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The effective-range formulas for the P-wave scattering amplitudes, I =2 and I = 2, of pions
on nucleons are derived for the low-energy region using the requirements of analyticity,
unitarity, and crossing symmetry and a sum rule. The S-matrix calculations are carried
out by the generalized one-channel Chew-Mandelstam method in which the denominator func-
tion D may, generally, contain a Castillejo-Dalitz-Dyson (CDD) pole, while the function. N
is considered in the three-pole effective-range approximation. The effective-range param-
eters are then determined by the usual procedure in which the input values are the p-meson
and {3,3)-isobar N~ discontinuities and the high-energy contributions in the crossed channels,
and the nucleon pole in the direct channel. The amplitudes P~3 and P33, derived in this way
as functions of the CDD-pole term, are then compared with experiment by means of the
calculated and experimental values of the scattering lengths a&3 and a33. It is shown, as one
of the main results, that the low-energy P&3 amplitude does not contain any CDD pole and
produces a scattering length which is in excellent agreement with the experimental value,
while the P33 amplitude necessarily contains a nonzero pole term. These results are in
agreement with the conclusions made on the basis of a quite different approach-the "crank-
shaft analysis" —in the papers by Atkinson et al.

I. INTRODUCTION

S-matrix calculations enable us generally to de-
rive analytically the partial-wave scattering am-
pl. itudes in strong interactions, which are consis-
tent with the requirements of analyticity, unitarity,
and crossing symmetry.

An approximative approach which starts from
these requirements and determines the partial-
wave amplitudes in a certain low-energy region

has been worked out as the N/D effective-range
method by Balkz, s.'

The determining left-hand cut in the s-plane is
replaced in this approximation by several (in our
case two) poles s, so that the numerator function
N is given as a sum of n fractions b, /(s s, ) with-
unknown residues b, .

To solve the problem of finding the N/D ampli-
tudes, we determine these residues in our self-
consistent calculations by comparison of the
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N(s)/D(s) integral representation and its deriva-
tives at the point s~ in the unphysical region with
the expressions for the partial-wave amplitudes
and their derivatives derived theoretically on the
basis of pole theory.

In the case of pion-nucleon scattering the ampli-
tudes in the unphysical region are well represented
by several discontinuities, discussed in detail be-
low, which are further used as the input values.

However, having in mind the general theorems
of the Herglotz type2 for analytic functions, ac-
cording to which Castillejo-Dalitz-Dyson (CDD)
poles may occur in the course of our one-channel
calculations in the D function' as the expressions
y«/(s- s„), we must devote special attention to
these poles.

The role of CDD poles is particularly important
wherever there is a binding activity to other chan-
nels; it will manifest itself by the term belonging
to a dynamical resonance or bound states (s« = s„,).
This has been widely studied with the aid of Levin-
son's theorem in the nonelastic scattering problem
in relation to one-channel (the N/D methods of
Frye and Warnock, and of Chew and Mandelstam)
and many-channel calculations in the papers by
Atkinson et al. ~ ' As a general result it has been
found that a multichannel dynamical resonance
(bound state) will appear as a CDD pole in the
single-channel inelastic amplitude for at least one
channel.

In the applications' of this so-called "crankshaft
analysis" to pion-nucleon scattering in the SU(6)-
symmetric model, Capps, Atkinson, and Halpern
came to the conclusion that the partial waves P33
and Pyy of this process should have a CDD pole in
the D function.

Although our one-channel calculations are car-
ried out by the method of Chew and Mandelstam, '
for which the "crankshaft analysis" is more com-
plicated than for the Frye-Warnock equations' (the
character of which in respect to the CDD poles can
even be opposite' ), we retain in the course of cal-
culations a general pole term C(s) for CDD poles
in the N/D integral representation, for reasons of
possible binding among the channels. This will
enable us to study the possible influence of CDD

poles in the P» and P33 amplitudes in the numeri-
cal equations for pion-nucleon scattering.

In the case of elastic pion-nucleon scattering,
we thus obtain the possibility of studying the phe-
nomena beyond the scope of the principle of maxi-
mal analyticity of the second kind. According to
this principle, it is assumed that the lower par-
tial waves in the elastic region should be attainable
from the higher ones by analytic continuation.
More concretely, this continuation should be the

N/D partial-wave amplitudes without CDD poles

in the elastic region.
The principle of maximal analyticity of the sec-

ond kind is, however, valid according to Levin-
son's theorem only under the assumption that the
difference between the phase shifts at infinity and
threshold s,» is equal to the number M, of the zero
points of the D function:

5,(~)-5,(s,„,) = -«M„

which should be verified by experiment and would
correspond to the fact that all particles are com-
posite. In fact, the situation is more complicated;
in case this condition is not fulfilled, then even
with the maximal analyticity of the second kind,
the CDD poles may occur in some channels even
for the elastic scattering.

The purpose of this paper is to derive, on the
basis of 8-matrix calculations by the Chew-Man-
delstam method, the analytical expressions for
the N/D P wave a-mplitudes P„and P» which
would depend on the possible CDD poles. In this
way it is also possible to get some of the answers
to the above-mentioned complicated problems in
the pion-nucleon scattering. This is achieved in
the course of this work by passing in the elastic
approximation to self-consistent calculations in
which we put the CDD pole term C(s) identically
equal to zero and compare the obtained results
for some of the physical quantities (the scattering
length or a resonance) with the experimental value.

One of the results of our self-consistent calcula-
tions is the observation that the low-energy pion-
nucleon P» amplitude does not contain any CDD

pole in the D function and produces the correct
experimental value of the scattering length Q»,
while the P„amplitude does need such a pole in
order to reproduce the experimental length a33.

This fully confirms the previous conclusion of
Atkinson et al."' that in contrast to the P,3 state,
a certain dynamical resonance (bound state) should
be present in one-channel calculations in the P33
wave. On the basis of our one-channel calculations
for the P33 pion-nucleon wave, we argue at the
same time that the special condition for the differ-
ence of phase shifts in the above-given form is
not valid. Let us complete the description of our
method for calculating the residues by mentioning
that we use as the input values the discontinuities
of the p meson and pion-nucleon (3,3)-isobar N*

in the crossed channels and the nucleon pole in the
direct channel. The expressions for these contri-
butions, including the residue for the nucleon
pole, "'"have been self-consistently calculated in
the pole theory by Frautschi and Walecka. " The
high-energy contributions in the cross channels
u and t are newly taken into account. These can be
expressed with the help of the relation bebveen the
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high-energy states of the high angular momenta in
the crossed channels and the low-energy resonance
in the direct channel.

Finding the residues in the function N represents
the solution of the whole problem. In this paper we
derive the determining numerical equations for
these residues, in a form which retains the addi-
tional dependence on the CDD pole term C(s).

These equations for the N/D amplitude of the P
state with isospin I= ~ are found from comparison
with the experimental scattering length a» to be
valid without the CDD poles [C(s)—= 0] and, there-
fore, we find an explicit expression for this am-
plitude in the low-energy region.

The partial-wave amplitude with isospin I= —, is
given by its dependence on the pole term C(s).
The role of the CDD poles, at present unclear, is
the subject of further studies.

As the input values in the calculations, we use
the noncorrelated physical constants: the coupling
constant g, the nucleon mass m, the mass S~ and
the width y» of the (3, 3) resonance in the natural
system of units with the pion mass equal to unity
(g = c = g = 1).

II. EFFECTIVE-1VUVGE THEORY AND THE P»
AND Pss AMPLITUDES

Starting from the fundamental axioms of the anal-
ytic theory of the S matrix, i.e. , analyticity, uni-
tarity, and crossing symmetry, we want to derive
analytical expressions of the N/D integral repre-
sentation for the partial P-wave amplitude I=-,'
and ~, respectively, of the pion-nucleon scattering.
At present, however, it is only possible to find the
scattering amplitudes with these properties in the
limited low-energy regions where they are expres-
sible in the form of the effective-range formula. '

With regard to the applicability of the general
theorems of analytic functions, we shall consider
in our self-consistent calculations a certain gen-
eralization of the effective-range theory especially
in relation to possible CDD poles in the N/D am-
plitudes. We shall decide about their existence as
an analytical property of functions (as is always
the case in the technique of dispersion relations}
on the basis of comparison with the available ex-
perimental data, in the conclusion of this section.
We normalize the P-wave amplitudes in the form

W'
~f~ (&)=, exp(i5„) sin~5„, I=

in which W indicates the energy of the incident
particle in the c.m. system, s = V', q is the three-
momentum, 5„ is the corresponding phase shift,
and I is the isotopic index.

The integral representation for the N/D ampli-

tudes P» and P» in one-channel calculations is
generally dependent on the CDD poles and may be
written as

(2)

n

N&(&) =g ', n=3, i=1,2, 3.

Here the b,- denotes residues which are to be de-
termined and the s,. denote the corresponding
poles. For the unknown residues- effective -range
parameters of the N/D amplitudes-we shall find
numerical equations.

The denominator function D in the integral form
with one subtraction is generally given by

(3)

rD (s) = 1 — o
~t d&~ Pi(s }Rg(s ) IN ( ')(s'- s,)(s'- s)

(4)

where s, is the threshold energy squared and s, is
the subtraction point. The term C,(s) expresses
the possible dependence on the l CDD poles by

C,(s) =C,(s —s„)= y", i=1, . . . , l.

In our case l =1, which corresponds to one CDD
pole at the most, with the parameter of position
s„and the residue y„.

In the elastic approximation with which we shall
deal further, the parameter of inelasticity R is

o"'(s) Imf, (s) 1
g"(s) If,(s) I' p, (s) (6)

so that the unitarity relation is

where the angular momentum l equals l, = J+ ~ =1+
in case of a P wave (spin J = —,') and 'f, (s) denotes
the partial-wave amplitude, free of kinematic
singularities, in the point s. This amplitude can be
found theoretically from pole theory, as in our
case, or experimentally. In the S-matrix theory,
where the Mandelstam representation is used for
expressing analyticity in two independent variables
s and f of the partial-wave amplitude 'f, (s, f}, the
latter is a function of the invariant Mandelstam
amplitudes IA,', 8'„ f,( A,'(s), ~B,'(s)). For such
a determination of the amplitude 'f, see, e.g. ,
Eq. (2.26) and Sec. IV of Ref. 11. For pion-nucleon
scattering, the main contributions in the complex
5" plane were calculated in the paper by Frautschi
and Walecka" of which, in a certain sense (as far
as the input values are concerned), the present
paper is a continuation. We use, therefore, simi-
lar notation in the pion-mass units. Let us con-
sider the numerator function N in Eq. (2} in the
three -pole appr oximation
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21+ 1(s)
Im[f, (s)]-' = -p, (s)R,(s) = -p, (s) = ~ (7)

b, = +
f
'm' ID, +(m'), f' = (g/2m)' = 0.081.

In this way there remain two effective-range pa-
rameters b, and b, to be determined. We choose
their respective poles in the points s, = -m' and

s, = -16m' so that the N function takes the form

IN„s = ' + ' +
b b b

s+ m' s+ 16m s-m' '

b, =+ f'm' D, (m'}
(10}

In the D„ function [Eq. (4)], in which also the

N, + function occurs, we choose the subtraction
point s, = o. = (m —1)', while the threshold energy
squared s, is equal to s, = I2, = (m+1)' and the dis-
continuity p, (s}R,(s) is given by relation (7).

The process of determination of the effective-
range parameters b, and b, , the so-called match-
ing procedure, runs as follows: The system of,
generally, the n determining equations for n un-
known parameters, b„ is represented in the
matching point s = s~ by the equation

~

~ ~I ', ", ——If((I)(ss), j=0, 1, . . .n-1; l=l+
s~)

where j denotes the degree of the derivative. In

our case we have to determine only two unknown

parameters b„ i =1,2, so that the first derivative
of both sides of Eq. (2) will do for obtaining the

determining equations.
The comparison must be made in a point in the

unphysical region in which the following hold: (1)
The partial-wave amplitude converges. (2) The

analytically continuable contributions from the

physical region which are not taken into account
are vanishingly small.

In this paper we choose the matching point s„
in z .

Further, we shall deal with the self-consistent
calculation of the amplitude on the left-hand side

Here the square of the three-momentum q'(s)
may be derived in an explicit form:

q'(s) =(4s) '(s- o(,)(s- (2 ), a, =(m+ 1) (8)

which is identical to relation (2.9) of Ref. 11 and
in which m denotes the nucleon mass in pion units.

Further, we limit ourselves to the I'-wave scat-
tering; therefore, the angular momentum l in all
previous expressions is equal to one (1+).

We.put one of the poles (s2) in the numerator
function N [Eq. (3)] in the nucleon pole, in which

the residue has been calculated self -consistent-
ly, "'~ and found to be

in Eq. (2), which will enable us to derive the de-
termining equations for both parameters b, (i
=1,2}.

For this purpose it is necessary to know from
pole theory the amplitudes 'f, „(s) and their first
derivatives at the point s= a. . Generally, we
shall get these by projecting [with the help of
Eq. (26) of Ref. 11] the invariant amplitudes
A'(s, 2I, f) (A'='A', B', i =1,2, 3, 4, ) in which

s, u, t are the Mandelstam squared-energy vari-
ables in the corresponding channels.

The invariant amplitudes A' satisfy the fixed-s
dispersion relations

)
R,' RR 1 "A„'(II', s)

m —s m-u u —uC(+

1 "At(f', s)
1f 4

(12)

This expression has been achieved on the basis of
the relation between the high-energy states of
high angular momenta in the crossed channels and
the low-energy resonance in the direct channel;
it completes our initial assumption.

Thus, we get the amplitude (12) distributed into
all three channels s, u, and t as follows:

,R, ( )
R,' R„' (f R„'(',s)„,
2 + 2m —s m —u w (, ,) u'-u

A', t', s, 1 A', s', t

(14)
Projections of the invariant amplitudes A' and

analytical continuation into the point s = & in the

unphysical region yield then a sufficiently high
approximation for the amplitudes If„(s):

If (s) If(II)(s) + If(N ) (s) + If(P) (s) + If(2) (s)

I= , or —„. s=s„= (2 =-(m —1) .1 3. 2
(15)

The first three terms have been determined by

Of all states in channels u and t in the low-energy
region, we retain only the N* resonance in the
first integral and the p meson in the second. Both
these states are well known from previous study, "
as is the nucleon pole in the direct channel.

The high-energy contributions (index 11) from the
remaining parts of the integrals may be considered
in the sense of the strip approximation and ex-
pressed in terms of the low-energy resonances in
the direct channel as (see Ref. 13)

1 A„(II', s) d, 1 A, (t', s) d,
g Mg u u W M@ g t

1 A„(s', t) d,
3) S —S

(13)
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Frautschi and Walecka (see errata in Ref. 13) and
the fourth can be calculated (from the high-energy
contributions in the crossed channels u and f); we

thell obtain for I = a (llppel' lllllllt)81'8 111 'tile fll'st
brackets) and I= a (lower numbers) the relations
(s=x', x-=W)

~(e(„) (,
'

(„ )p
9 ( .),(„, )p

{). ))g+ 1 4 +
{I

f„(x)= —
4 f q, [3x*(W„+2m-x)P„, +(W -2m+x)P ]Psa, -1

(16)

+ [3x"(W„+2~+x)P„,-'+ (W„-2m -x)P„-']P (17)

fs(x) (2)=8— ~(x'+ .'t;m'- -()-(x-m){y,+ay. )}(),

+ ~ x'+ ate- m —1 + ~+ m ya+ 2' 0-

f0)()) f
s R P+

4 3 W-x p~.

(18)

(19)

P» =(W„+m)a-l, P, =(x+~)s- 1, (2o)

n„=~-1 (&=1,2),

3 q2

Here, the three-momentum q a,s well as the quan-
tity (I, are given by the expression (8); in the latter
case the variable s is replaced by the square R~~,
i.e. , the position of the (3,3) resonance in the com-
plex s plane. The (luantities Q, (i=1,2) are Legen-
dre polynomials of the second kind of order i. The
symbols p„„p„o.„g; (i=1,2, 3), and x* denote

136.176
136 176

1.265 45
yg 4 811 79

-0.5258
-O.O2195

-0.302 0V

0.1872S '

16.021
16 021

5.235 01" =
5.23501 '

'p, = . x10 ',

-0.413 21
-0.40654 '

'{a,'b, +'a, 'b, ='y, (1+C)+'6,(1+C(alla)),
(22)

P, lb, + P, b)s = ya(1+C)+15s(1+C(a)as))+les(1+C'),

where C -=C({a ), C' = (d/ds)C(s) ~, and the index
I is the isospin quantum numbex. The numerical
values of the separate coefficients are given by

where Wz indicates the position of the (3,3) reso-
nance with the width y» = —,' f

' and ts is the position
of the m-m resonance. For the factors y, and y2,
we take theoretical values from the study" of the
electromagnetic structure of the nucleon, y, =-4.91,
y, = -11.7.

Substituting the relations (16)-(19) into Eq. (15)
and then E(l. (15) into E(1. (2), we obtain one of the
determining equations for the unknown parameters
b, and b, . Afterwards we get the second one by
differentiation of both sides of E(l. (1). To deter-
mine the effective-range parameters b„we use
the above expressions at the point s= e .

Through tedious calculations which include nine
numerical integrals of the type (4) in the coeffi-
cients, we get for the residues I), (/= 1,2) the de-
termlnlng equations

1.265 45
2 4 81179 (23)

The upper rom' is here again valid for isospin
I= —,

' and the lower one for I= —,'. These calculations
have been carried out using the noncorrelated
physical quantities,

ga = 14.97, m =6.7974, Ws = 8.9674 (24)

(in pion units), given by experiment. The problem
of self-consistency in the P» wave is mentioned
below.

The effective-range parameters 5, (i=1,2) are
determined in this way for both cases of isospin,
with the help of the determinant of system Q and
the determinant S; in which the ith column is re-
placed by the column on the right-hand side of
E{l. (22), in the form
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'5 = &/u, I=-,', —', i=1, 2. (25) a» ——-0.016+0.008, (30)

'Ã, (n, )
F21, 2z= IDI ' n+=(m+ )o.+Dg'L &+ J

(26)

With the help of the parameters b;(i =1,2), given
by Eq. (25) for I=~, which equal

5, =-12996.0, b, =116733.0 (b, =-208.7357),
(27)

the P» amplitude is determined by the N function
(10) and the denominator function D of the form
(4) for C,(s)—= 0, where

l=1, , p(s)R(s)=
q'(s)

(4s2) 1(s—n )3 2(s —n )&

(28)s, =n, s, =n„n, =(m+1)'.

On the basis of the N/D amplitude with I= ~ de-
fined in this way, scattering length a» is calcu-
lated through Eq. (26) and is found to be"

a» -0.019. (29)

The comparison with the experimental value of
Barnes et al. ,

"

The calculated parameters b, then provide the
N/D P-wave amplitudes for the scattering of v
mesons on nucleons. The influence of CDD poles
is included in this calculation in the pole term
C(s) which may generally contain adjustable param-
eters, discussed below.

We now apply the effective-range theory, as
specified in Sec. II, in more detail to the calcula-
tion of the scattering length a» of pion-nucleon
scattering. This will give us a possible test of the
partial P-wave N/D amplitude (2) with isospin

1I= y.
We shall show that this amplitude may be consid-

ered as belonging to the class of functions which
do not contain any CDD pole so that it is possible
to put the term C in the D function (2.4) equal to
zero.

The scattering length a21 2 J is generally defined
by Eq. (2) as

shows excellent agreement.
This agreement of both scattering lengths seems

to confirm the deductions, achieved by an entirely
different method with the help of the "crankshaft
analysis" of Atkinson et al. ,' ' that the P» ampli-
tude does not contain any CDD pole in the function
D in the one-channel calculation based on the
Chew-Mandelstam method.

An analogous approach for the P» wave is more
complicated. First of all, by using our Eqs. (22)
and (25) in which we put the term C equal to zero,
C -=0~ it is possible to make sure through deter-
mining the scattering length a» that the CDD term
here differs from zero. " This is also in agree-
ment with the previous deductions of Atkinson
et al. '' On the other hand, the CDD pole which
is responsible for the binding activity between
channels involves two parameters or only one in
the case that the position of the dynamical reso-
nance [e.g. , (3, 3) resonance] is known.

In order that our calculations become self-con-
sistently closed this parameter is not arbitrary,
but must take a special value which together with
the noncorrelated input quantities (24) would give
the same values for the positions and the widths
of the (3,3) resonance in the P» amplitude.

In this sense, the role of the CDD pole in the
P» amplitude and the physical consequences of the
derivation of the P» amplitude, especially as far
as comparison with experiment is concerned, are
further studied with the aid of the Eqs. (22) and
(25)
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An eikonal Regge representation is set up for the helicig amplitudes in the process @
A~P. These amplitudes are then used to calculate the density-matrix elements of A.&(1+),

which are in agreement with the data.

I. INTRODUCnON

The power of the eikonal or absorption model of
generating the Regge-cut effects has been used ex-
tensively with considerable success in the elastic'
and also inelastic' scatterings. These cuts are
found to satisfy properties very similar to those
one expects from the study of Feynman graphs. '
I'henomenologically, a definite evidence for the
existence of the Begge cuts, in our opinion, lies
not so much in their fitting the data on cross sec-
tions as in their giving the correct predictions on
measurements like polarizations, density-matrix
elements, etc. This is because the Begge cuts
have the characteristic slow logarithmic factors
appearing in the amplitudes to which the cross sec-
tions may in general not be so sensitive. ' The
cuts with a suitable mechanism (like the eikonal or
absorption model, which determines their weight
functions in terms -of the basic input parameters
of the po'les, would give a better test for their
showing up in the polarization and density-matrix-
element data' which are normalized with respect
to the data on the differential +ross section.

In this paper we have tried to analyze the data
on the density-matrix elements of A, (l ', 1070 MeV)
in the process nP-A, ,P, using the 8-GeV high-en-
ergy data' on:the differential cross section of
v'p-A, 'p. For high-energy scattering we use the
Begge eikonal model in which, to the Begge-pole
contributions coming from the Pomeranchukon (P)
and the p Begge trajectories, are added the P-I',
I'-p, and p-p Begge cuts. %e assume here that
at high energies the I' couples only to the helicity
nonQip amplitude in the problem. '

.Tge plan of the paper is as follows. Section II
deals with some notation, kinematics, the Begge
representations of the independent helicity ampli-
tudes in the problem, and the eikonal representa-
tion of these amplitudes. In Sec. III we calculate
the integrals occurring in Sec. II, and in Sec. IV
we give the results of our computations and dis-
cuss and compare these with the available data.

II. FORMALISM

A. Kinematics, Notation, and Isospin
Decomposition for @NCAA, N

%e define the following kinematical variables in


