)(1+y)-x~],

1. q =-,'m '[(1-x)(l-y)-x].
Because the two photons are i.dentical, the ab-

solute square of the sum of diagrams (4) and (5)
in Fig. i is equal to the one obtained by inter-

not all of which are independent because

Q+g —2E -C +D —PI" .
As discussed below, the integration over phase

space is considerably simplified by introducing
the invariant mass squared of the two photons (in
units of m, '),

(k, +k,)'

I

changing the photons. Further simplification oc-
curs when we use this symmetry on individual
terms (e.g. , 1/E =1/F, 1/AE =1/CF, etc.).

The trace was taken on the Brookhaven CDC
6600 using the SCHOONSCHIP program developed
by M. Veltman. Only terms up to order m' were
kept. The result, after applying the identities dis-
cussed above, is given in Appendix A.

%e now turn to the phase-space integrals. Con-
sider

Jd'q, 5(q,' —m')d'q, 5(q,* -m')d'k, 5(k,')d'k, 5(k,')

x 6'(p —q, —q, —k, —k, ) Tr(x, y, »~, A, B);

this can be written as

(1 —»)dxdydx&Z [Tr(x, y, x~, A, B)],

where 4 is written as an operator

i d kq d k2' 5 (P —qi —
qn

—k~ —km),
2m k,o k2

and is essentially an integration over the direction
of one photon momentum, affecting only A and B.
The results, for various combinations of A. and 9,
are given in Appendix B.

Equation (3.3) can thus be written as

d Ip basal
~f [

n

1'n dxdy &4 v

dx&J Tr x y x&,A 8; 3.6

the limits on x„are
X2 g2 ' 1f2

m.' ~x ~1+»- 4»+ —(1-x)'
p8

where X is again the photon mass which is set
equal to zero except in the infrared-divergent in-
tegrals There are. three of these, since (see Ap-
pendix B) 7 [1/An], 8 [1/B"], and J[1/AB) behave
like 1/»„, so that there is a logarithmic divergence
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upon integration over x (whenever no x~ appears in the numerator). These integrals are evaluated in ap-
pendix C with the results:

(S.V)

dx = — 4 lny ln —— 4 2 ln I + -,' ln ', —ln I - —, ~
lny

) —(), )+p „, )()+))),L. v()+()) L )'() —()) L,. 'v( ) )))I-

Substituting these expressions in Tr and extract-
ing the divergent part of

1 1

through

AE m~ xA. m, x AE A. E

I

and a similar expression for &/IIX, we see that the
divergent part of d I" /dxdy cancels against the
divergent part of d'I" /dxdy = 5~d'I'/dxdy.

The integration over x& for the rest of the terms
is performed numerically to obtain d'I'~ /dxdy
and 5b, {x,y) through Eq. (3.I), which, when com-
bined with Eq. (2.V), yields 6(x, y) =5~,{x,y)
+5b (x,y), the radiative corrections to the Dalitz

TABLE I. 6(x,y) given in percent for a range of values of x and y (i.e., the Dalitz-plot corrections).

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.10
0.15
0.20
0.25
0.30
0.36
0.40
0.46
0.60

0.65
0,60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
0.99

0.00

2.77
2,77
2.70
2.60
2.48
2.37
2.26
2.14
2,02

1.90
1.33
0.77
0.21

-0.35
-0.92
-1.50
-2.11

-3.42
-4.15
-4.95
-6.84
-6.86
-8,08
-9.60

-11.67
-16.11
-22.86

2.72
2.74
2.67
2.57
2.46
2.35
2.23
2,12
2.00

' 1.88
1.31
0.75
0.20

-0.36
-0.93
-1.51
~2y12
-2.76

-3.43
-4.16
-4.96
-5.85
-6.88
-8.09
-9.61

-11.69
-15.13
-22.87

0,20

2.61
2.64
2.58
2.49
2.39
2,29
2.17
2.05
1.94

1.83
1.26
0.71
0.15

-0.41
-0.97
-1.56
-2.16
-2.80

-3.47
-4.20
-6.00
-5.90
-6.92
-8.14
-9.66

-11.73
-16.17
-22.92

0.30

2.46
2.50
2.45
2.36
2.27
2.17
2.06
1.96
1.84

1.73
1.17
0.62
0.07

-0.49
-1.06
-1.63
-2.24
-2.88

-3.55
-4.28
-5.09
-5.98
-7.00
-8.22
-9.74

-11.82
-15.26
-23.01

0,40

2.28
2.32
2.27
2.19
2.10
2.00
1.90
1.79
1.69

1.58
1.03
0.49

-0.06
-0.62
-1.18
-1.76

2,37
-3.01

-3.69
-4.42
-5.22
-6.11
-7.14
-8.36
-9.88

-11.96
-15.40
-23.15

0.50

2.07
2.09
2.04
1,96
1.87
1.78
1.67
1.67
1.46

1,36
0.82
0.28

-0.27
-0.82
-1.39
-1.97
-2.58

3y21

-3.89
-4.63
-5.43
-6.33
-7.35
-S.57

-10.10
-12.18
-15.62
-23.37

0.60

1.79
1.79
1.73
1.65
1.56
1.46
1.36
1.25
1.15

1.04-

0.51,
-0.04
-0.58
-1.13
-1.70
-2.28
-2.89
-3.53

-4.21
-4.95
-5.75
-6.65
-7.68
-8.90

-10.43
-12.51
-15.96

23y7 1

1.41
1.37
1,30
1.20
1.10
1.00
0.90
0.79
0.68

0.57
0.03

-0.51
-1.06
-1.61
-2.18
-2.76
~3+38
-4.02

-4.70
-5.44
-6.25
-7.15
-S.18
-9.41

-10.94
-13.02
-16.47
-24.23

0.80

0.81
0.72
0.62
0.51
0.39
0.28
0.17
0.05

-0.06

-0.17
-0.73
-1.28
-1.83
-2.39
-2.98
-3.56
-4.18
-4.82

-5.51
-6.26
-7.07
-7.98
-9.01

-10.24
-11.78
-13.87
~17g32

-25.08

0.90

-0.36
-0.52
-0.68
-0.83
-0.97
-1.10

1023
-1.36
-1.48

-1.61
-2.20
-2.78
-3.36
-3.93
-4.52
-5.13
-5.75
-6.41

-7.11
-7.87
-8.69
-9.61

-10.65
-11.90
-13.43
-15.53
-19.00
-26.-76

-5.64
-5.82
-6.07
-6.30
-6.51
-6.71
-6.89
-7.07

7,23

-7.39
-8.14
-8.83
-9.49

-M.14
-10.79
-11.45

12 013
-12.84

-13.58
-14.37

15+23
-16.18
-17.26
-18.53
-20.10

22 y23

-25.72
' -33.51
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50-
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FIG. 2. 5(x,y) given in percent for x= 0.01, 0.15,
and 0.50.

plot in x andy.
A further integration of Eq. (3.6) over y gives

dF "m/dx and thus 5b„(x) defined by

dI' " dI'
5b, (x)—

IV. RESULTS AND DISCUSSION

Table I gives the radiative corrections to the
Dalitz plot and we draw 5(x, y) for various values
of x in Fig. 2 (only positive values of y are used

4-

-4-

adding to this the right-hand side of Eq. (2.8), we
obtain 5(x).

Finally, we integrate Eq. (2.5) to obtain I'™,the
correction to the decay rate of m'-ye'e .' We dis-
cuss our results in the following section.

I

LO

-IO
00

I

Q2 Q4 06 Q8
X

FIG 4 Plot of (dl' /dx)/(0. /7t) I'0 as a function of x

since the corrections are symmetric under y- -y).
We see that 5(x, y) changes sign {for small values
of x) as y increases and becomes more negative
for larger values of x.

In Fig. 3 we plot 5(x). For xa0. 15, 5(x) is nega-
tive and rather large in absolute value. However,
as suggested in Ref. 1, the corrections become
positive for small values of x (where one could not
use the soft-photon approximation) and this region
is important in calculating the radiative corrections
to the decay rate, since most of the contributions
to f(dI'~/dx)dx come from this region. The rea-
son for this is, of course, the well-known 1/x be-
havior of the nonradiative differential decay rate
[Eq. (2.3)], which more than compensates for the
small values of 5(x) in the small-x region. This
is seen clearly in Fig. 4, where we plot (dl" /dx)/
(a /w)'I' Oversus x [the extra factor of (n/v)' is in-
cluded for convenience]. The 1/x enhancement and

(1 —x)' suppression (for large x) is obvious.
As a check on our calculation, a final integration

over (I/I;)(dl'"~/dx) [removing the extra factor of
(n/v)'] yielded the value of 0.95x 10 4 as the cor-
rection to the branching ratio, which compares
favorably with 1.05x 10 4 quoted in the Introduction.
The 5% difference is due to numerical inaccuracy
in computing the three-dimensional integral which
is very badly behaved for small values of x. How-

ever, the values given in Table I involve only the
integration over xz and are accurate to 1%. The
value 1.05 x 10 ' was obtained using the fourth-
order corrections to the photon propagator. This
calculation neglected the interference between dia—

-l2-

"l6-

-20-

00 02 04 06
X

08

FIG. 3. 5(x) given in percent as a function of x.

I
I
I

FIG. 5. Example of a byo-photon-exchange diagram
which is proportional to the electron mass and can be
neglected in our calculation.
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grams (4) plus (5) in Fig. I and the corresponding
photon-exchanged diagrams. In Ref. 1 it was
argued that the contribution of this interference
term is negligible since it reduces to a two-photon-
exchange process which, as has been shown by
Brown, ' has no divergence in the lepton mass. %e
have checked this explicitly by omitting the inter-
ference terms and found that I" changes only by
about 0.3%.

It is for the same reason that we neglect two-
photon-exchange diagrams Iike the one in Fig. 5,
whose interference with the basic diagram (1) of
Fig. 1 is of the. same order in e as the corrections
we have considered. The contribution of Fig. 5,

however, is weO known to be proportional to the
lepton mass, so me are justified in neglecting it
completely.
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APPENDIX A

Here we list the expression for the trace of the bremsstrahiung diagrams as defined in Eq. (3.4).

Tr =32+16—+16—+8m m (1+xy -y —x )—+6m m (y- -y) —+8 " [(I —x) (I -y )+x ]a A 1 m'm. '
W AB
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APPENDIX B

Here we give the basic integrals

"f'""'=2. b
'

b

«'(p - e. q, —&i —&a)f (&—, &)

with fixedx y ~ and xy. The photon mass is s
equal to zero because the divergent int eg ral s are
treated in the next appe ndix.

The general procedure is to evaluate the integral
in the rest frame of the particles whose momenta
appear in the denominator of f(A, B). We shall
need the following def initions:

L ~ n' ~ L, =(L ~ m ~x )'&3 ~

2

p, = ' [1+x-xz+y(1 —x)]

L0,60 —L P
1

-m, 'y(1 —x} m, 'x
qg

= '4L i qM = 2' - m

/ 2 2il/2 ~ 02q10 ql
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~ 0 lq20 q2 ~

q20 q10 ~ q28 ~1
8 2
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16m'

2
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I, p=~, '(1-x+x,); I,, = "(l-x-x,);~ 1 2 mr

L =(L ' —m, 'x,)"';

c, =m„'[(I.„-x,p, )' -m„'xx,]
6

b, = " (-(1—x~)' - y(1 —x)[(1—x„)' —x(1 +x„)]

+ x(1 —x~)(2 + 2x~ —x)]
2 2 ~ 1 4 2 2 ~

cg = (L~L q, ) —m, xyL&L Q&q&z + 4 & y Qz
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With the above definitions the basic integrals are
given 4f

v[1]=1,

1 1 ~n

BC mMcp

8 1
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Letting y- -y one obtains corresponding ex-
pressions for q, —q„e.g. , J [A/B] =Z[B/A],

Relations (3.5) can be used to obtain the integrali
not listed above, e.g. ,

1 2

AEEC L, 1
' EI'"C

APPENDIX C

We now evaluate the infrared-divergent inte-
grals. First let us consider

d'k V(m„'x„-2L k+X')J dx ——
y g y Q Q ~ q Q ~ q

1 1 mWx+ Lp+ IJ —= ln
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0

d'k 5(m, 'x, -2m, vÃ„k, +~')
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(we are working in the L =j—q, —q, =0 frame).
Writing
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~01 +m ff +'Y q2s ln ~01 ~l
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2 L21
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Z 4 2m' xI,

m, q (1 ) l mWx+Lp+L
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J = ln~,1 1 n

EC mac, d, '

A~ = o)q~p+(1 —cK)qpp~ Ap =
~ txq~+(1 —(x)qp ~ ~

I q1 , I q2

% "y r "y

z =cosine of the angle between k

and [(rq, +(1 —o.)q,],
k=/k/,

X(q X x)=2Jdxx X(m xx —2m„Maya xx )
)

A dk dz
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dx~(m 'x1'- X')

(A,'-A, ')(m „'x,—~')'+4, 'x„A,*~'

Al -Al =m +m„n(1 —n)i x-2 8 3 2

m„

&C2)

and is independent of x» vrhile

4m, 'x„A,'~' =-,'m„'X'[(1- x)(2ny+1-y) —x„]';
however, the Xl terms are important only for x&= X2/m, l. Hence we can write

m ' 2 (A: '-A ')x '+-'X'(1 —x)'(2ny+1-y)'

2 4(xm~) (A A ')
m, '(A, '-A.,') X*(1—x)'(2ny+1-y)' '

At this stage we calculate JZ[1/B']de by putting n =0 in the above equation, A,~ -A, ' =ml, to obtain

Similarly,

Returning to the evaluation of JJ[1/AB]dx„, we write for Eq. (C2)

K(fl& fl& ) Dlv oowv

( m
K&lv —

l( g A 2) ~

111 +111
1

2 A~ -A~~v m„'(A,'-A, '-) m*(2ny+1-y)'

Using Eq. (Cl) we obtain

m 2'dn Kn~= 4 ln —+ln
1 lny,

0

where P and y are defined in Eqs. (2.4) and (2.6).
Obsel'vlng that Jo dnKmsv ls sljmmetrlc under y » p~ we ca-ll write [letting n p (1+ n)]

1 — P' 4m' 1 —n'y'

4 y' 1 m„'x . 1 —P . 1+P
ln 1-—, ——ln ", lny+Li', —Li,

m, 'xP P' 2 m' 2 2

,L„. y(1+P), L„. y(1+P) L„. y(1 P) L„y(1-P). -
(C4)

Adding Eqs. (CS) and (C4) we obtain Eq. (2.7) for JZ[1/AB]dx„.
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We use the unitarity sum to rederive in a simple way an explicit formula for the p-co mixing
phase in terms of ~e~, r» 1 &, and m~2-m&2. We then present a systematio study of the
condition imposed by T (or CPT) invariance and unitarity on the relative phase and strength
of the mixing. It is shown that the departure from T invariance in the p-v system is, in
principle, directly demonstrable through the measurement of the p-co mixing phase in e+e

The connection between the phase discrepancy and the breakdown of microscopic
reversibility is also discussed. Finally, bvo possible graphical representations for the p-~
mixing parameters which exhibit directly the condition imposed by unitarity and time-rever-
sal invariance on the relative phases and strengths of the p-~ mixing are given.

I. INTRODUCTION

The discovery oi the 6-parity-violating effect"
u-2m' seen as an interference dip in the p-& spec-
trum has reactivated the proMem of p-ru mixing in
recent years. ' ' In this paper, we wish to report
a systematic study of the condition imposed by
time-reversal invariance and unitarity on the
phase and strength of the p-~ mixing and present
a simple method of calculating the mixing phase
from the so-called unitarity sum.

Although the problem of p-co mixing has often
been claimed' to be equivalent to the neutral-kaon-
decay problem and the phase of the p-v mixing has
been estimated previously, "nevertheless, we teel
that the connection between the two problems has
not yet been thoroughly explored and the role of
the unitarity sum in the determination of the p-v
mixing phase has not yet been fully exploited.
Here, we wish to reveal gradually through our dis-
cussion this close connection between the two mix-
ing problems and then use the Bell-Steinberger
unitarity sum to obtain an explicit formula for the
p-ro mixing phase in terms of the p and v masses
and widths, assuming CI'7.' invariance. The result
obtained by us as mell as those reported recently'

seem to show that the theoretical estimated phase
of the p-~ mixing is not in excellent agreement
with its earlier experimental value. ' There has
been an attempt' to correct this discrepancy by
considering (i) not only the mass mixing of p and
e vector mesons but also their vector mixing' and
(ii) the energy dependence of i'h e p width, but the
situation is not improved much. On the contrary,
the new estimate might even widen the discrepancy,
taking into account the fact that in the latter esti-
mate, the p-+ mixing phase may be smaller than
112 which is the value estimated in Ref. 3. We
are, therefore, content with the mass mixing
alone. In view of this difficulty, we believe that
it would be interesting to consider a detailed in-
vestigation of the condition imposed by unitarity
and tlQle-reversal invar1ance on the mixing phase.
This condition might serve as a guideline for fu-
ture experiments measuring the phase concerned.
The results of this investigation will be reported
in a subsequent section of this paper. Besides, we
show' that the departure from T invariance in the
electromagnetic interaction would, in principle,
be directly demonstrable through the measured
phase of the p-co mixing in e'e - n'm alone,
should the accuracy of the determination of that


