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A picture of multiple-production cross sections suggested by Feynman is extended to in-
clude transverse-momentum distributions and phase-space boundary effects in the single-
particle distributions by introducing an external confining potential on an axially symmetric
plasma. Two-particle correlation functions are discussed in such an analog system, using
closure approximations such as the Debye-Hucke1 equation for a nonuniform plasma, with

the interparticle potentials obtained from two-particle elastic scattering properties. Effec-
tive correlation lengths are found to depend on the single-particle distribution in important
ways. In particular, the central-region correlations are of shorter range than those at
large transverse momentum or near phase-space boundaries in certain cases. A bootstrap
mechanism for indefinitely rising Regge trajectories is also outlined.

I. ONE-DIMENSIONAL ANALOG FOR HIGH-ENERGY

COLLISION ENSEMBLES

A concise picture of the distributions seen and

expected in final-state particles from high-energy
hadron collisions has been proposed by Feynman'
and further utilized by Wilson' in discussing ob-
servables in high-energy collisions. This distri-
bution is essentially one-dimensional; the trans-
verse momentum of secondary particles is strong-
ly damped, whereas the longitudinal momenta have
a spread which increases as the collision energy
increases. If the particle momenta are expressed
in terms of rapidity (y), many current models sug-
gest the distribution in y contains a flat plateau
whose width is proportional to the maximum rapid-
ity (Y), proportional to the logarithm of the incom-
ing energy of the collision. Since the distribution
in transverse momentum seems to be relatively
independent of energy (and certainly is in these
current models), and is sharply damped in that
variable, one sees the development of a single-
particle spectrum in the shape of a cigar at very
high energies. Feynman and Wilson discuss this
system, the ensemble of final states in collision
processes of a given type, as if it were a gas or
liquid confined in a tube. The effects of the walls
have been discussed only very qualitatively, in
terms of a finite correlation length at the edges.

In such a many-body ensemble, certain simple
distribution functions usually characterize the ba-
sic properties of the constituent particles and their
interactions. The one -particle distribution func-
tion, the density, is the single-particle inclusive
spectrum. Two-particle joint density functions are
the same as two-particle inclusive distributions.
Probability distributions of gaps, or holes, cor-

respond to "diffraction-dissociation" cross sec-
tions when the gape are large, in the rapidity vari-
able. ' Since the probability of obtaining large
rapidity gaps is exponentially small for most of the
distribution, and the derisity of the central region
(y plateau) is independent of volume (Y) asymptoti-
cally, the relevant familiar physical analog would

seem to be a liquid, ' which has essentially constant
density and a relatively large free-energy require-
ment for making a cavity or hole.

Two-particle correlations in rapidity in such a
system would be expected to exhibit a short corre-
lation length, or at least a finite one independent
of Y. This means that for large rapidity separa-
tion, the two-particle density factorizes into the
product of the corresponding one-particle density
functions. This is explicitly shown in some mod-
els, 4 when the rapidity of both particles is suffi-
ciently separated from the ends of the distribution
(y=o, j =y).

Such a one-dimensional picture is not adequate
to discuss correlations in transverse momenta,
nor does it suggest any geometrical link between
transverse-momentum distributions and structure
of hadrons or elastic scattering. Some models'
suggest the latter type of connections, but do not

illuminate the role of correlations or give any

clues about estimating their magnitude or their net
effect in the system. In Sec. II we extend the ana-
log described above to essentially three-dimen-
sional analogs which allow discussions of a wide
variety of phenomena.

II. THREE-DIMENSIONAL ANALOG:

CONFINED PLASMA

Consider a plasma, i.e., a gas of strongly inter-
acting particles, confined in an axially symmetric
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configuration to a region which can be of various
lengths in the z direction. The confining potential
fields may incorporate, for example, a wire along
the origin in the transverse directions which at-
tracts the plasma by a Coulomb-like interaction.
We will denote the confining potential symbolically
by U(r). We do not intend to explore in this paper
any detailed connection between U and the single-
particle density; it will simply be assumed that the
single-particle (i.e., average) density is a given
function of analog coordinate space, which we iden-
tify with momentum space in the hadron collision
ensemble.

This external field may not be connected with in-
terparticle interactions in any essential way. For
example, it is possible in a plasma to neglect ex-
ternal electric fields compared with magnetic field
forces; whereas, in considering correlation ef-
fects, the interparticle electric field (Coulomb po-
tential) is the most important contribution.

In hadron collisions, we can proceed conceptually
by building a model for the single-particle density
with parameters depending essentially only on the
initial two-particle colliding system. This will en-
able a relation to be maintained phenomenologically
between the hadron-hadron high-energy scattering
and the transverse and longitudinal scaling prop-
erties and other characteristics of the single-par-
ticle spectrum. ' However, when correlations are
to be examined, it is necessary to introduce addi-
tional parameters into the description which char-
acterize the relatively low-energy interactions be-
tween the produced particles in the analog system.

A convenient way of separating these effects is
provided by the integral-equation formalism appro-
priate to a classical gas or liquid in equilibrium
with specified external field and internal poten-
tials. ' Transverse coordinates will be the trans-
verse momenta of produced particles; longitudinal
coordinates will be the rapidities of such particles.
A model for the single-particle density p, is first
used; then the parameters of interparticle scatter-
ing are introduced in a way analogous to the plas-
ma analog.

Qualitative properties of the single-particle den-
sity are assumed as follows: (1) In the central re-
gion, where both y and Y-y are large compared
with some fixed correlation length, the density is
constant in y and depends only on k» the trans-
verse momentum. (2) The dependence of the den-
sity on k~' is very sharply damped, with exponen-
tial decrease at large k~. (3) Near the phase-space
boundaries, which are the extreme ends of the
system in the z direction (y near 0 or Y), the be-
havior is given by Regge phenomenology with an
appropriate exponent characteristic of the quantum
numbers involved in the reaction. The possibili-

ties here are usually assumed to be of the form'

p, (x, k~)-(I -x)' ' ~" ~ as x-1,
where

2(ki'+ m')'",.~( y)
M

and n(t) depends on the quantum-number differ-
ences involved; n(0) may be 1, —,', or zero or neg-
ative.

III. INTEGRAL EQUATIONS FOR
CORRELATION FUNCTIONS

In a nonuniform system, it is convenient in the
classical theory of liquids to consider the two-par-
ticle correlation function G(r„r,) defined' by

where p, is the two-particle (joint) density function.
In our class of systems, we notice immediately
that if G is slowly varying in transverse momen-
tum, the sharp cutoff in p, also appears in the ob-
servable p, .

In such classical systems, the interparticle in-
teraction is most conveniently introduced through
an auxiliary function, called the "direct correla-
tion function, "c(r„r,), which is assumed to de-
scribe a "direct" or "unshielded" correlation be-
tween two particles, while the function G contains
all the accumulated indirect effects induced by the
medium. In the simplest theory, c is taken as di-
rectly proportional to the interparticle potential;
this leads to the Debye-Hiickel equation. ' In more
sophisticated theories, c is assumed to be a more
"regular" functjon of the potential, such as in the
Percus -Yevick equation. '

The general connection between c and G is ex-
pressed in the integral relation

G(r„r,) = c(r„r,) + Jf dr c(r„r)p, (x)G(r, r, ) .

Specific closure approximations for c then lead to
integral equations for G. In a system with rela-
tively weak long-range potentials, the linear
Debye-Hfickel approximation c = v(v, -r, ) is a rea-
sonable assumption. In systems with hard-core
potentials, the Percus -Yevick approximation,

c(r„r,) =(1 e "~"'"&~)[1+-G(r„r,)],
which leads to a quadratic integral equation for G,
is more realistic.

In the hadron collision ensemble, we will not
necessarily be able to use experience borrowed
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c(s') = [a r(s') —or(~)]/or(~) . (4)

In most current models of total cross sections,
there is a small, long-range (weakly energy-
dependent) contribution to this expression from
Regge cuts of various types, ' together with a sec-
ondary contribution which is strong at low energies
but dies out rapidly with s'. The latter contribu-
tions are associated with resonance structure in
the two -particle system. The former contribution
is present in all cases.

Such assumptions on c do not guarantee 4-mo-
mentum conservation, so they cannot be univer-
sally applicable. We will assume that in the central
re~on these constraints are not important at high
energies. We will not quantitatively investigate
these model assumptions near the "walls, " the
fragmentation regions, in this paper.

The secondary Regge-pole contributions in (4)

from classical fluids. However, as a working
framework, we may tentatively adopt some hypoth-
eses concerning c which can be tested by experi-
ments. We should, at a minimum, provide a con-
cise language for expressing empirical data on

multiple production; this is easier if we have a
specific model for purposes of illustration and
whose features can be completely explored.

We will assume the most convenient formulation
is in terms of covariant 4-momentum vectors re-
stricted to the mass shell. Thus, we begin with
the ansatz

G(k„k,) = c(k„k,) + J) d~k c(k„k)p(k) G(k, k,),
(3)

where p(k) = p,(k) 5(k' —m') is interpreted as a den-
sity of particle states.

We will take this density to be determined inde-
pendently of c by experimental data or a model
which may not provide an associated G.

To obtain a definite model for c, we will make
two assumptions, the first being much weaker than
the second.

(1) c is a function only of (k, +k, )' = s». This is
motivated by our desire to reflect the two-particle
resonance structure in the correlation function,
while keeping as simple as possible the functional
dependences involved.

(3) c is directly related to the total interaction
cross section of the two outgoing particles at the
given subenergy; and this relation can be obtained
by formally setting the single-particle density to
zero in Eq. (3), while identifying G in this case as
the ratio of nonconstant to constant terms in the
total cross section' for the two particles at energy
(S )1/2

Thus, explicitly,

will yield (in c) a rapidity correlation length of or-
der [1 —n(0)] ', which is of order unity, in the
central region. This will be qualitatively un-
changed when the solution of (3) is obtained, and
G will also exhibit such a correlation length, as
discussed by Feynman' and verified in dual mod-
els. ' In addition to secondary Regge poles, one
expects high-lying singularities near the Pomeran-
chukon, such as shielding cuts or multiple-scatter-
ing cuts, to contribute a very long correlation
length in the ensemble.

Since we wish to illustrate certain important con-
sequences of our approach, which are not neces-
sarily contained in other models, we will consider
quantitatively (in Sec. V) only the long-range con-
tribution (cuts) to c in this paper. We will show
how these long-range correlations become sup-
pressed in the central region, leaving only short-
range correlations, while in the regions where p,
is small, at large transverse momentum or at
certain phase-space boundaries, it is possible to
detect long-range effects.

The cut contributions for cuts near J= 1 in the J
plane will have the form

c(s') -a(lns') "

[if we consider the variation of ln(s) to be more
important than s ~ '], where n is unity in some
models, —,

' in others. We will take n = 1 for sim-
plicity.

It is convenient now to reexpress Eq. (3) in terms
of rapidity and transverse momentum coordinates.
The integration d'k becomes simply dy d'q (where

q is the two-dimensional transverse momentum);
and, in the central region, the single-particle den-
sity depends only on q' and not on y. With Y of
order lns, the maximum rapidity in the laboratory
frame for a conventional experimental configura-
tion, we have

G(y„q„y., q. ) = c(y„q„y., q.)
oo

+ dy I d'qc(y, & q, ; y, q)
40 ~ oo

xp, (y, q) G(y, q; y„q2).
(6)

Now s» can easily be expressed in terms of
these variables:

&» =3[m'+(K~K2) cosh(y, —y2) —q, ~ q~],

where z, =q, '+ m'.
Note, therefore, that if c is a function only of

s», it is translationally invariant in terms of ra-
pidity. Since p, is independent of y in the central
region, which contains most of the region of inte-
gration in y for large Y, we may, in the central
region, utilize the Fourier transform of this equa-
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tion with respect to y to simplify the problem con-
siderably.

Equation (6), together with assumptions (1) and
(2), or(s) for the outgoing particles, and knowledge
for p, (e.g., from a model' which ignores correla-
tions), provide in principle a detailed prediction
for one- and tw'o-particle inclusive spectra which
can be tested experimentally. This analog model
appears somewhat simpler than dual resonance4
or multiperipheral dynamics (Pignotti, Ref. 7).

IV. INDEFINITELY RISING REGGE TRAJECTORIES

Certain qualitative results obtained with a simple
short-range ansatz for c are sufficiently interest-
ing to be explicitly noted here. If we assume a
smoothly behaved exchange mechanism, e.g.,
Regge-pole or elementary-pion exchange, which is
damped exponentially in rapidity, the situation is
very similar to a gas or liquid with specified
short-range molecular potentials. Thus, solutions
of (6) will exhibit qualitative behavior similar to
that of realistic liquids.

One of these characteristic behaviors is the os-
cillatory radial behavior of the correlation func-
tion. All normal fluids have such a damped oscil-
latory component; the oscillations are strong at
one or two molecular radii, but become very weak
at large spacings. Our solutions of (6) will auto-
matically exhibit such behavior; this is explicitly
seen in the Fourier-transform solutions of Sec. V,
when the nearest pole in the complex plane of the
transform variable dominates.

There is a direct interpretation of such damped
oscillations. In terms of s», it appears as an in-
finite series of decreasing-amplitude enhance-
ments of the two-particle inclusive cross section
as a function of the invariant (mass)' of the two-
particle system. But the obvious identification of
such a series is the coupling of particles I and 2
to an indefinitely rising Regge trajectory n(s»),
whose couplings decrease rapidly with increasing
S

What may be concluded from this depends on the
point of view adopted. One possible point of view
is this: that iridefinitely rising trajectories ean be
generated, from many-body dynamics as we have
outlined, in a relatively quantitative way, given
simple, smooth (nonoscillating) exchange mecha-
nism. This provides still another "bootstrap"
method, apparently independent of the duality ap-
proach or the elastic two-body N/D approaches
The consistency and utility of such a method re-
mains to be investigated.

V. SOLUTIONS OF THE "LONG-RANGE"

MODEL SYSTEM

With the specific assumption (5) for c, we can

obtain interesting qualitative properties of the cor-
relation function G with very little effort.

Consider first the solution of (6) in the central
region, for large F. The most important contri-
bution to the integral, we suspect, will come from
a large interval in y, and such that q' is small,
since strong damping is present in the single-par-
ticle density. Thus, in the integral we should be
able to replace c(s ') by an asymptotic approxima-
tion for large s' but small q'. This would yield

c(y1 fl y2 72) "aI. I yi —
y2 I +»(~i~2) I cA .

(8)

Next, a Fourier transform with respect to y may
be performed on (6); if z is the variable conjugate
to y, we obtain

G(z q K,q K2) = c(z q K,q K2)

c(z; z„z,) = j dye'"'c(y; K„K,).

The replacement of c by c„inside the integral
then leads to a particularly simple form for the
Fourier transform, which faetorizes in the q' var-
iables:

c~(z q Ic~~ Kp) =a(K~K 2)

This factorization of the kernel immediately
leads to an explicit solution of (9). Define the trace
of the kernel as

k(z) = )t dK p, (z)c(z; z, ~),

where the replacement of c by the asymptotic ex-
pression c„is implied (but an approximate solution
is obtained even if c does not factorize exactly).
Then the solution of (9) is

c(z; ~„z,)
G(z~ K~q IC2) =

1 @( )
(12)

From this expression, we can read off the qualita-
tive properties of the correlation function in the
central region.

The correlation length in rapidity is determined
by the asymptotic behavior of G as a function of y.
A contour integration of expression (12) shows that
this asymptotic behavior is determined by the
imaginary part of the location of the pole in the z
plane in (12), which has the smallest imaginary
part. Since the numerator of (12) in our model has

+ dKC Zy Kjy K P~ K G Zp Ky K2

(9)

where the caret indicates the Fourier-transformed
function, e.g.,
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singularities only at infinity, the correlation length
is determined by the first zero of the denominator.
%2th reasonable single-particle densities, in the
central 'region, h(z) attains the value unity for
Imz of order unity, which means the correlation
length in rapidity will be of order unity.

This estimate can be made more precise by as-
suming the q' dependence of G (or c) can be ne-
glected compared with the rapid q' dependence of
the single-particle density in the integral. Then
we can approximate h(z) by

h(z) —= c(z; m', m') Jdz p, (v) =—ac(z; m', m'} .
(13).

The coefficient b can be related to the asymptotic
behavior of the mean production multiplicity for
large F, since it is the coefficient of Y in the in-
tegral over the single-particle spectrum:

n=blns+ const as s-~.
Data, or models which scale, indicate b is of or-
der unity.

The strength of the correlation, a, then deter-
mines the correlation length; if a is of order unity,
as suggested by total cross-section data fits, ' we
obtain a denominator zero in (12) with ima. ginary
part near unity, which gives us the correlation
length in the central region.

This phenomenon of screening a long-range po-
tential through self-consistent-field cooperative re-
adjustment of the density is a general property of

dynamical systems expressible in equations such
as (2), and was the original idea exploited by
Debye and HQckel in their theory of electrolytes,
where the basic interaction is the Coulomb attrac-
tion or repulsion.

Qualitatively different behavior of G may be ob-
tained if the produced particles are near phase-
space boundaries, in cases where the single-par-
ticle density vanishes at the boundary. In those
cases, for example, where baryon exchange deter-
mines the appropriate Regge pole n(q'), the
screening effect, as exhibited in (6), may be dras-
tically reduced, and one may see the long-range
correlation of c more directly. The most charac-
teristic test of such long-range correlation would
be observation of a transverse-transverse correla-
tion term qy q2 which decreases only like P» '"
(as suggested by the form taken by s» when one
particle is near y = 0, the other near y = Y) instead
of a much more rapid decrease for particles in the
central region. A similar effect should appear
when (q, ~

and (j, (are both large compared with
longitudinal momenta in the center-of-mass sys-
tem.

Of course, assumption (1) may, in fact, be
wrong in the regions near boundaries, since it is
possible to construct models wherein the correla-
tions do not vanish as P» increases, e.g., diffrac-
tion-dissociation models. It will be necessary to
incorporate additional realistic. model features as
experience increases and data are obtained on two-
particle inclusive cross sections.
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