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The scaling property in deep-inelastic electron scattering is established by regarding the
physical nucleon as a bound state of a bare nucleon and a bare meson (or a few bare mesons).
This bound-state formulation provides a fully relativistic generalization of the "parton" mod-
el that is no longer restricted to infinite-momentum frames. It also connects the scaling
property in inelastic processes with the rapid decrease of the electromagnetic form factors
in elastic scattering. Rigorous statements are derived for specific bound-state solutions of
the Bethe-Salpeter equation with the ladder approximation. An Adler sum rule is derived and
crossing properties are discussed. A general phenomenological approach is developed which
is relativistically covariant and gauge-invariant, and which allows one to correlate directly
the observed structure functions and form factors with the appropriate bound-state wave' func-
tion. If all constituents in the bound state are assumed to be of masses ~1 GeV, the model
gives a qualitative understanding as to why the scaling property is experimentally observed
at relatively moderate energies.

I. INTRODUCTION

While the validity of the scaling hypothesis' has
been well established by recent extensive experi-
menta1 investigations on inelastic electron-proton
scattering, ' its theoretical basis remains in an un-
satisfactory state. The original parton idea of
Feyriman puts a special emphasis on the infinite-
momentum frame of reference. It is suggested
that in the infinite-momentum frame, the electro-
magnetic property of the assumed pointlike con-
stituents of the physical nucleon can be treated as
that of an assembly of independent free particles.
The "infinite-momentum frame, "by itself, is
clearly not a Lorentz-invariant concept. Further-
more, one can easily show' that, in general, the
direction of the infinite momentum cannot be arbi-
trary. It must be limited to a certain restrictive
set of directions, depending on the virtual-photon
momentum; otherwise, the mass of each of the
yointlike constituents has to be lighter than that of
the physical proton, and that would be too unphys-
ical. Naturally, this leads to questions of Whether
such an ad hoc rule can be derived from a relativ-
istically invariant theory.

In the literature, there have been several at-
tempts to try to derive the scaling property from
the usual relativistic local fieM theory. So far,
the only success has been limited to either the
trivial case of free particles (free except for their
electromagnetic interaction), or the unphysical
case of a superrenormalimable P'-type theory~ in

which all particles must be of zero spin. For the
physically interesting case of spin--,' charged par-
ticles with some nonelectromagnetic interaction,
straightforward calculation in lowest-order per-
turbative expansions leads to a logarithmic devia-
tion from scaling behavior. ' In order to derive
scaling properties for such fieM theories with re-
normalizable but not superrenormalizable hadronic
interactions, it has been necessary to introduce
additional ad hoc rules, such as either a trans-
verse momentum cutoff' or the so-called "formal
manipulation" of current operators, ' etc. How-

ever, at present the theoretical foundation of such
rules appears to be quite uncertain. In particular,
the transverse momentum cutoff in the field-theo-
retical derivation of scaling leads to a formalism
and a scattering amplitude that are current-con-
serving only in the infinite-momentum frame and
in the scaling region. Therefore, it is difficult to
see how one may derive such an ad hoc cutoff pro-
cedure in a bona fide relativistic field theory.

The yurpose of this yaper is to point out that if
one regards the physical nucleon as a bound state,
then there exists a large class of relativistic fieM
theories in which, at least for the deep-inelastic
electron-nucleon scattering, the scaling property
as well as the approach to scaling can be derived
by using the conventional field-theoretical rules
for bound states, provided radiative corrections
are neglected. ' In constructing the explicit bound-
state wave function for the physical nucleon, there
is, of course, a certain degree of arbitrariness
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where q' denotes the square of the 4-momentum
transfer. The integral fo(x') dx' is assumed to be
convergent; thus,

V(q) -O(q ') as q'- ~ . (1 2)

As will be shown, this implies that as the relative
momentum k between the two "bare" particles in
the bound state approaches infinity, the wave func-
tion Q(k) of the Bethe-Salpeter equation has a sim-
ilar asymptotic behavior"; i.e.,

(1.3)

By using this asymptotic property, one can then

with respect to both the nature of its constituents
and that of the binding forces. In view of the ex-
perimental fact that the scaling limit seems to
occur at a remarkably low energy range, it seems
reasonable that the masses of the constituents and
the relevant binding energy should all lie approx-
imately in the 1-GeV range. Therefore, at least
in terms of quantum numbers, these constituents
should more closely resemble known particles
than any unknown particles, such as quarks. ' As
a first example, we assume in Sec. II that the phys-
ical nucleon is simply a twp-body bound state com-
posed of a "bare" nucleon of spin —,

' and a "bare"
meson of spin 0. The various quantum numbers
(charge, spin, isospin, etc.) of the "bare" nucleon
are assumed to be the same as those of the phys-
ical nucleon; for simplicity, we may assume its
mass to be the same as, or at least comparable
to, the physical nucleon mass. Similarly, for rea-
sons of simplicity, the 'bare" meson is assumed
to be an SU, singlet, and its mass as well as other
quantum numbers to be the same as those of the
physical X' meson. Thee is, however, an im-
portant difference between a "bare" particle and the
corresponding "physical" one. The electromag-
netic form factors of a "bare" particle are always
assumed to be independent of the 4-momentum
transfer. In the language of the parton model,
these "bare" particles are the "pointlike" constit-
uents of the physical nucleon. Whether or not such
pointlike "bare" particles that are introduced as
constituents of a physical nucleon will ever be ob-
served is an open question-as is also the case for
"guarks" —at this time. (See, however, the dis-
cussion given in Sec. V below. )

To illustrate the relation between the scaling lim-
it and the conventional field-theoretical rules for
the bound state, we adopt the Bethe-Salpeter equa-
tion with the ladder approximation. The covariant
potential responsible for the binding is assumed to
be of the general form

o(x ) dx'
Vq =

establish the existence of the scaling limit for the
bound-state solution. The underlying picture for
deep-inelastic electron scattering that emerges
provides a fully relativistic generalization of the
"parton" model that is no longer restricted to spe-
cial infinite-momentum frames. It will be demon-
strated that one may view the dynamic process as
simply the physical proton dissociating into its
bare constituents, with the electrically charged
one propagating (invariantly with a Feynman propa-
gator) until the instant when it is scattered onto its
mass shell by the incident virtual photon. The
final-state rescatterings between the bare constit-
uents will be shown to vanish in the scaling limit
so that the constituents may be regarded as being
scattered independently of one another, fust as in
the usual impulse approximation. Furthermore,
for the physical proton in which the charged con-
stituent is a bare proton of spin & so that m~W,
= (I/2x) vW„we find that as x- 1 both the W, and
vW, functions approach zero as (1 —x)', where x is
the customary scaling variable. This is rather
encouraging since it is in good agreement with the
present experimental result, unlike most spin--,'
parton models" with an ad hoc transverse momen-
tum cutoff which leads naturally to a linear (1 —x)
dependence as x-1.

The same bound-state wave function can also be
used to evaluate the electromagnetic form factors
F, and F, of a physical nucleon. Both these form
factors depend on the square of the wave function

It can be readily shown that, on account of
(1.3), as the square of the 4-momentum transfer
q'-~, apart from factors of in@', both E, and &,
are O(q ~), in agreement with the theoretical con-
clusion previously reached by others, ' and with
the threshold rule" relating the power of (1-x) in
the 8; function and the power of the q' dependence
in the elastic form factors. This result has its
parallel in the treatment of the nohrelativistic
bound-state problem with the Schrodinger equation.
Equation (1.3) is the Bethe-Salpeter analog of the
condition that the wave function, and hence the
charge density, is finite at the origin, from which
it also follows that the form factor E, is O(q 4) as
g~ 00

In Sec. II, we also discuss the forward Compton
scattering amplitude and prove an Adler sum rule,
which provides a convenient normalization condi-
tion for the bound-state solution of the Bethe-Sal-
peter equation. In addition, the crossing property
to the annihilation channel e+ e-p+ anything is
discussed in the same section.

While the Bethe-Salpeter equation is useful in
illustrating the relation between the scaling prop-
erty and the bound-state system in a relativistic
field theory, it has some obvious limitations for
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practical applications. Apart from the mathemati-
cal complexity of solving the Bethe-Salpeter equa-
tion, the covariant potential V(q) is not known, the
ladder approximation is not to be trusted, and,
furthermore, one cannot expect a simple two-par-
ticle bound-state description of the physical nucle-
on to be an adequate one; due to virtual-meson ex-
changes, there must be some additional multipar-
ticle components present. Thus, for further in-
sight as well as for practical applications, we
adopt in Sec. III a phenomenological approach by
assuming that, instead, the bound-state wave func-
tion Q is known. The W, and vW, functions can then
be directly evaluated in terms of a phenomenolog-
ical set of diagrams which are based on the usual
set of Feynman diagrams for the bound state. In
particular, the implications of the physical picture
of a proton as a bound state on the singularity
structure and Iasymptotic behavior of these dia-
grams are explored. This phenomenological de-
scription also allows us to generalize the two-par-
ticle bound-state concept to include some multi-
particle components, which in turn makes it pos-
sible for a more detailed comparison between the
present experimental results and some simple
model calculations.

In Sec. IV, a simple ansatz for the multiparticle
final state is made and the results of this model
for deep-inelastic electron scattering processes
are given. In Sec. V we first consider some fur-
ther applications of the model, such as the polar-
ization effect, then discuss some open questions,
including '%chere are these bare constituents to be
found in nature T", 'Vilhat might be the final meson
multiplicity?", and. "Is scaling an exact law in the
infinite-energy limit?", and finally we compare
our approach with some related work of others.

A. Bound-State Wave Function

The equation for the bound-state "vertex" func-
tion Q~(k) can be written as'

tO

Q~(k) =iX V(k —k')Kp '(k') Pq(k') d~k', (2.2)

II. BETHE-SALPETER EQUATION

In this section we shall discuss some general
properties of the bound-state solution of a Bethe-
Sa'lpeter equation in the ladder approximation. '~"
For definiteness, we assume the bound-state solu-
tion to represent the physical proton P, and that it
is composed of a spin--,' particle ~ (the bare pro.-
ton) of mass M and a spin-0 particle X' (the bare
meson) of mass g. It is convenient to use p„, P„,
and X„ to denote, respectively, the 4-momenta of
the particles P, I', and X'. Therefore, one has

(2.1)

k„=(m+ q)-'(qI „-mx„), (2.4)

the solution Q~(k) is a 4-component Dirac spinor
function, and the subscript P indicates that the to-
tal 4-momentum p~ acts as a constant parameter
for the integral equation. It is useful to work
directly with the wave function g~(k), defined by

S,(k) -=K,-'(k)e, (k), (2.5)

which differs from P~(k) only in the inclusion of the
free propagator K~ '(k}. In terms of g~(k), Eq.
(2.2) becomes

P (k) =K (k)g (k) = iA. V(k —k')g (k') d k'.

(2.6)
Both functions Q~(k), P~(k) and the free propagator
K~(k) depend implicitly on the total 4-momentum

p„. For a given V, by setting

P mp (2.V)

Eq. (2.2), or (2.6}, can be regarded as an eigen-
value equation for the coupling constant A..

The asymptotic behavior of g~(k) at large k can
be readily obtained from (2.6) by taking V outside
the integral, provided that

g~(k') d4k' is finite. (2.8)

That this provision (2.8) is indeed a correct one
will be established in Appendix A. From (1.2),
(2.6), and (2.8), it follows then" that

P~(k) -O(k 2) as k'-a~. (2.9)

(In Appendix A, the next-order correction term to
'this asymptotic behavior will also be given. ) It is
also a consequence of the provision (2.8) that in
coordinate space the bound-state solution is regu-
lar at the origin. ISee (A19) in Appendix A. ] This
is the relativistic analog of the familiar result for
a nonrelativistic two-particle system. The bound-
state solution of the Schrodinger equation for two
particles interacting via a static Yukawa potential
is also finite at the origin.

B. Conjugate Solution

In a collision process, if the bound-state system
is present in the initial state, then one can simply
use the solution P~(k). On the other hand, if the
bound-state system is in the final state then one
cannot simply use its Hermitian conjugate &g (k).

where

K (k) =- (-iy I —~+ i~)(X' + p.
' —ie), (2.8)

e =0+, V is the covariant potential given by (1.1),
~ is the coupling constant, k is the relative mo-
mentum given by the usual expression
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This is because in the bound-state solution, each
of the constituents, either Ip or X, can separately
be on its mass shell, and therefore tI16 sc term in
(2.3) is of importance. To derive the correct con-
jugate solution, called p~(k), appropriate for the
final-state description, we shall make use of the
time-reversal operation.

It is convenient to first introduce a 4X4 matrix
l~(k) which relates the bound-state wave function

g~(k) to that of a free Dirac spinor u~: p

y~(k} = r~(k)u„ (2.10)

K,{k)r,(k) = f~ v(k —k')r, (k') d'k . (2.12)

For definiteness, let us adopt the usual Pauli rep-
resentation'~ of the Dirac matrices. Under the
time-reversal operation, I'~(k) becomes [r~(k)]r,
which is related to the complex conjugate 1~(k)*by

&r,[r,( k)], o, = r, (k) +. (2.1.2)

From (2.12) and assuming that V is real, one sees
that the Hermitian conjugate of [r~(k}]r satisfies

[r,(k)],'.ft;(k)=i~ [r,(k')],'v(k-k)d'k .
(2.14)

The conjugate solutions P~(k) and $~(k) are defined
to be

y, (k) -=ut&, [r,(k)],'
(2.15)

y, (k) = u,'y, [r,(k)],'Z, (k) .
Equation (2.14) implies that these conjugate wave
functions satisfy

y, (k) = y, (k)Z, (k) = fX y, (k'}V(k k') d'k'. -(2.1S)

vrhere u~ satisfies the free Dirac equation

( iy -p —m~)u~=0. (2.11)

The matrix r~(k) satisfies an equation identical to
that of g~(k); i.e.,

FIG. 1. Graphical representation of the Bethe-Salpeter
equation for the bound-state vertex fmction Q&(k) and its
conjugate $&{k). [See Eqs. (2.6) and (2.16).l The dashed
line denotes the covariant potential V.

current operator J, between an initial physical
proton state of 4-momentum p, and a final phys-
ical proton state of 4-momentum

k'„= k „+(M+ p.} 'p q„. (2.1S)

Since the physical proton has unit charge e, one
must have

(p'ld„lp)-e(p„/m, ) as q„-0. (2.19)

Therefore, the wave function P~(k) satisfies the nor-
malization condition

(2v) 4 d4k {X'+p, ')g~(k)y„g~(k) = -(p„/m~) . (2.20)

can be 'readily derived. Since the electromagnetic
vertex of a "bare" proton is simply icy„, one finds
for the physical proton

(P'I&, l» =- (2 )-'j"d'k(X" ~')C, (k')~, y, (k),

(2.1V)

where X„ is related to p„and k„ through (2.1) and
(2.4}, and k', denotes the relative momentum in the
final state vrhich is given by

In Fig. j., me give the standard graphical repre-
sentation of the bound-state vertex function p~(k} and
its conjugate solution Q~(k). It is important to note
that these conjugate functions Q~(k} and |II~(k} are
Not the time-reversed solutions of p~(k) and Q~(k);
rather, their relation with p~(k} and g~(k) is the
same as that between any outgoing wave and its
corresponding incoming wave in a scattering pro-
cess.

C. Normalization Condition and Some

Simple Identities

&p' lJ„l p&

"I
-i [ d In)/dm &

P 3
P

I I ~ l~ I ~ l ll Ill ~ Ill

I ~ II ~ III~

In terms of the usual Feynman diagram given in
Fig. 2, the matrix element of the electromagnetic

FIG. 2. Diagrams for electromagnetic form factors
and the normalization condition t2.22) .
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In addition, gp(k) or (([)p(k) satisfies some simple
identities which are listed below:

(i)
-sf', (u)

] y»(k) (([)p(k) d &=0

(P'Id„]P) =-e(dw) ' JPX(X'+d, ')-'P, , (d')

X'(-1'y.P'-M)-'y„{-fy P -M)-'y, (y),

(2.24)

where p„, k„, P„and X'„are related by (2.1}and
(2.4), P,'=P, +q„, and therefore

where the subscript p outside the square bracket
indicates that the total 4-momentum p„ is kept
fixed in the differentiation.

(ii} The normalization condition (2.20} can also
be written as

((dw) '
J P, (d)dd, (d)P, (d)d'd=[d(nl/dm, ] '.

(2.22)

The proofs of these identities are elementary; for
completeness, they are given in Appendix B.

So far as the bound-state equation (2.6} is con-
cerned, the charge of the constituents is irrele-
vant. Thus, the solution gp(k) or (pp(k) can be ap-
plied equally well to the case in which the physical
proton p is composed of, say, a bare neutron N
and a bare m' (replacing P and X', respectively).
InsteRd of tI18 spin-g constituenty lt ls now the
spin-0 constituent that has a nonmero electromag-
netic vertex The fir. st identity (2.21) ensures that
the limiting behavior (2.19) remains correct, as it
should be. Or, one may also regard the bound-
state solution (1)p(k) or (Pp(k} as describing a physi-
cal neutron I composed of a bare proton P and a
bare ll . The same identity (2.21) ensures that for
the physical neutron state

&n')Z„[n)-0 as q, =(n'-n)„-0. (2.23)

D. Electromagnetic Form Factor

To obtain the asymptotic behaviox of the electro-
magnetic form factor for a physical proton state,
it is most convenient to express &p')J'„[p) in terms
of (pp(k). Equation (2.1V) can be written as

Of coux'se, lf the physlcRl neutron wel 6 composed
only of anX' and a bare neutrons, then &n')Z„jn}
would be zero identically. The second identity
(2.22) makes it possible to express the normaliza-
tloll colldltloll (2.20) ill terms of a slllgle-loop dia-
gram without the electromagnetic vertex, '6 as il-
lustrated in, Fig. 2.

As we shall see in Sec. H 0, the normalization
condition (2.20) can be written in still another
equivalent form which is related to Adler's sum
rule. "

k„' =(M+y)'(pP, „' —MX„}.

(2.25)

It can be readily verified by using (2.6) and (2.16)
that the cux'rent conservation law holds; i.e.,

q.&p'I]~. lp} = o

Thus' one may write

&p IJ.lp&

(2.26)

=ienpt, y,[y„E,(q')+(2pnp} '«q„(r„,E2(q')]I„
(2.2V)

%here g& Rnd g&» Rre, x'8spectlvely, the flee Oil'Rc
spinors with 4-momenta p, and p„', 0„„=(2i) '
x(y&y„-y, y„), « is the anomalous magnetic mo-
ment, and E,(q'}, E,(q') are the usual charge and
PRull form fRctol s.

We observe that in the integral {2.24) as q'- ~,
if, say, in the laboratory frame the integx'ation var-
iable X„ is finite, then P„=p, -X„and k„=(M+]1) '
xp, p„-X„remain finite, but ( ly P-'-M) '(t)pd(k")

is O(q '), on account of (2.9); therefore, the inte-
gration over finite regions of X„contributes O(q ')
to both E,{q') and E,(q'), apart from possible fac-
tors of lnq2. If the integration variable X„ itself is
O(q), then the entire integrand in (2.24} is O(q ')
but de is O(q4); therefore, the integration over the
X, = O(q) region gives also an O(q ') contribution to

E,(q'), though an O{q ') contribution to E,{q'}.
To Rscertaln the 1QQ factory we may Rssume fox'

large k' that (pp(k) is proportional to (k'+A.') '. A
direct calculation then leads to'0

E,(q') = O((lnq')'fq')

{2.26)

&~(q') = O(lfq') .
This is in qualitative accord with present data ac-
cording to which for q's 25 08V'

G„(q') = E, + «E, dd: (q'+ m') -',
where nP =—O.Vl GeV'. The electric form factor
Gs(q') is known" only for q'& 4 GeV', in which re-
gion it is proportional to G„(q~):

(1+«)Gs(q') =G~(q')-
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Since, by definition, Gs(q') -=E, —(q /4M')aE„ the
model we are using predicts a deviation from the
relation (2.29). Equation (2.28) may be wrong in
detail, based as it is on so crude a model of the
proton built of two bare constituents. However, as
we shall see in the following, the physical model of
a bound-state proton has led to the important gen-
eral connection of the observed scaling in deep-in-
elastic scattering with the rapid decxease of the
electromagnetic form factors. %'e have shown here
that a rapidly decreasing electromagnetic form
factor E(q') -O(q 4) is implied for a bound-state
solution of the Bethe-Salpeter equation that is reg-
ulai at the origin. There is a paxallel to this re-
sult in the nonrelativistic Schrodinger theory for
which the form factor of a bound state that is regu-
lax at the origin is also known to decrease at least

as fast as (q )
' where q is the 3-momentum trans-

fer '

E. Structure Functions

Next, we discuss the inelastic ep scattering

e+p- 8+8+X'. (2.30)

I„=euty y„[-fy ~ (I' —q) —M] 'y (k;„) (2.31)

In the simple model of a two-body bound state
where the covariant potential V is regarded pheno-
menologically as a given nonlocal function, this is
the only reaction for the deep-inelastic ep scatter-
ing process. There are two Feynman diagrams,
labeled I„and I„' in Fig. 3. One finds that (in the
usual Feynman gauge)

I„' r(lr) J=rry (kyl yr, lk )[- 'y V'-'ll] 'y [- (y( -I'X)- ]II'(X"+k')'k (I )d X (2.32)

where q, is the virtual photon momentum, k and k~ denote, respectively, the relative momenta between
the I' and X in the initial bound state and in the final continuum state, u~ denotes a free Dirac spinor of
4-momentum P„, and the matrix 7 is the two-body scattering matrix defined by

(k I yr„(k )= rky(k —I)'r (ik) (Ir' ) fd I"V(k' —I")Kr„'(I )V(k"-I)r" (2.33)

in which the subscript p+q denotes the total 4-mo-
mentum of the system, k' and k are, x'espectively,
the initial and final relative momenta for the two-
body scattering process.

The diagram I„by itself, is not gauge-invariant.
As can be readily checked from. the three preceding
equations, the sum I„+I,', of course, does satisfy

q„(I„+I„')=0.
It is useful to decompose the amplitude I, into a
sum of a longitudinal part (I(()„and a transverse

part (IJ ) and similarly I = (1]t) + (I'J ) such that
qp(ld)p =qv(ld )q =0. While the two longltlldlnal am-
plitudes (I„)„and (I(I)„are related through the
gauge transformation, the two transverse ones are
not. As we shall see, in the scaling limit only (I,)„
is of importance.

%e note that the diagram I, is identical in form
to a eox responding one in the usual pextuxbation
series in a standard pseudoscalar-coupling meson
theory, except that in its evaluation the usual free
spinor is now being replaced by the bound-state

d I I I I I I I I I~I I I I I I I I
t

II ~ I ~ I ~ II~IIIIIIII
P

FIG. 3. Diagrams for
deep-inelastic ep scattering
for the bound-state solu-
tion of a simple Bethe-
Salpeter equation [See Eqs.
(2.31) and (2.32).] The
dashed line denotes the
covariant potential K

Mfhere

X

P P

X X

P

I I

I

I

I

I

l
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solution Q~(k. }. Since the usual perturbation
diagram fails to scale only by a lnv factor, the
presence of Q~(ku) is sufficient to satisfy the scal-
ing property for the present case because of the
asymptotic behavior (2.9). By using (2.9}and

(2.31), one can readily verify that in the scaling
limit the diagram I, gives a finite and nonzero
contribution to the transverse structure function
W„but a zero contribution to the longitudinal
structure function W~ which is related to the stan-
dard W~ and vW2 functions ' by

vW2 = 2«mq(W~+ W~) . (2.34)

(2.35)lim p~(k) =g(K)y, u~, —
x2+p~ -p

where, for clarity, the 4-momenta of the two con-
stituents X' and P in the bound state are labeled,
respectively, by X, and K, . Thus, in diagram I,
given in Fig. 3, one has

To derive the contribution of the diagram I„, it
is most convenient to use, say, the laboratory
frame. The essential point is the observation that
the behavior of I„' is determined by the configura-
tion in which the virtual momentum P ' of the bare
proton is O(q„). Since each of the loop integrations
in the diagrams for (k ) T~„{k') is a convergent one,
and since the additional loop integration over X' in
the diagram for I,' is a superconvergent one, the
integral (2.32) remains convergent if the bare-pro-
ton propagator with the large momentum P ' is
taken outside the integral. (Actually, it remains
convergent if, in addition, one takes out also the
boson propagator. ) It is then easy to verify that in
the scaling limit, compared to (I~), the transverse
part (I~), is smaller by a factor O(q '), and con-
sequently the diagram I„' does not contribute to W, .
Furthermore, its longitudinal part (I'(~) like (Ig)„
makes zero contribution to W~. The entire diagram

I,' can therefore be neglected in the scaling limit.
For completeness, a detailed derivation of this re-
sult is presented in Appendix C.

With the vanishing of the rescattering diagram I,'
in Fig. 3 in the scaling region, we have now de-
rived in the context of this model a fully relativis-
tic generalization of the "parton"'model. We find

that the amplitude I, gives an invariant expression
in (2.31) of the bare constituent, or parton, propa-
gating invariantly and scattering independently on-
to its mass shell in the scaling region. (This re-
places the usual parton-theory amplitude of elas-
tic scattering of an almost free parton in the im-
pulse approximation. )

To derive the general functional form of the
structure functions in the scaling limit, one needs
only the value of the bound-state vertex function

P~(k) when one of its constituents, X', is on its
mass shell. Let us define

On account of (2.9), the function g satisfies

g-O(K ') as K'-+~.

(2.36)

(2.3'I)

Furthermore, as will be shown in Appendix A, in
this limit K'- + ~, g is a c-number function inde-
pendent of y matrices. By using (2.31) and (2.35),
one finds that in the scaling limit

W (2.38)

with

dQ
W, ~ ~

( M,},[g(u)p

x{(u+M')(1-«)+x[(M-m, )'-q']),
(2.39)

g(u)-O(u ') asu-a~. (2.40)

We note that, before the scaling limit, the upper
limit u,„of the integral in (2.39) would be -2p ~ q;
because of the above convergence property of the
bound-state vertex function g(u), one may set u

to be ~ in the scaling limit. Now, the lower limit
u . grows as (1 —x} ' as x 1; therefore, in the
scaling limit, (2.39}shows explicitly that the wave
function is being probed for large values of N, or
at "small distances. " Furthermore, by using
(2.40) we find that

W, -O( (1 -x) ) as x- 1 . (2.41)

This is in agreement with the threshold relation"
since F,(q') -O(q ') in this model.

In order to show explicitly how the threshold re-
lation emerges in this model, in contrast to the
standard parton approach, we rewrite (2.39) in

terms of appropriate variables in an infinite-mo-
mentum frame. Denoting by p- the momentum

of the physical proton along the 3 axis, and by
(1-x)p and -% the longitudinal and transverse
components of momentum of the X' in diagram I„
of Fig. 3, we find

u = u + (1-x) 'k, '.
The integration over the momentum transfer in
(2.39) can then be written in terms of an integral
over k~' extending from zero to infinity. The
damping of the high-momentum contributions
evidently scales with 1-x sinceg(u)-u '-(1-x)/

It is this scaling of the transverse-momentum

u = p. 'x/(1 —x) —mp'x

and x = -(2p q) 'q' is the usual scaling variable.
The variable u =K = (P —q)', and u is the mini-
mum invariant momentum transfer squared carried
by the bare proton in diagram I„of Fig. 3. In
terms of u, (2.3V) becomes
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distribution %'lth the longitudinal momentum Rs
x-1, as required by relativistic covariance, that
provides the cubic powers of 1-x in agreement
with the threshold relation (2.41), in contrast to
the linear power in the original parton models. "

The Amportant Physica/ point is that detailed
study of Wt near x = 2 measures the bound-state
u)ace function of the nucleon. For example, if g(u)
is -O(u ") asu-~, then, according to (2.39), W,
would be -O((l -x)'"") as x-1. This behavior is
also in accord with the threshold relation; i.e., I',
will be O(q ~ '") as q' ~. To see this, repeat the
arguments leading to (2.9), observing that we must
replace the potential in (1.2) by V(q) -O(q '") in or-
der to obtain the asymptotic behavior p), (h) -O(h '")
from (2.6). By repeating the identical arguments
given above (2.28), the stated result can be proved.

In the present simple model where the physical

8', - constant as x-0, (2.42)

vW~=2xm~S', -0 as x-0. (2.43)

1n the hypothetical case that the "bare" proton is,
like the Xo, also of spin 0 and, in addition, the co-
variant potential V(q) is simply q ', then the exact
bound-state solution is known20 "and the corre-
sponding g(u) is given simply by

g(u) =const(u+M') '. (2.44)

If in the present case of a spin-& bare proton, one
mates the ad hoc assumption that g(u) remains
given by (2.44), then one finds

proton consists of only a two-body bound state, one
sees that, according to (2.39),

W, = const (1 —x)'((1 —x)(M' —mp'x) + ~x[2(M - m)))'+ t(, ']}
[(u'x+ (M' —m~'x)(1 —x)]'

which, of course, satisfies both (2.41) and (2.42).

F. Forward Compton Scattering

%'6 nom' mant to verify directly that the structure
functions computed in this model are in fact the ab-
sorptive parts of the forward Compton scattering
amp1itude in the scaling region. That is precisely
how W, and W3 are defined in general; however, in
calculating these structure functions in See. IIE
we have used only the inelastic reaction (2.30)
while ignoring 'all other final states consisting of
(P+X'+ gluons), where the gluons refer to the
quanta of whatever fields are responsible for gen-
erating the covariant Yukawa potential between
the two constituents P and X'. Such on-mass-shell
states contribute to the absorptive part of the for-
ward Compton amplitude although they are not in-
cluded in our calculation of the preceding section.
Nevertheless, it will be shown that in the scaling
limit these additional states are not important in
the framework of our Bethe-Salpeter model with

the ladder approximation. (For further discus-
sions, 866 the remkrk given Rt the 6Qd of this sec-
tion and also comments D and E in Sec. V.)

In the present simple two-body bound-state mod-
el the spin-averaged forward amplitude E~„(p,q)
for the Compton scattering

F„„=A~„(p,q) +A„~(p, -q)

+fly. (P, q)+ft. ),(P, -q), (2.46)

where A ~„(p,q) and B~„(p,q) represent the cbr-
responding diagrams in Fig. 4, and A, ~(P, -q) and
H„~(p, -q) denote, respectively, the same dia-
grams but with the two external photons exchanged.
The explicit expressions of A, z, and B~„are given
by

of a virtual (or real) photon of 4-momentum q„on
R pllyslcRl proton of 4-momentum pp CRQ be wl itten
as a sum of four terms

A„,(p, q) = t~t (2v) ~d4X(X2+pm) 'y (h )[--tr (p -X) -M] 'r, [-tr p —M] 'r [-tr (p-X) —M] 'y (y. ),
(2.4V)

«„„((,ql=sf(Rw) d «d « (+p'«')''( ''+g«') 'y, (k~)[ iy () -«)-I] '-
&&r.[-tr I' -M] '&hl Tp„lh'&[-tr I"-M] 'r~[-tr. (0-x') -M] '4~(h(n)) (2.48)

where X, Rnd X„' are the 4-momenta of X',as labeled in Fig. 4,

I' =P+q -X, P'=p+q -X', (2.49)
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A& {p q) Ill ~ I ~ II ~ ~ ~ I ~ ~ ~ I ~ IW P

and

ImU, - mW,

Im(vU, )- v(vw, ),
(2.52}

P

B&„{p,q) ~ ~ ~ ~ I~III ~ I ~ I ~ II ~ I ~ l~

FIG. 4. Diagrams for forward Compton scattering.
[See Eqs. P.47) and (2.48).]

k'=(M+p} '(pP' —MX'),

and (k ( T„,(
k'} is given by (2.33). By using the

Bethe-Salpeter equation (2.2}, one can readily ver-
ify that E~„satisfies the requirement of current
conservation

(2.50)

Thus, E~„can be written as

k and k& denote the appropriate relative momenta
in the bound state, given respectively by

k~ = (M+ p, )-'pP -X'

and

kz=(M+p, ) yP -X,
k and k' are the relative momenta in the continuum
states, related to X, P and X', P' by

k =(M+p. ) '(v.P —MX)

where W, is the same function given by (2.39) and

vW, = 2xm~ W, . Of course, had one included all dia-
grams, then ImUy mWj and ImU =mR', should hold
at all values of q' and v. The above expression
(2.52) shows that under the ladder approximation
these equalities are at least maintained in the scal-
ing limit.

As will be shown in Appendix D, the diagram B„,
in Fig. 4 can be neglected in the scaling limit. We
emphasize that in the Bethe-Salpeter model with
the ladder approximation, the gluons are exchanged
only between different bare constituents. This is
why in diagram B~, these on-mass-shell interme-
diate (P +X'+gluons) states are of no importance
in the scaling limit. In a bona fide relativistic lo-
cal field theory there must be other forward Comp-
ton diagrams which contain gluon radiative correc-
tions, or renormalizations; in these diagrams
there are emission3 and absorptions of gluons by
the;same bare constituent. The imaginary part of
these diagrams would correspond to gluon radia-
tion in deep-inelastic ep scattering; such process-
es lie outside the present framework of a simple
two-body bound-state model, and are therefore not
included in our calculations on structure functions.
As will be discussed in comment E of Sec. V, at
least in a perturbation series, these additional glu-
on-radiation diagrams would lead to violations of
the scaling property.

We note that, like the diagram I„' in the previous
section, the diagram B~„contains an s-channel
pole at (p+q}'+ m~' =0. Both diagrams are needed
for maintaining gauge invariance, and both can be
neglected in the scaling limit.

2 Uj G. Adler Sum Rule

(2.5l)

where U, and U2 are scalar functions of q' and
v=—-m~ '(p ~ q). In this section, we are only in-
terested in the case of a spacelike photon q'& 0
with v&0.

As we have already noted, in the present model
the absorptive parts (i.e., the imaginary parts) of
U, and U, are, in general, different from the cor-
responding structure functions mR', and mR', calcu-
lated by using only the inelastic reaction (2.30).
However, as we shall prove in Appendix D, in the
limit q'-~, v-~, but keeping x=(2m~v} 'q' fixed,

1
x 'dx(vW, ) =I,

0
(2.53)

where vW, = 2xm~W, and W, is given by (2.39).
Equation (2.53} is (essentially) the Adler sum
rule, "but applied to the present simple two-body
bound-state model of the physical nucleon. By
using (2.39}, one sees that the above integral is a
convergent one. Equation (2.53) then determines
the proportionality constant in (2.39). Our interest
in deriving (2.53), or, equivalently in our model,
in proving the Adler sum rule, stems from the fact
that on the basis of (2.20) alone we cannot in prac

In this section, we shall show that the normaliza-
tion condition (2.20) implies that in the scaling lim-
it the vW, function should satisfy
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tice normalize our structure functions. This is be-
cause we have not solved the Bethe-Salpeter equa-
tion explicitly for the wave function; we have simp-
ly derived those general properties and the asymp-
totic behavior of g~(k} as required to establish seal-
ing properties, asymptotic behaviors of the elastic
form factors, and the threshold theorems. In nor-
malizing the current in (2.20) we have to know the
exact wave function g~(k) for all momenta k& which

is integrated over its entire range, while in evalu-
ating vW, we need only g(u), which is, according to
(2.35), determined by g~(k) when one of the constit-
uents, X', is on its mass shell. The sum rule
(2.53) provides the needed normalization of the
structure functions for our purposes.

It is useful to define a new scattering amplitude

q„F„',=2m~ 'p~,
and therefore

qq„E~, = 2m' '(p ~ q) = -2 v .

(2.56)

(2.57)

Equation (2.56) is the crucial result, since it
plays the role of current algebra in the usual deri-
vation. Once we have established the divergence
condition, we need only verify that E~„satisfies
appropriate convergence requirements (unsubtract-
ed dispersion relations) when v-~. This is ex-
plicitly clear in the discussions of Adler and Bjor-
ken." We reproduce the necessary algebra in Ap-
pendix E, commenting here only that the asymptot-
ic behavior of the wave function (1.3) ensures the
required convergence properties which establish
(2.53). In the literature, the Adler sum rule has
been derived for the part of the forward brompton
amplitude that is odd under crossing, that is, for
the difference of amplitudes for neutrinos and anti-
neutrinos incident on a given target nucleon. In
our model with a single charged nucleon in the
bound state, the coupling of the z-component iso-
spin I, (electromagnetic) current to the proton is
just 2 "' in strength relative to that of the usual
I, =2 '~3(I„+ iI2) current in the weak interaction.

II,.(P, q) -I3.,(f, -q), (2.54)

where A, ~„and B„„aregiven, respectively, by
(2.47) and (2.48). If one wishes, one may relate
E„'„ to the vector part of the vp scattering ampli-
tude. However, for the purpose of deriving (2.53),
the precise nature of the physical process that is
represented by this amplitude E„„is immaterial.
By definition, E~, satisfies

(2.55)

By using the Bethe-Salpeter equation (2.2) and the
normalization condition (2.20}, one can readily es-
tablish the divergence condition

H. Crossing to the Annihilation Channel

The physical process of

e+ e-p+ anything

is related to deep-inelastic scattering

e+p - e+ anything

(2.58a)

(2.58b)

III. PHENOMENOLOGICAL APPROACH

In this section we reconstruct the results of the

by crossing symmetry. In a perturbation calcula-
tion of these processes, this can be proved by ap-
plying the usual substitution rule to each Feynman
graph order by order. It has been shown' that this
symmetry persists in the cutoff field-theory model
and that as a consequence the structure functions
for (2.58a), (W„W,), are analytic continuations in-
to the physical region for this process of the struc-
ture functions for (2.58b), (W„W,). Moreover, the
scaling behavior for these functions has been de-
rived for the deep-inelastic annihilation and scat-
tering regions, respectively. In particular

W, (x) = W, (x)

(2.59)

vW, (x) = vW, (x);

i.e., W, is the continuation of W, (x) from the physi-
cal region for (2.58b) with x& 1 to the physical re
gion for (2.58a) with x& 1, where now 1/x is the
fraction of the total ee collision energy deposited
on the observed hadron in the collision center-of-
mass system.

The practical value of (2.59) is its prediction of
the magnitude of the cross section for (2.58a) near
x=1 in terms of scattering measurements. More
generally, if we can prove (2.59) for our physical
bound-state model, then we have a prediction of
the threshold behavior for the inclusive annihilation
process in accord with (2.41).

The crossing properties of the scattering ampli-
tude depend on those of the vertex function g(u) ap-
pearing in it. Generally, we destroy crossing
symmetry when working with the Bethe-Salpeter
equation in the ladder approximation. However,
for study of the threshold behavior we require only
the solution for g(u) for large values of u according
to (2.40). For the inelastic scattering near thresh-
old as 1-x-0+, u-+~, whereas for the crossed
or annihilation process the virtual intermediate
constituent is timelike or masslike in Fig. 5 with
u - -~. In both cases, (2.40) states that g(u)
-O(u ') as u-+~. Therefore, (2.59) is valid near
x-1 for our bound-state model. However, we have
not studied the general crossing properties for ar-
bitrary x.



1V48 S. D. DRE LL AND T. D. LEE

X

2
) mass-like

state s-channel pole also cuts due to the continuum
states. Qf course, Eq. (3.2) is not unique and one
can readily construct a more general term that,
for simplicity, still retains the spin structure of
(3.2) by assuming II„ to be given by

&eug YcYs'up'(~zpv+ 2qv+ 3 v} ~ (8 8)

FIG. 5. A diagram for a virtual photon p+ anything.

A. Current Conservation

Equation (3.1) is not gauge-invariant as noted
earlier, and its completion requires that final-
state rescattering effects be added. Thus, in the
Bethe-Salpeter approach we accomplish this by
adding the diagrams I, in Fig. 3. These take into
account the fact that the exchange of quanta between
the constituents P and X' that gave rise to the ini-
tial bound state of the physical proton is still oc-
curring after the virtual photon q is absorbed. In
the well-known way, all possible insertions of the
photon must be made on the charged line in Fig. 3
in order to ensure current conservation.

In constructing the terms which must be added to
(3.1) in order to give us an over-all current-con-
serving amplitude for inelastic scattering, we are
guided by two principles: The first is simplicity,
and the second is our insistence not to introduce
any "unwanted, unphysical" singularities in the am-
plitude. We may directly write in accord with
these principles

2P~ +g„II„=+feu, y.y, up( "„",g(u},P+g) + tPlp
(3.2)

so that q„(I„+II„)=0. This form has an s-channel
pole at the bound-state proton mass, as it should.
In the simple phenomenological approach, it seems
sensible to choose only functions with simple poles.
This is to be contrasted with our previous Bethe-
Salpeter approach in which G„ is replaced by I„' of
(2.82}which has in addition to the same bound-

Bethe-Salpeter model of the preceding section by
developing a phenomenological approach for study-
ing a bound-state model of the proton's structure.
Our starting point is the diagram I„ in Fig. 3 and
its corresponding amplitude, by (2.31) and (2.35):

I, = eu~~y, y, [ iy ~ (P-—q) —M]' 'y,u~g(u), (3.1)

where g(u) is the vertex function at the (pPg ) ver-
tex and is a function of the mass of the virtual P
with both the P and X' on their mass shells. In this
phenomenological approach, we shall for simplici-
ty assume g(u) to be strictly a c-number function,
whereas in our previous discussions on the Bethe-
Salpeter equation g(u) is a c-number function only
in the limit u -~.

where X; are scalar functions of the three indepen-
dent scalars

s=-(p+q)', u =-(P -q)', t= (p -P)'-,

with

s +t+ u = -(m~'+M'+u' —q') .
(8.4)

Current conservation requires that the functions A,
satisfy the restriction

X,q p+A q'+A.,q P =g(u). (3.5)

Such a relation has no unique solution; we can add
to any particular solution of (3.5) arbitrary
amounts, 5~„such that

6Aqp+6A. ,q'+6%. q P =0 (3.6)

A., =2'= 2 2, A.~=O
2g(u

(p+q + m~
(3.'I)

and (3.3) reduces to (3.2). We have now the inelas-
tic scattering amplitude according to our criteria
of simplicity, of minimal electromagnetic cou-
plings, and of no unwanted singularities in the u or
I; channels.

B. Bound-State Versus Elementary-Particle

Model of the Proton

The difference between a physical model of the
proton as a bound state of two constituents, and an
elementary-particle picture of the proton lies in

This is equivalent to the observation that the re-
striction of current conservation fixes the Am-
perian-current interactions, but not the nonmini-
mal terms proportional to electromagnetic field
strengths and their derivatives. These are auto-
matically gauge-invariant. In our model we rule
out all such nonminimal terms. For example,
their presence in the interaction Lagrangian of a
relativistic field-theory calculation generally leads
to nonrenormalizable theories. If included in the
electromagnetic interaction of the constituents (or
partons), they violate scaling.

Returning to (8.5}, we look for that solution which
introduces no additional u -channel singularities
since these are already contained in (3.1), i.e., the
graph I, in Fig. 3. We also rule out t-channel sin-
gularities, or by (3.4) poles in (X-q}', since ~eX' is taken to be neutral with no direct electro
magnetic interaction. We find therefore that
(3.5) gives
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FIG. 6. Feynman diagrams for P —P +X and "y"+P —P +X, assuming that the physical proton is an elementary
particle instead of a bound-state composite. [See Eqs. {3.10), {3.1.1), and {3.14).l

the behavior of the vertex function g(u). As we

have already shown for a particular bound-state
model in the ladder approximation to the Bethe-
Salpeter equation, as illustrated in Fig. 3, the ver-
tex function behaves as in (2.40); i.e. ,

g(u}-0(1/u), for I -a~ (3.8)

where u is the virtual mass of either of the constit-
uents forming the bound state. Qn the other hand,
if the nucleon is elementary and there is an ele-
mentary vertex interaction, as illustrated in Fig.
8, in place of g(u)y, one has the vertex function
Gy, where G is a constant in the lowest-order per-
turbation calculation. Furthermore, even if one
includes final-state interactions with a potential
given by (1.1), the effective vertex function G for
the three-point function p p+Xo, after summing
over all ladder diagrams in the final state of pX,
remains dominated by this nonvanishing lowest-
order diagram at least at large u; therefore, in
the ladder approximation,

in the elementary-particle approach. In these two
diagrams, the electromagnetic vertex is assumed
to be given by the usual minimal interaction ey~.
If G is a constant, or if G satisfies (8.9), then the
result does not scale as noted before. %'ith G given
by (3.10), the sum of the first two amplitudes in
Fig. 6 is just

I~ +II~ =feupy4 y, . y~G(s, -m', -p, ')-iy ~ (p+q) —m

+yx ~ .( y,G(-m, u, -p. ) u~,2 2

-gp P —Q'

where m is the nucleon mass, q is the photon mo-
mentum, and p and p' denote, respectively, the
initial and final proton momenta. If G is not a con-
stant, then (3.11) has the defect of failing to con-
serve electromagnetic current, viz. ,

»Iy(II +By ) = 8Q»»»ygyg1cp[G(8» —m» -p, )

G -constant for large u . (8 9) G(™»N» 9 )I ~

G =G(p', z', x'), (8.10)

where p and P denote the initial and final momenta
of the same elementary particle p, and I that of
the boson as before. Because of crossing symme-
try,

G(P', I', X') =G(I', P', X').
As we shall see, even then there is an important
difference between the elementary-particle ap-
proach and the bound-state approach.

As shown in Fig. 6, there are at least two stan-
dard diagrams I~ and D~ for the process

J+p ~p+X

This contrast between bound-state and elementary-
particle descriptions of the nucleon has been ana-
lyzed and discussed in some detail by Ball and
Zachariasen. "

From the view of the elementary-particle model,
one may, of course, invoke the possibility that the
final-state strong interaction can be quite compli-
cated, and that for some unknown reason the three-
point vertex for p- p+X' is given phenomenologi-
cally by Gy, where G does not satisfy (3.9); in-
stead, it can be of a general form

q„(i,"+II„+ill,")=0. (3.13)

As in our prior discussion of (3.3) and (3.5),
there is no unique solution to this condition, but
one usually searches for a "guess" that is both
simple and free of unwanted singularities. In this
elementary nucleon example, the latter condition
means in particular that III~' should. contain neither
s- nor u-channel poles since the direct and ex-
changed nucleon poles are already included in the
two terms of (8.11}. In contrast, for a bound-
state physical model an s-channel pole was intro-
duced in the gauge term in (3.2), since it repre-
sented the entire s-channel contribution. As we
shall see, in the bound-state approach it is the
presence of this growing denominator factor at
high energies, g -~, that leads to the limiting be-
havior that the gauge term vanishes in the scaling

(3.12)

One is led to remedy this defect in the usual man-
ner by adding to the amplitude (3.11) a four-point
contact interaction as the diagram III~ in Fig. 6
which is suitably tailored so that the additional
contribution, III),', restores current conservation
to the over-all amplitude.
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region. Without the large denominator, the gauge
terms generally will grow and eventually destroy
scaling behavior, as would be the case 'in the ele-

mentary-particle approach. For example, we may
choose

III& =eu~ y4y, u~
II G(s, —. m', -pn} -G(-m, -m', -p, ') G(-m', u, -p, ') -G(-m', -m', -p, 2)

(3.14)

udu 2
W, -constJ» G'(-m', -nP, -p, ')

(u + m')'
.SllQ

+ finite terms ~ ln(v/m) + ~ ~ ~, (8.15)

where u . =p, 'x/(I —x) —m'x. We can trace the
origin of the difficulties leading to (8.15) to the ap-
pearance of an elementary s-channel pole term in
the diagram D~ of Fig. 6. No such diagram ap-
pears in the bound-state. model because there is
never a first moment for the electromagnetic cur-
rent to interact with an elementary charged con-
stituent "before" it finds itself bound into the phys-
ical proton. In the bound-state model, the s-chan-
nel pole term is introduced only through the final-
state interactions between the emerging constitu-
ents after they have been struck by the photon. In
place of the amplitude II~'+ III},', one has the ampli-
tude II„given by (3.2) in the simple phenomenolog-
ical approach [or I,', given by (2.32) in the Bethe-
Salpeter approach].

For a bound-state proton with the vertex function
(8.8) it is easy to show that the contribution to the
structure functions 8', and vS; coming from the

which satisfies (8.13), has no unwanted poles, and
is also the result of the standard minimal electro-
magnetic coupling; i.e., as can be readily verified,
if one represents the three-point vertex Gy, by an
effective Lagrangian, the formal replacement of
8/sx~ by s/sx~ —ieA~ for the charged field in the
Lagrangian would lead to a four-point function giv-
en by (3.14). By choosing a sufficiently convergent
function G, the contribution to the structure func-
tions from the square of the first two amplitudes,
I~'+II~' in (3.13}, can be easily made to scale in
the scaling limit. However, the third amplitude
III~ survives in the scaling limit due to the con-
stant vertex G(-m', -m', -p, ') that was added to
both terms to remove the s- and u-channel poles
and leads to a logarithmic violation of scaling for
the transverse function W, and a linear one for the
longitudinal function R~, and therefore also for
vS', :

vW, -O(v)

and

added "gauge" term, or II, in (3.2), vanishes as
1/q' in the scaling limit. This is because in the
scaling region of large v and q' the energy denom-
inator in this amplitude is large, -v or s, and can-
not be canceled by large numerator factors in in-
tegrating over the final two-particle phase space
when the region of large u values is damped as in
(3.8). Both the square of the gauge term II, and
its interference with I, can be computed for study-
ing the approach to scaling, but the entire contri-
bution in the scaling region comes only from the
amplitude I„in (3.1). This conforms to the simple
"parton" picture in that the relevant mechanism is
the "dissociation" of a physical nucleon into its
constituents as it interacts with the electromagnet-
ic field. Whereas the parton model is limited to
the infinite-momentum frame, we have now a co-
variant and current-conserving description in
terms of Feynman propagators. As expected, our
final result in the phenomenological approach
scales and coincides with (2.39), which was ob-
tained previously in the Bethe-Salpeter approach.

We recall from Sec. 0 that the same bound-state
model of a proton that leads to a scaling behavior
for the inelastic structure functions also predicts
a rapid decrease of the electromagnetic form
factors:

F,(q') - O((lnq')'/q ')

and (3.16)

in qualitative accord with present data. Since the
physical model constructed here with a phenome-
nological approach has the same vertex-function be-
havior for large momenta, i.e. , g(u)-O(l/u) for
large u according to (3.8), we again find as in Sec.
II that W, - O((l —x)') as x-1. As noted before,
this is in agreement with the threshold relation by
(3.16). Moreover, the crossing relation to the an-
nihilation channel described in Sec. II remains
valid. Finally, we note that the gauge-invariant
amplitude (I„+II„}can also lead to a sum rule
(2.53) of the Adler type for normalizing the struc-
ture functions in the phenomenological approach.
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While the simple phenomenological approach de-
scribed in this section is guided by the Bethe-Sal-
peter equation, it has a greater heuristic value
than our previous Bethe-Salpeter approach. It al-
lows us to dissociate the rigid connection between
the vertex function g(u) and the solution of a par-
ticular class of equations based on the ladder ap-
proximation. For any given g(u), the amplitude

(I „+II„)is relativistically invariant and gauge-in-
variant, thus allowing us to calculate directly the
structure functions in the scaling limit as well as
the approach to scaling.

IV. SIMPLE MODEL CALCULATIONS

y+P-P+m + m (4.3)

by diagrams III& and Itin the same figure, etc.
The amplitudes I„and II~ are given by (3.1) and

(3.2), respectively; i.e.,
I&,

——eu~y~y&, [-iy ~ (P —q) -M] ~y, u~ g (4.4)

and

II&=i euzyqysu&[(P+ q) +m& ] (2P+ q)&g. (4.6)

In complete analogy, the diagrams III& and IV& may
be represented by

III~=i,eussy y q[[-iy ~ (P —q) -M] 'u~g' (4.6)

The description that a physical nucleon is only
a two-body bound state is clearly an over-simpli-
fied one. Through virtual-meson exchanges there
also must be multimeson channels connected to
the physical nucleon state. Furthermore, as we

shall see, the existence of such multimeson chan-
nels can alter the limiting behavior of the structure
functions as x-0; in particular, vW, may approach
a constant, instead of zero as given by (2.43) for
a two-body bound state.

A. First Example

In order to illustrate such possibilities, we take
as a first example a simple ansatz that the physical
nucleon p or n consists of (i) a, two-body state com-
posed of a bare nucleon P or N and an SU, singlet
X', and (ii) a multibody state composed of, at
least, a bare SU, octet baryon and two SU, octet
mesons, say Pm'm', or Z'K m', etc. ; formally,
one may write

and

gq(III), I+Vg) = 0.

(4.8)

In a phenomenological approach, g and g' may
be assumed to be any reasonable vertex functions.
We note that according to (3.8)

IV„= cup~-y, up[(P+ q)2+ m, '] '(2p+ q) ~g', (4.7)

where as before g denotes the two-body bound-

state vertex function when I' is on the mass shell,
and similarly g' denotes the three-body bound-

state vertex function when both mesons are on

their mass shells. Thus, g depends only on one

variable, say u=(P q)', b-utg' depends on three
variables, say (p-s, )', (p-w, )', and u=(P q), -
where m, and m, denote the final momenta of the
two pions. It is easy to see that for arbitrary g
and g' one has

qx(Ix+Ilx) =0

p= (PX')+(p2v)+(ZKv)+ ~ ~ ~, (4.1) g(u)-O(u ') as u-~. (4.9)

y+P-P+X (4.2)

etc. [The possibility that there should also be, in

addition, a two-body (Pv) channel will be discussed
later. ] While the actual bound-state calculation
for a multiparticle system is complicated, a phe-
nomenological description, based on the bound-

state idea, can be easily given. Following the dis-
cussion given in Sec. III, we may represent the re-
action

For definiteness, g(u) may be assumed to be given

by (2.44); i.e.,
g(u) ~(u+M') ', (4.10)

which we recall is the rigorous solu)ion of the
Bethe-Salpeter equation if all particles are of zero
spin and if V(q') is q '. To assign a specific form
to g', there is at present very little theoretical
guidance. Purely for reasons of computational
simplicity, we choose as an ansatz for g'

by diagrams Iz and II& in Fig. 7, the reaction g' =g'(&) (4.11)

X
lr q

0
0 Tr

vr

I
P

III IIIIIII ~ I Tlllll IIIIIMI I III ~ IIII,

FIG. 7. Diagrams for deep-inelastic ep scattering in the simple phenomenological model calculation. [See Eqs.
(4.4)-(4.7).l
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which depends only on u. Physically, this cox're-
sponds to the assumption that the 2m system be-
haves like a composite of a variable mass a, and
thRt Rs Rn extx'8Inely cx'ude approximation g ls
taken to be independent of the mass x and the other
internal variable of the 2~ system. It is then
straightfox ward to evaluate the structux'e function
by using (4.6) and (4.7). We find that in the scaling
limit, diagrams IH& and IV& lead to a 9, function
given by

W; ~, u(x) dx',t, (g'(u) ('Jg. u+M

x((u+I')(1- x) +x[(M- m~)' -a']];
(4.12)

where q denotes the 4-momentum transfer between
P and the {2v) system, assuming that q is of the
same order as the 4-momentum transfer between
I and 6Rch indlvlduRl pion. This crude plctux'6
suggests that as a puxe trial form one may assume
n=2 in (4.15); i.e.,

g'-O(u ') as u-~.
For definiteness of calculation, we make the fur-
ther cd hoc assumptions that g is given by (4.10)
with I= ng~, i.e., apart from normalization fac-
tors,

g=(u+m~') ',

and similarly g' is given by

where p, is thepion mass,

u = x'x/(1- x}—m~'x, (4.13)

g'= {u+m~') '.
The result is then, for the physical proton&

and e(x) denotes the density of states for the 2w

system which is given by

As expected, the integrand inside the first integral
in (4.12) is identical to that in (2.39) except for the
replacement of g by g' and p. by a.

From (4.12), one can readily verify that if

(4.20)

whex'6 ofp Rnd pp are constants~ the contx'lbutlon
due to the two-body channel is proportional to

( ) (1 ), m, '[m, '(1 -x)'+ -,' mx'x]
(4 )[m~'(1 —x)'+ mx'x]'

Rnd the contx'lbutlon due to the Inultlbody chRQQ61
ls pl opox'tlonai to

g'(u)-O(u "), as u

when n~ j., then

W, -O((l-x)"2") as x-1

(4.15)

(4.16)

E„(x)=x '(1 —x)'h(x),

in which

(4.22)

W, -O(x '} as x-0.
This latter behavior is closely connected with the
property that the density of states satisfies

3——(1 —g }(45+log +11g4+5t )2$

o (z)- constant as ~-~. (4.18)

From a phenomenological point of view, the pxe-
cise origin of the approximation (4.11) is not of
immediate concern. We may regard (4.12) as. rep-
resenting the combined contributions of all multi-
body states, not just the three-body state, pro-
vided that (4.11) and (4.18) serve as reasonable
Rppx'OxlIQB tlons.

To Rsslgn R speclflc vRlue fox' R, we may be
guided by the aforementioned crude physical pic-
ture of the (P2v) system. Let us neglect the v-w

interaction. The two pions, say m, and m~, are
then bound only through the two-body mP potential

The most elementary Feynman diagram fox'

the three-body potential U should consist of two
bonds: One links m, to I' and the other m, to P.
Each bond gives a factor V, and therefox'e U is
proportional 'to the sguare of V. Since Rs tp
V is -O(q '), one may expect U to be -O(q ')

$ =[(1-x)'+4x(p, '/m~')] '"(1-x). (4.24)

The function h(x) satisfies

h(0)=1 and h(1)=
105 2p,

Similarly to (4.1), one may regard the physical
neutlon Rs being composed of

(4.25)

u = (~X')+ (Z2v)+ (ZZv)+

(W, )„=. p„E„(x). (4.2V}

The parameter p„ is related to the probability of
finding a charged bax'yon in the multiparticle chan-

which can be obtained from (4.1) through the usual
charge-symmetry operation. In this simple model
of the physical neutron, the constituents in the two-
body channel are all neutral; thus, only the multi-
body channel can contx ibute to structure functions
in the deep-inelastic en, scattering. One finds



nel of the physical neutron state, and the param-
eter P~ is related to the corresponding probability
jn the physical proton state. The ratio (p&/p„) de-
pends on the detailed SU, structure of the multipax-
ticle channel. Pox example, in the three-body
channel, if the t%'o mesons Rx'8 ln R pux'8 octet state
then (P~/P„) should lie within a range 0.58 & (P~/P„)
& 1.8.

ID the multiparticle channel, since the bare me-
sons can cax'xy charge, there must also be dia-
grams in which the photon is absorbed by the bare
Ineson. TI1ese diagrams 16Rd to R Qonvanishlng
longitudinal structure function W~ . The magnitude
of %~ depends on the bound-state amplitude g" iQ,

vrhich only the relevant bare charged meson is off
the mass shell whQ6 Rll othex constitueQts, me-
sons and baryons, are on their mass shells. The
X'Rtlo

(4.28)

average over dlffex'ent three-body states QgK,
ZKm, etc. ID Fig. 8, the theoretica1 curve fox

{WI)~ is plotted by choosing

P~=0.22 and a~=1.4. (4.81

Tile co1'1'espolldlllg I'R'tlo fol' (WI)„/(Wl )I, ls plotted
ln Fig. 9 by assuming Rs R simple choice

which IQ6RDs ht ln the mUltiparticle chRQQ81 the
probability" of finding a charged bare baryon in the
physical nucleon state is almost independent of the
total charge of the physical state p or n.

We recall that, as shown in Sec. II, in the simple
model where the physical proton consists of only
the two-body channel PX, the (vW, ) function satis-
fies an Adler sum rule (2.58); furthermore, since
in that simple model vW, = 2xm~W„Eq. (2.58) may
also be 'written Rs

is R fx'86 parameter in the simple phenomenologi-
cal approach, though it shouM be computable if
one knew the correct potential and, in addition,
couM solve the corresponding Bethe-Salpeter equa-
tion. Since the present experimental value of R~,
Rt 18Rst fox' 8p scRttex'lng, ls quite small Rnd un
certain %'8 shall assume for slIQpliclty,

Por R coxnpRX'lsoD vQth the px'esent experlIQentR1
value, we set in F„Eg. (4.21), the value for mr
to be simply the observed X' mass=- 958 MeV„and
in E„, Eq. (4,22), the value for (p,'/m~') to be

K the present case, because of multiparticle chan-
nels, the integral g, dx (WI)~ diverges, and there-

I'1

fore Eq. (4.88) cannot possibly hold. (Apart from
other reasons, the assumption of no subtraction
constant for the dispersion integral is clearly not
valid here, unbke in the simple case of a tvro-body
bound state discussed in Sec. II.) However, if one
chooses p~=p„, then the difference (WI)~- (W,)„de-
pends only on the PX channel; in this case one
may define

g
—=2m~ dx

(4.80)

'Nhich represents ln Rn approximate 'way its SUI

Heurlsticallyq g may be x'egRx'ded Rs the proba-
bility for finding the j'X' channel in the physical
proton state. Thus, g should lie between 0 and 1.
For' the cllolce of pRI'Rnletel's glvell by {4.81) Rlld

R = Q. le
g,O- W~ 2.6 GeY

I & t I I I I

I l l l I

6 8 !0

FIG, 8. 2m& S~ versus {d =x ~. The experimental data
are taken from Bloom et I/. , Ref. 2, and the theoretical
curve ia plotted by using Eq. (4.20) and Choosing 0.'& =l.4
and P& =0.22.

FIG. 9. The ratio PV~)„/(Q~)& versus x. The theoretical
curve is obtained by using Eqs. {4.20) and (4.27), and
choosing Pp =P~ and @p =1.4.
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(4.32), &=0.1I. In the simple model where the
physical nucleon consists of only the two-body
channel PX' or NX', one has (W, )„=0 and g = 1.
Equation (4.84) then reduces to the sum rule (4.83).

and

(W, ), = p,[Z, (x)+ e, Z, (x)+ ~,'Z,'(x)]

(W, )„=p„[F„(x)+n„'E,'(x)],

(4.35)

(4.36)

where n~' and a„' are new parameters,

Z'(x) = (1 -x)' ' ' ' (4.37)
[m '(1-x)'+ p, 'x]'

and ii'/piip' is given by (4.30). We note that, as
x- 1, (W, )„/(W, )p now approaches a nonce po con-
stant. The presence of such new two-body states
will also give a new contribution to the R~ func-
tion. The magnitude of this S~ function depends
on the two-body vertex function g"' in which the
charged meson is off the mass shell, but the bary-
on is on the mass shell. It is easy to see that g"'
should have a similar asymptotic behavior as that
of g(u) given in (4.9). If one assumes, similarly
to (4.10),

g"'~(M+ ii') ', (4.88)

then the resulting W~ function is proportional to

x (I —x)'[mpnx'+ —,'ii'(I —x)]
[mp' x'+ ii'(1 —x)]' (4.39)

Equation (4.39) shows that the threshold relation
which we have derived for spin=,' charged constit-
uents and the transverse structure function is not,
however, valid for spin-0 constituents for the
longitudinal structure function. For interactions
with both nucleon and pion currents, the elastic
form factor decreases" as 1/q'; but Eq. (4.39)
shows only a quadratic threshold behavior (1 —x)2

physical mesons

I I I I~ I I I I I I I I I I I I I I I I I I II I I I IIII III I I IW

FIG. 10. A schematic diagram for "y"+p p +mesons.

B. Second Example

So far we have neglected the possibility of a two-
body channel in which the meson can also be
charged, such as (Nx'), (Z'K'), etc. The inclusion
is straightforward; it leads to, instead of (4.20)
and (4.2'I),

for S~ as x- I. That W~ must be an even function
of (1 —x) near threshold was already proved in
Ref. 6. At present, the experimental data is con-
sistent with a~= a„'=0.

We showed in our Bethe-Salpeter analysis that
structure functions measure the wave function of
the bound state. In this section we have now shown
that a simple guess of the wave function can pro-
vide a qualitative fit to the data.

V. COMMENTS

(A) The physical bound-state model that we have
developed in Secs. II and III avoids some of the for-
mal difficulties of the parton model. It is Lorentz-
invariant and relativistically covariant at each step
of the development, not just at the infinite-momen-
tum scaling limit. It provides a physical connec-
tion between the observations of scaling of the
structure functions in deep-inelastic scaling and
of rapid decrease of the electromagnetic form fac-
tors in elastic scattering. It also reveals the re-
lation between the bound-state vertex function of the
proton for large momenta, i.e., g(u) -O(u '), and

the threshold behavior of W, -O((1 —x)') near x = 1
as well as its crossing property to the annihilation
channel. In addition, since the bound state is con-
structed of a few (two or three) constituents of
masses c 1 GeV, there is no large parameter & (1
GeV)' against which to measure mpv or q' in ap-
proaching the scaling region. This model gives
then a qualitative understanding of the fact that in

ep inelastic scattering the scaling property is al-
ready observed at relatively moderate energies.

In the context of this model we may ask what will
~ be the behavior of inelastic transitions induced by

very virtual photons to specific final states (e.g. ,
"y"+P- h, or -p+ w, etc.). In order to form such
states it is necessary to add sPecific final-state
interaction channels such as illustrated schemati-
cally in Fig. 10 for "y"+P- p+some fixed meson
channel. Aside from spin factors and their accom-
panying numerator polynomials, the amplitude for
this graph mill have the same asymptotic behavior
for large q' as in Fig. 2 for the elastic form fac-
tor. The large momentum q can ride along the vir-
tual bare proton line, marked P', in both diagrams
since the proton's decreasing wave functions intro-
duce more than enough powers of momentum to
converge the loop integrals. Therefore, the added

propagator and vertices connected with meson wave
functions in Fig. 10 have no effect on the power de-
pendence of the asymptotic behavior; aside from
spin factors, "the structure functions for such "ex-
clusive" reactions mill shorn form factors decreas-
ing with" increasing q'.

, (B) The bound-state model constructed in the pre-
vious sections can also be applied to calculating
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additional observables —in particular spin-depen-
dent effects for scattering of polarized electrons
from polarized targets'~ and neutrino and antineu-
trino deep-inelastic cross sections. Near the
threshold region, i.e., near x=1, the two-particle
state of (PX') will dominate in our model due to
the threshold factor of (1 -x)' relative to the
(1-x)' factor for the three-particle contributions.
In the scaling region it contributes a large polari-
zation asymmetry A, defined as the difference di-
vided by the sum of cross sections for parallel and
antiparallel spin directions of the incident electron
relative to the target nucleons. Let E, and 8, be,
respectively, the electron energies in the labora-
tory before and after scattering, and 8 the scatter-
ing angle. One finds using g= (u+m~') '

E~+Z, 3(1 —x)' —x(pP/mp')

v+x icos'(-,'8) 3(1 —x)'+x(pP/m~')

(5 1)
The first factor is essentially kinematical; the
second one is limited in magnitude to be less than
unity by positivity conditions" on the structure
functions when Q~ =0, as it is in this model with
a spin--,' charged constituent. One sees that the
asymmetry depends sensitively on the parameter
(p/m~). For (p, /m~) «1, the second factor is close
to unity for 0 «x&1-0(p, /m~), dropping rapidly to
zero at x-=1 - 3 '"(p, /m~) and then reversing sign.
For a single free spin- —,

' constituent we would ex-
pect the asymmetry to be unity; the above behavior
reflects the very massive virtual character of the
intermediate constituent that is apparent in (2.39)
as x =1. For small x values we must also include
the three-particle wave function and our model
predicts maximal asymmetry if there are no
charged zero-spin constituents and R~ = 0. For
neutrino processes we find near x-1, in analogy
with the proton-neutron ratio shown in Fig. 9, that
the v to v ratio on proton targets vanishes. This
is because the bare proton constituent can lower
but not raise its charge by one unit by absorbing
a negatively charged intermediate boson 8' as
v- e'+8', but not a positively charged interme-
diate boson 8"as v- e +S"'. The prediction of
spin asymmetries and of v, v differences can be
further refined in terms of the ratio, R, of longitu-
dinal to transverse photon interactions which we
have for simplicity set to zero in the present anal-
ysis.

(C) As we shall discuss in the following, there
remain several important questions whose answers
lie outside the scope of the present model. In corn-
mon with all parton (and quark) models, there

exists the difficult problem of "Where and what
are the constituents that are bound together form-
ing the physical nucleons" Since these constituents
are assigned pointlike electromagnetic vertices,
in order to give a meaningful calculation for the
structure functions and electromagnetic form fac-
tors of the physical nucleon, they differ from ob-
served hadrons (viz. , nucleons and their low-lying
resonances, ' pions, etc.). We have no complete or
persuasive theory of the nature and reality of these
constituents. Nevertheless, it seems reasonable
to think that they should "dress" themselves before
emerging, as illustrated by the schematic diagram
given in Fig. 10. According to this picture, the as-
ymptotic state describing the initial hadronic state
at time T- -~ is the physical proton. At any finite
time T when the virtual photon hits, it interacts
only with the bare charged constituents. These
bare constituents are not, however, contained in
the complete spectrum of asymptotic free-particle
states emerging at T +~ after the scattering.
To answer the question as to what is going on dy-
namically in the outgoing region, one needs to con-
struct a more complete theory, and this we are
not proposing to do here.

The problem that we are facing is not a new one
in physics. It occurs, for example, in nuclear
physics. The deuteron is a stable bound state, and
has as its bound constituents the neutron and pro-
ton; however, when the neutron emerges from a
disintegrated deuteron, it decays iri =18 min. Be-
cause of the weak binding of the deuteron (-0.1%
packing fraction) and the long decay time of the
neutron due to the weakness of the P-decay cou-
pling, there is no difficulty in understanding the
physical processes involved. However, when we
study the dynamics of the proton's structure we
are up against strong binding (=100% packing frac-
tion) and presumably very short "dressing times"
or "decay times" for the constituents so that sim-
ple approximate intuitive physical pictures fail us.
Nevertheless, as a formal solution, one may adopt
the naive approach that the bare constituents are
simply ordinary unstable particles. For example,
this instability may be caused by postulating the
bare constituents to be somewhat heavier, say
within a factor of 2, than the corresponding physi-
cal particles; in addition, their decays are as-
sumed to be extremely fast so as to escape detec-
tion. Such an appxoach is clearly formally sound,
though physically unsatisfactory, or at least in-
complete.

As an alternative suggestion (though it may, in
fact, be an equivalent one), we may adopt the
physically attractive picture that the relation be-
tween a bare constituent and its corresponding
physical "composite" particle is almost identical



1V56 S. D. DRELL AND T. D. LEE

N = a(x) + b(x) 1n(s/m), (5.2)

where a(x) and b(x) are independent of s but depend
on the scaling variable x as well as on the nature

to that between a bare particle and a physical "el-
ementary" particle in the usual field theory. The
bare particles have pointlike vertices, while the
physical particles have q -dependent form factors;
both the spectrum of all bare particles and the
spectrum of all physical particles are complete,
and therefore any calculation of the total cross
section summing over all final channels of physi-
cal particles ean also be obtained by summing over
all final channels of bare particles. The bare-par-
ticle concept is useful in the Heisenberg equation
of motion description, since on account of their
pointlike vertices the interactions between bare
particles are local; how'ever, in terms of obser-
vations in the asymptotic region of a collision pro-
cess, only the physical particles actually emerge.
At present, it is still an open question as to how
one might develop a complete theory, so that such
relations could indeed exist between the bare con-
stituents and their corresponding physical compos-
ites.

(D) The question of final-state multiplicity is an
important one, though it is clear that no complete
answer is possible unless the question raised in
the preceding comment is resolved. Nevertheless,
it is conceivable that some partial answers could
be derived by using, for example, the simple (and
artificial) field-theory model in which all bare
particles are described by elementary fields and
the bare nucleon is regarded simply as an unstable
particle. (If one wishes, one may either regard
the bare mesons as the physical ones except for
renormalizations, or as unstable particles like
the bare nucleon. } There are then at least three
different mechanisms that might contribute to
final-state multiplicity: (i) the multiparticle bound-
state channels in the physical nucleon state, such
as the (Pwv), (ZICv) channels discussed in Sec. IV,
(ii) the decay of the bare nucleon after its separa-
tion from the physical composite system, and (iii)
the radiation of additional quanta (called gluons for
convenience, as in Sec. II F) associated with what-
ever fields are responsible for the binding poten-
tial for the bound state. For large values of
s = -(p+ q)', the first two mechanisms are expect-
ed to lead to a final-state multiplicity independent
of s, while the third mechanism, at least for soft
quanta radiation and in the eikonal approximation,
might give a final-state multiplicity that increases
logarithmically with s. One may then conjecture
that the total final-state multiplicity N in say eP
inelastic scattering is approximately given by, for
large s,

of the particular physical particle under consider-
ation, such as the pion multiplicity or the kaon
multiplicity.

In the simple bound-state model considered in
this paper only the above mechanism (i) is explic-
itly taken into account. It is clear that mechanism
(ii) does not alter the (total) deep-inelastic cross
section, since one sums over all final hadronic
channels. With respect to mechanism (iii) the
over-all picture has a familiar analog in atomic
physics, in which case the quantum responsible
for the binding force is the electromagnetic radia-
tion. One may either simply ignore the final pho-
ton radiation and directly evaluate the cross sec-
tion for say the photodisintegration of the atom, or
one may do the same calculation, but properly take
into account all final soft photon radiation. Under
the Bloch-Nordsieek approximation, these two ap-
proaches lead to the same cross section, provided
all final channels are summed over.

The above remark is correct if one includes only
soft radiation. In the case of atomic physics, the
inclusion of hard photons in the final state w'ould

lead to departures from the Bloch-Nordsieck ap-
proximation; in the present case, as we shall dis-
cuss, it may lead to violations of the scaling prop-
erty.

(E) We now turn to another important question:
whether the scaling property is an exact law of
nature in the high-energy (scaling) limit, or just
an approximate one which holds only in some in-
termediate energy range. For definiteness, let us
consider the forward Compton scattering ampli-
tude. As shown in Sec. IIF, under the ladder ap-
proximation, the absorptive part due to those on-
mass-shell intermediate states consisting of the
bare constituents plus a number of gluons can be
neglected in the sealing limit. As a generalization
of the ladder approximation we may also include
crossed graphs; i.e., diagrams in which the gluons
being exchanged between'different bare constitu-
ents are absorbed and emitted in arbitrary se-
quence. If the contribution of these crossed graphs
is calculated iteratively using a bound-state wave
function based on a ladder model that satisfies
(1.3), it is not difficult to see that the same con-
clusion holds and the radiation of real gluons can
be neglected.

If these were the only diagrams, then the scaling
property could be an exact law. However, there
are other diagrams, such as those connected with
renormalizations in which the gluons are ex-
changed between the same bare constituent. Un-
like the case of either ladder diagrams or soft ra-
diation, these gluon renormalization and radiative-
correction diagrams are typically divergent in the
ultraviolet region.
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If ox when these gluon renormalization contribu-
tions become important we may expect deviations
to occur from the scaling prediction. On the one
hand, they may behave in analogy to the case of
electromagnetic radiative corrections, where it is
known that there should be deviations from the
scaling property -O(n in(q'/m')); in the case that
the gluon is, say, a spin-0 meson, since the re-
normalization diagrams have the same logarithmic
divergence as the corresponding electromagnetic
ones, one may expect a similar deviation from the
scaling property -O(e ln(q'/m')). The magmtude of
e is proportional to the probability of hard gluon

(or meson) radiation, which can be rather small.
The present experimental data is consistent with

~ S 10 '. In any case, just based on the electro-
magnetic radiative correction, one should have
e ~ n. The scaling property i s, therefore, not an

exact one in the mathematical high-energy limit,
but is only approximately valid in the range includ-
ing the one presently accessible to experimental
study

1&@' in (GeV)'&exp(c ') ~exp(n ').
Alternatively, the possibility remains that the

sum total of the gluon radiative corrections may

be, simply, to give rise to a form factor of the
constituent itself that decreases with increasing
momentum transfer q and tends to zero for large
q' in analogy to the observed hadronic structure.
If such is the case, we may expect to observe
modifications from scaling leading to structure
functions decreasing at sufficiently high momen-
tum transfers q such that q (8') is no longer neg-
ligible where {ft') denotes a mean square radius
of the charge constituents (i.e., "bare" particles).
Evidently the extension of the kinematic range of
experimental study for the structure functions
will be of exceedingly great interest and impor-
tance.

(F) Although the physical description and motiva-
tion of the bound-state model described in this pa-
per are very different, there are related studies
of the proton's structure in deep-inelastic scatter-
ing that have similar mathematical features. In
particular, Landshoff, Polkinghorne, and Short"
present a parton model in which the virtual photon
is assumed to be absorbed on a pointlike parton
current and the physical input is given in terms of
the properties of the parton-proton scattering am-
plitude. Their major assumption is that the off-
mass -shell parton-proton scattering amplitude de-
creases sufficiently rapidly with increasing parton
mass. In their model this assumption provides the
necessary convergence properties that we intro-
duced via the vertex function g(u) 1/u in our bound-
state model.

We wish to thank J.D. Bjorken and S. B. Treiman
for stimulating discussions. One of us (T.D.L.}
wishes to thank E. M. Henley and other members
of the Physics Department at the University of
V@shington for helpful discussions and for their
kind hospitality extended to him in the summer of
1971, during which the early part of this work was
done.

In this appendix, we shall show that the Fourier
transform of the ground-state wave function P~(h)
is regular at the origin in the coordinate space
x=0, and therefore

(Al)

It is convenient to start with the Bethe-Salpeter
equation (2.12). For simplicity, let us consider
the special case

p, =M and m~=0; (A2)

i.e., the bound state is of zero mass and its two
constituents P and X'0 are of the same mass M. (R
is straightforward, though somewhat tedious, to
extend the arguments given below to the general
case p, g M and m~e 0.}

Following Wick, "we first rotate the real axis in
the complex k, plane counterclockwise to the imag-
inary axis, thus changing k, real to 0, = i' imag-
inary. By using (A2) and by setting the total 4-
momentum p„=0, one may write Eq. (2.12) in the
Euclidean space as

The phenomenological model of West" is very
much in the same spirit as this. Again it intro-
duces electromagnetic interactions with pointlike
partons and makes a convergence or "smoothness"
assumption on the parton-proton scattering ampli-
tude. West derives in this way the same relation
between elastic and inelastic structure functions
that %'e have given earlier. What is introduced as
the dependence of the parton-proton scattering am-
plitude on the mass of the virtual parton in West's
approach corresponds to the bound-state wave
function of the physical proton in our approach.¹teadded in proof Aft.er submitting this paper
for pubbcation we learned that similar ideas re-
lating scaling to the bound-state structure of the
physical proton have been developed i.ndependently
by C. H. Woo. We wish to thank Professor Woo
for kindly informing us of his work.
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where V(x) and 1'(x) are, respectively, the Fourier
transforms of V(k) and 1 2, (k),

V(e) =f V(it)e' *[d l'i], (A4)

V(e) =J V (ee)e" [d')],'t (A5)

and [d'k] =dk, dk, dk, dk, is real. The spinor depen-
dence of I'(x) can be separated by introducing two
c-number functions f,(x) and f,(x):

V(e) /, r. eM='(vee /. r, ,X
p

(A6)

in which the factor y, is due to the assumed pseudo-
scalar nature of X'. If X' were a scalar, then y, .

would be replaced by unity. For the ground state,
f, and f2 depend only on

V-0 exponentially. At large r (AS) becomes sim-
ply the free equation. One can readily verify that
for V=O the six independent solutions consist of
three regular ones

(a) f, =r 'Hl['&(iMr)-constr " exp(-Mr),

d
d.

(b) fl=0,
f, '=r 'H,' (iMr)-constr ' 'exp(-Mr),

(c) f, =r 'G~,'](iMr) constr "'exp(-Mr),

dr '

and three irregular ones

(d) f, =r 'H[l2](i Mr) constr ' 2 exp(Mr),
( 2 ~ x.2 +x 2 + x 2}1/2

Equation (A2) reduces then to two coupled ordinary
differential equations (e) f, =o,

d J,

d.

( d' 3 d 2I 2 d
, + - —- M'~ M'f, + —+ - f,' = -~MVfl

) ' dy
and

f, ' =r 'H'[22)(iMr) -constr '"exp(Mr),

and

d 3 d, 3 dfl, + ———M'- —, +f ' =-/(M 'Vf, ',
dh r dr x dr

(AS)
(f) f, =r 'G[2](iMr) constr " exp(Mr),

d

where

df2
(A9)

From (A6), one sees that f'(x) depends only on f,
and f, ', but not on f, explicitly. Since both equa-
tions in (AS) are of third order in (d/dr), there
should be six independent solutions for r(x).

According to the standard procedures for. the
eigenvalue problem of a Sturm-Liouville equation,
in order to determine whether the eigenstate I'(x}
is regular at r =0 or not, one has to show that (AS)
has three regular solutions at r =0, say I'„I;, I'„
and three regular solutions at z =~, say I'„f'~,
and I',. The bound state f'(x) can be written as a
sum

f'(x) =or, +pr, +r, . (A10)

One then adjusts the three parameters o., p, and
the eigenvalue X so that I'(x) is regular at r =~;
l.e.y

r(x) =ar, +br, +cr, . (A11}

To show that there are three regular solutions at
r =~, let us assume, for simplicity, the covariant
potential V to be superpositions of Yukawa-like
forms with nonzero masses [i.e., in (1.1), o(]( } is
not proportional to 6(/[2)]. Therefore, as r -~,

d' 1d
+ ——+ 1-—G['&(z) =H &(z).dg2 g d~ g2 1 1 (A12)

Our next task is to investigate the behavior at
small r. On account of (1.2), as r-0, Vis pro-
portional to r '. Without any loss of generality,
we may choose M = 1 and define the coupling con-
stant A, so that

V-4r ' as r-0. (A13)

As we shall see, as x 0 there are indeed three
regular solutions given by

(l) fl Clr, f2 C2r

(ii) f, c,r' lnr, f, '- c,r,
and

(ill) fl ~ Cl, f, ' c2r lnr;

in addition there are three irregular solutions

(iv) f,- c, lnr,

(v) f, -c,r ',
f2 C2r

f2' - c2r ' lnr,

where H&'& Q &, H['] andH['] are the standard
Hankel functions, 2' and G,'] (i= 1 or 2), besides
satisfying the above asymptotic behavior, is also
the solution of the following inhomogeneous Bessel
equation:
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(vi) f,-e,r 'lnr, f, '-c,r ',
where c, and em denote the appropriate constants.

The derivation of these results follows the stan-
dard method. The first regular solubon is ob-
tained through the usual indicial equation by ex-
panding f, and f~' as power series in r. One finds

y,(x)= jl y, (k) e""d4k (A19)

1 (0) exists, and therefore, on account of (2.10),

y, (k) =1,(k)u„
the Fouriex transform of the bound-state wave
function g~(k)

f, =s(r}=r' Q e„r'",

f, ' = t(r) =r'gt„r'".
(A14}

is regular at the origin; consequently, (2.8) and
(2.9) hold.

We note that in a 4-dimensional Euclidean space
the Fourier transform of any function k(r), regu-
lar at both r =0 and ~, satisfies

f, = (Inr)e+r'g a,r'"

f, '=(lnr)t+r Q b„r'",
0

where s and t are given by (A14) and e„,b„can be
easily determined by substituting (A15) into (A8).

To derive the third regulax solution, one as-
sumes

f, =(lnr)'s+(1nr)u, +e,

f, ' = (lnr)'t+ (lnr) u, + e„
where u, and e, (i=1 and 2) are power series in r.
It can be readily verified that these power-series
expansions are of the form

u, =r'Q(u, )„r'", e, =Q(e,)„r'",

u, rz,'(u, )„r'", v, =rg(e, )„r'".
0 0

(A1V)

More explicitly, this third regular solution is
given bye as r ~ Oy

f,- 1+—,'X'r'(lnr)'+ O(r')

f, '--~gXr lnr+8(-3l1. +4)r
——„' ~'(X+ 2)r'(inr)'+ O(r' lnr) .

(A18)

According to (A10), the bound-state wave func-
tion is a linear function of the above three regular
solutions, (A14)-(A16). From the explicit form of
these solutions, one sees that as r 0 the third
regular solution dominates over the other two;
tllusip (A 18) llolds f01' tile bou11d-s'tate wave fu11ct1011

as well. By using (A6) and (A18) one sees that

To obtain the second regular solution, one assumes

f, and f, ' to be given, respectively, by lnr times
the first regular solution plus a power series in r.
The result is =-4~k-'jl ~,(kr)[3k +6rk-+r'k-]dr,

(A20)

where Jo is the zeroth-order Bessel function.
Thus, for example, by settingk = f„which ac-
cording to (A18) is

e,'~r2 inr+O(r'),

where c is a constant, and by using (A20), one
finds that, through partial integration, as k'-~

It is then straightforward to show that as k'-~ the
bound-state solution I'~(k) satisfies

1~(k) =const(-iy ~ k)y, k '+O(k 'ink'). (A22)

The explicit form (A18} enables one to determine
not only the leading behavior, but also the form of
the next-order correction term O(k ' ink'). By
using (A22), one may also directly establish (2.9)
and (2.37).

To establish the identity (2.21), one may first
differentiate both (2.6) and (2.16) with respect to
k„keeping p„ fixed; next multiply them, respec-
tively, by $~(k) = p, (k)K~ '(k) on the left and 1t,(k)
=E~ '(k) p~(k) on the right; and then add these two
equations together. This leads to

P

= -iX p k p k', + P k -k' g4kg4k

(B1)

and, therefore, (2.21) is proved.
To establish (2.22), one may' first djfferentiat'e

(2.6) with respect to p„keeping k„ fixed; next



8. D. DRE LL AND T. D. LEE

multiply on the left by g~(k}; and then integrate
over d4k. After using (2.16), one finds d'X' =O(m'/q*) . (CV)

pkKpk pk dk. (B2)

Since X=X(m~') and

Jtp (k) g (k)d4k
Pu

= i It g~(k) V(k —k')g~(k') d kd4k'
pp

in this region, all denominators in the' integrand
of (2.32) are finite in the scaling limit. Next, we
have to determine in this region the magnitude of
the numerator in (2.32). On account of (2.33) and

(1.2), at large 4-momentum transfer squared
(k' —k)' the scattering matrix (k ) T~„(k'), like
V(k'-k), decreases as (k' —k) '. This, together
with (C4} and (C6), implies that in the laboratory
frame the final 4-momenta are restricted to

iy, (X'-+ p, '),

X„=o(m) and P„=q„+O(m).
Since the virtual momentum P'„=q„+O(m) as well,
in the integral (2.32), after using (C2}, one has the
numerator factor

(2.22) follows on account of (B2), (2.20), and (2.21).
uIty4 k~TI+4[k' -iy P'+M

APPENDIX Q

In this appendix, we give the detailed derivation
of why the amplitude I,', defined by (2.32), can be
neglected in the scaling limit. It is useful to de-
termine in (2.32) the integration domain in which

the integrand does not approach zero in the scaling
limit. Let us first examine the region in which
the denominator remains finite. We observed that
because of the vertex function lp~(k ) and the prop-
agators [ iy (p--X')-M] '(X"+ p') ' in the inte-
grand in (2.32) this domain is restricted to

X"=O(m') and (p -X')' =O(m'), (Cl)

and because of the denominator in the propagator

[-iy P' M] '= (P-"+M-')--'[ iy P'+M]-
(C2)

={k~ T„„)k)sty,(-iy P+M)+O(m),

which is also O(m). Therefore, one finds that the
integrand in (2.32) remains finite in the integration
region (CV) and, consequently, the integral over
this region is proportional to the volume which ap-
proaches zero in the scaling limit. Outside this
region (CV), the integrand itself approaches zero
at least as O(q '); furthermore, the corresponding
integral is dominated by the region in which (C4)
remains valid, but, i11 plRce of (C3), P =O(q ).
Since the integration over X' is a supex convergent
one, the integral (2.32} remains convergent (in fact
remains superconvergent) if the propagator witl1

the large virtual momentum P' is taken outside the
integral. It then follows that the entire integral I„'

goes to zero in the scaling limit and therefore can
be neglected.

there ls the additional constraint

P"=(p+q -X')' =O(m'), (C3)

x=q'/(-2p q) finite, (C5)

the components X,' and X' are further related by

X; -X,=(1 -~)m, +O(m'/q'), (C6)

where the g axis is chosen to be parallel to q.
These constraints (C4) and (C6) restrict the inte-
gration region of interest to a volume

where m denotes collectively the relevant masses
m~, M, and p, . In the laboratory frame, the first
two constraints (Cl) imply that each of the four
components of X'„should be restricted to

x' =o(m) {C4)

The additional constraint (C3) then implies that in

the scaling limit of q'-~, -(P q)-~ but keeping
the scaling variable

To establish (2.52) it is convenient to start from
(2.51) and to use the laboratory frame with the z
axis parallel to q. One has then

X'=O(m') and (p-X)'=O(m ). (D2)

Vg
vU2= . 2 5'„+ + +»p" + g

It is easy to see that in the scaling limit E» re-
mains finite, and therefore vU~-2xm~U', . Conse-
quently, one needs only to investigate E», or A.»
and B». Because of the rapid convergence proper-
ty of the bound-state vertex function, the integral
(2.4V) fo1' AII is determined ollly by 1ts VRllle ovel'
the domain in which
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X, -X, = (l - x)m~+O(m'/v); (D5)

These constraints imply that in the laboratory
frame all components of X„are O(m). Similarly,
in the same laboratory frame the integral (2.48) for
B» is determined only by its value over the domain
in which

X„=O(m) and X'„=O(m). (D3)

For 2» the magnitude of the integrand in (2.4V) is
proportional to the appropriate matrix element of

[-fy P -M]-'=(P'+M')-'[fy q+O(m)] (D4)

in which the numerator on the right-hand side is
O(v). If P'=O(q'), then (D4) is O(m '), and the in-
tegrand in (2.4V) remains finite in the sealing limit.
On the other hand, if P' = O(m3), then (D4) is
O(v/nP}. However, in the latter case, on account
of P'=(p+q-X)', the components of X„ in the
laboratory frame must be further restricted to

&»-&»(p q}+&»(p -q) * (D8)

from which, by taking the imaginary part, (2.52)
follows. We note that, like the diagram I,' in
Fig. 3, the diagram 8 ~„ in Fig. 4 is needed for
maintaining gauge invarianee but can be neglected
in the scaling limit.

APPENDIX E

To complete the proof for the sum rule (2.53), we
follow closely the steps taken by Adler, "making
sure that all the assumptions used in the usual der-
ivation are indeed valid in the present case. In the
laboratory frame, the amplitude E~„defined by
(2.54), may be written as

soning, it can be readily established that for /~ j.,
apart from possible ln(v/m) factors,

B'»'-O(v ') and B',f '-O(v ').
Thus, in the scaling limit

consequently, although the integrand in (2.4V} is
O(v), the relevant integration volume fd4X is
O(m'/v). Thus, one finds that A» remains finite
and nonzero in the scaling limit.

To study the magnitude of 8'», lt ls conveIQent to
use (2.33) and formally expand B» as a power ser-
ies in the coupling constant A. of the binding poten-
tial V. We write

F,',(p, q) =b,~a, (q', v)+q, q,a, (q', v),

P~,(p, q) =qib(q', v),

&&~(p, q) = q;b(q', -v),

&~(p, q) =c(q', v),

(El)

&»= Z ~"&»
n=1

in which, e.g., the first term M~» is given by the
same expression (2.48) except that (b[ T~„(b') is
replaced by IXV(k'-b}. The magnitude of the re-
sulting integrand for B'„ is proportional to the ap-
propriate matrix element of the product

[-fy P -M]-'[-fy P'-M]-'
= (P'+ M')-'(J "+M')-'

x[ zy P+M][-zy P'+M]-.

Because of (2.49) and (D3), the numerator on the
right-hand side of (DV) is equal to -q'+O(m)
x[ iy q]+-O(nP) which is O(q ) in the scaling lim
it. If P' = O(q'} and P"= O(q'), then (DV) is O(q ').
If P2 =0(m') but P"=O(q'), then (DV) is O(m ') but,
in addition to (D3), the components of X& are fur-
ther constrained by (D5), so that the relevant in-
tegration volume Jd~x is O(m'/v). Similarly, if
P"= O(m') then the relevant integration volume
Jd'X' is reduced to O(m'/v). Putting all ihese to-
gether, one finds that

a,»-O(v ')

in the sealing limit. By following the same rea-

a, + (q'+ v')a, + i vb = 0 (E3)

in which, on account of (2.55), a, (q', v), a (q', v),
and c(q', v} are odd in v, but b(q', v) is even in v.

It is convenient to define

f(q', v) -=v 'q'(a, +q'a, ) (E4)

which is even in v. By using the explicit expres-
sions (2.47) and (2.48), one can readily prove that
a» a» b, and c are all regular at v =0. At a fixed
q', as v-0 Eq. (E3) implies v 'q'(a, +q'a, )--ibq'
which, in turn, on account of (E2), approaches 2.
Thus, one finds that at v=o

f(q', o) =2.
Next, we shall show that at a fixed q'

f(q', v)-O(v ') as v-~.

(E5)

(E6)

This can be established by following almost exact-
ly the same arguments used in Appendix D for A»

where the subscripts i and j denote the space corn-
ponents. These four functions a» a» b, and c are
related through the divergence condition (2.56). By
setting the subscript A. in (2.56) to be, respectively,
the time and the appropriate space components one
finds that

vc —i(q'+ v )b =2
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v;„=(2m~) -'[q'+ (M+ p. )' —m~'] . (E8)

To study the discontinuity of f across the cut, it
is only necessary to investigate the absorptive part
of F~„ for v&0. By using (2.47) and (2.48}, one
sees that for v& 0 the absorptive parts of F~, and

and By] except that instead of the scaling limit,
one now takes the limit of v- ~ while keeping q'
fixed. We note that (D3} remains valid. Since in
the laboratory frame P„=q„+O(m), the numerator
on the right-hand side of (D4) remains O(v}, as be-
fore. Thus, (D4) is O(m ') if P'=O(mv), inwhich
case the corresponding integration volume fd'X
= O(m4). If Pa = O(ms), then (D4) is O(v), but the
corresponding integration volume is O(m'/v), be-
cause of (D5). Consequently, in the laboratory
frame A»(p, q) is finite in the limit v-~. Further-
more, the same limit holds if v- -~. The differ-
ence A»(p, q} -A»(p, -q) is, therefore, O(v ').
Similar arguments and conclusions can be readily
extended to the differences A»(p, q) -A»(p, -q),
B»(p, q) -B»(p, -q), and B»(p, q) -B»(p, -q). By
using (2.54), (2.57), and (E3), one establishes the
asymptotic condition (E6}.

Since f(q', v) is an even function in v, one may
consider the complex x = v' plage, and regard f as
a function of z, keeping q' fixed. In this complex
plane, f has a pole at

s = v,
' =- [q'/(2m~)]' (E7)

and a cut along the real axis extending from v;„'
to ~ where

F~„are equal where F~, is the forward Compton
amplitude defined by (2.46). It follows then that
the discontinuity of f across the cut is simply
2i Im(vUa), where U, is defined by (2.51). The
standard Cauchy theorem and the asymptotic con-
dition (E6) lead to, for s away from these singu-
larities,

f(q', s) =f(q', v, ')

dv'(v'-s) 'Im(vU, ) .
p '2

(ES)

Upon setting z =0 and changing the variable v to
x =q'/(2m~v) while keeping q' fixed, (ES) becomes,
on account of (E5),

1=-,'f(q', v, ')+m-' x 'dxIm-(vU, ), (E10)
0

where x,„=1 —q '[(M+ V, )' —m~']. By repeating
exactly the same argument used in Appendix D,
one can show that (2.52) can also be written, at a
fixed x, as

im(vUa) =x(vWa)[1+O(maq a)].

As q'-~, one has f(q', v,'}-0 since it is propor-
tional to the square of the elastic electromagnetic
form factor. Moreover, g,„-1 and at fixed x

Im(vU, )- s(v W,);
(E10) becomes then simply the Adler sum rule
(2.53).
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We calculate the radiative corrections to the mo ~ ye+e decay ovex the whole range of the
Dalitz plot, with Qo xestrictions on the radiative photon energy. The corrections are found
to be negative and large in magnitude in the region of lax'ge invariant mass of the Dalitz pair,
Rnd sIQR11 but positive fox' small values of the sRIne quantity. TI18 total correction to the
decay rate, defined by I' (m ~ ye+e )/I'{x yy) is positive Rnd agrees with the results of
px'evlous calculations.

Radiative corrections to the general process

A~Be e

were calculated recently by Lautrup and Smith, '
using the soft-photon approximation. In this paper
me concentrate on the specific decay


