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with a zero (pole) situated outside the range g, ,
For a point between g, and &„ the distance

between the line M, =Mt,„, and the graph can be
plausibly regarded as a probability density (nor-
malized to the area below the line) for the zero
(pole) to be located at that point.

(6) Mo is nothing but the L" norm of the minimal
possible amplitude on the unknown part of the cuts
I', . Another way of locating the singularities is
the study of the variation of NIO(zo), the minimum
of the L' norm on I;, of the analytic functions
close to the histogram on I; (Ref. 9).

(V) The more general case of variable error
e(z) can be easily reduced to the one above (Sec.
4 of Ref. 6) by multiplying the histogram with a
new Carleman function C, , defined as having the
modulus equal to e/e (z) on I', and e/M on I'„
where c is an arbitrary number.
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The negative-frequency part comes mainly from the
fact that h is defined as being zero on the boundary I'2,
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grams.
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The traditional identification of the slow nucleon as the spectator in deuteron-breakup col-
lisions is shown to be valid only when there is a significant difference in the speeds of the
two nucleons. When both have similar speeds, symmetrization effects cannot be ignored.
These effects wi11 be particularly important (a} for low-momentum-transfer events and (b)
for "high-momentum spectator" events. A new comparison technique free of these difficul-
ties is suggested. By studying the transverse momentum spectrum for both final-state nu-
cleons, one avoids ambiguous spectator identification. In addition, the effect of the inter-
ference in such a distribution reveals the spatial symmetry of the final two-nucleon state.
From this information it is possible to determine the relative contributions of spin-Qip
and -nonflip processes, and thereby to reconstruct the free-nucleon scattering accurately.

In this paper we consider the impulse approxi-
mation for the general deuteron disintegration
processes xd- y'PP. A traditional element of the
experimental data analysis of these reactions has
involved comparing the momentum distribution of
the slow nucleon, assumed to be the spectator,
with the deuteron momentum-space density. We
shall show that there is a non-negligible class of
events in which that simple comparison is incor-

rect because of the necessity of symmetrizing the
two-nucleon final state.

We begin from the impulse approximation in the
form

d(xd ydN)=(f Qt i), -„
where t„ is the transition matrix for the corre-
sponding free-nucleon process and (f) and ~j) are
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the final and initial states. The initial state we
write as

lt& = l~&lou&lx. &,

where Ix~& is the spin-isospin wave function of the
deuteron and

Iq»=3 '" J"d'Pq(p)lp&l-p&

F+(2+ 'q 2~+ ~q) 2['p(2& —q) + CI&&(2+ + ~q)]

xf,(p„, 5; p„, Z) .
Since we are interested in the momenta of the two
nucleons, which are given by the arguments of y
in Eq. (4a), it is appropriate to rewrite them as
p, ,=-,'Z +q. Writing f, simply as a function of
momentum transfer, we then obtain

is its spatial state in the deuteron rest frame. The
final state we write similarly as

If&=ly&lay&lx &,

F.(P&, P,) = 2[9~(pl)+ m(p. )]f.(p|+P2) ~

In a standard normalization, ' the differential
cross section for (4) is

(4b)

where
x f,(p„p; p», p+ 6)

f.(p. p'P. p') =f (P* p'P, p') +f.(P. »P, p').
The dependence of the matrix elements f, on p
may be neglected in most situations, ' allowing us
to separate the free-nucleon amplitudes from the
nuclear effects, yielding

F(ed~ yNN) =C,(Z)f,(p„5;p„, Z), (3)

where

A particularly simple result now follows if we

neglect final-state interactions among the two
nucleons and write lyz& as plane-wave states by
taking

r.(p) = 2 '"[5'(p -q)+ 5'(p+q)].

The amplitudes (3) are then given by

with

ly, &=f&'ur. hi&ll& -5&Ilr+0&

describing the two-nucleon system recoiling with
momentum transfer 4. According to the antisym-
metry or symmetry. of the final spin-isospin state
l~&, over-all antisymmetry requires that y, (-p)
=+r, (p).

The matrix elements of the single-nucleon oper-
ators may now be taken between the initial and
final states. They will involve the free-nucleon
scattering amplitudes, which we shall denote by

f (P* p'P, p') =&xII&yl&p'l«l~&l»lx~&

to describe the free-nucleon process xN- yN',
with the momenta of x, Pf, y, and N' given re-
spectively by p„P, p„, and P'. A straightforward
evaluation of Eq. (I), making use of the symmetry
assumed for y, (p), then yields

F(xd-yNN)=2 '"
t d'py(p)y (-'Z-p)

M d' d' d'«= — ' ' '5'( ~,) g (IF,I' IF I')
x 1 2

,spins

(5)

where M is the nucleon mass and E, , are the en-
ergies of the nucleons. The 5 function constrains
the initial and final energies and requires that
p„-p„=4. For peripheral processes, the com-
ponent of 4 parallel to p„ is fixed by energy con-
servation; for simplicity we shall assume here
that it vanishes, as for elastic scattering, although
our conclusions do not require that assumption.
Then (5) becomes

«= — ' '5(p* (p +p )) Z(IF.I'+IF-I').
1 2 splns

(6)

Now let us examine

IF,I' = 4lq (p,) + 4 (p.)l'If, (t&)I',

where we have written f, as a function of momen-
tum transfer & =py+p2 only. The contribution of
9&(p, ,) describes the process in which p, , is the
momentum of the spectator (i.e., of the particle
which does not interact). If, for example, p, is
slow and p, is fast, then because y(p) decreases
rapidly with increasing P we will have y(p, )» y(p, )
and

IF,I'= 4 ly(p, )I'If, (&)l' (8)

This equation represents the usual experimental
assumption, ' with P, identified as the slozo nucleon;

y(p, ) is customarily completely neglected. If.

Py P2 however, the two terms will be comparable,
and 9&(p,) cannot be neglected. In other words, the
slow nucleon can be identified as the spectator
only if the other nucleon is much faster; otherwise
Eq. (8) will not be valid. (When p, =p„of course,
the neglect of final-state interactions is not jus-
tified; but since events of this type will presumably
be a small fraction'even of those foi which the
magnitudes of P, and P, are equal, it is probably
valid to neglect them. ) Quantitatively, we estimate
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y(p, )»y(p2) when p22-p, 2~0.1 (GeV/c)2, a condi-
tion violated by about 10-15% of the events in a
typical sample. '

There are tmo physical situations in which both
nucleons are expected to have similar speeds.
The first, and more important, is when the mo-
mentum transfer 4 is small, for p, +p2=& then
implies that p, =p, . Since it is in this region that
deuteron effects are most significant anyway, a
correct analysis here is essential for extracting
the free-nucleon data. The second case in which

y(P2) cannot be neglected is when the slower pro-
ton has a relatively high momentum, because the
other nucleon is then ordinarily not much faster,
so p, =p, here also. In both of these situations the
effect of symmetrization is to enhance the spatially
symmetric final states, by up to a factor 4, and to
suppress correspondingly the antisymmetric ones.
This result is also reflected in the net differential
cross section calculated by the closure approxi-
mation, i.e., by integrating (6) over q=-2'(p, -p, ),
yielding

—' = —,'[I+ s(Z}],g If,(i)l'
dQ spins

+-'[1 —~(&)l g If (&)I', (9)
Ispins

where S(Z) is the deuteron form factor.
In a separate paper' we have shown that for an

arbitrary charge-exchange process one can write

lf, (~)l'=-:IDI',
spins (1o)

2 g If (~}l'=Icl'+3IDI',
splns

where ICI' and IDI' correspond to spin-nonf lip and
-flip terms in the free-nucleon reaction. Inserting
(10) in (6) we find

M dpdp2

In either case an enhancement of high-momentum
spectators, in addition to that resulting from dou-
ble scattering, mould follow.

It is possible, of course, to give an explicit ex-
pression for the distribution of the slo'wer nucle-
ons, namely,

do f do
d3p J d3p d3p (pl p2} pl

sloe 1 2

d0'

~(„.,„., 6(p. p, )d -p. .
1 2

where 8 is a step function. Analytic evaluation of
this form seems intractable, however, even using
the crudest wave functions, and in any case it re-
quires assuming a parametrization of f, . In order
to avoid the necessity of discarding events with

p, =p, in data analysis, therefore, we need to de-
velop techniques which do not rely on identifying
the slow nucleon as the spectator.

These are, in fact, fairly easily obtained by for-
getting about spectators and looking at distributions
with respect to all nucleons. The momentum dis-
tribution of individual nucleons can be calculated
by integrating over the momentum of the second
nucleon,

do'+ do'

dp dp dp

3 = d p~pi+p~ Op+9'p

xsp a~~, 2 If,(p+p') I'. (12)

The energy 5 function naturally introduces cylin-
drical coordinates; writing p, and p, for longitudi-
nal and transverse components, we may integrate
(12) over p, and obtain the net distribution of trans-
verse nucleon momenta as

&& [31DI'lv (Pl) + v(P.)l'+ (-,'IDI'+ Icl')lq (P,) —v(P2)l'l,

implying that at least two-thirds of the charge-
exchange reaction leads to the antisymmetric final
state. It follows that symmetrization effects will
always suppress high-momentum spectators in
these processes. Consequently any excess of
high-momentum spectators must be due to multiple-
scattering effects. ' In non-charge-exchange pro-
cesses, however, no such simple result follows.
If one assumes the process is dominated by iso-
scalar exchange, then the scattering will lead en-
tirely to the symmetric final state for spin nonf lip,
and two-thirds to the symmetric state for spin flip.

=7lP, d P CPP +PP

&&p 2Ez, Q If.(p" +p')I',

where p" has components p, and -p,'.
We can evaluate (13) by assuming that the free

scattering has a simple parametrization, e.g.,

p p +p ~exp -cl p +p
spins

If we also assume a Gaussian wave function

q (p) = (c/w)"' exp(=2'cp '),
it follows that
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do, 1
dP, a a+c

' (x cP, —exp[-cP, ']+ exp[-acp '/(a+c)]t

exa[ =,' c(4a e c)p, '/(2a e c)]I .

(15)

The first two terms of (15) correspond to the dis-
tributions for the spectator and struck nucleons,
respectively; the third is the interference between
them, and would be absent without symmetrization
in (4).

Typical curves corresponding to (4) are shown,
along with the no-interference result, in Fig. 1.
The structure of the curve- around p2 = 0.2 GeV/c
is sensitive to the sign of the interference. This
additional piece of experimental information can
be very helpful in learning about the free-nucleon
process, since knowing the relative contributions
of do, /dP, reveals the relative magnitudes of

~f, ~'.
For charge-exchange processes, in particular,
this determines ( C )' and (D ~', from which the
free-nucleon scattering can be reconstructed.

To use this analysis, one would assume simple
parametrizations of (f,~(', as above, and fit them
simultaneously to dc/dQ, as given by Eq. (9), and
to da/dp2=do, /dp, +do /dp2. In a peripheral pro-
cess, the slope a in (14) will be fixed quite strong-
ly by do/d 0 in the region b,'a 0.3 (GeV/c)', where
S(4)= 0. The behavior of each term as 4'-0 can
be assumed kinematically known, and the magni-
tude of its contribution will then be revealed by the
data for p, =0.2 GeV/c.

p„'zs' (17)

a=6(GeV/c) 2---- g =9(GeV/c)-2

A Gaussian wave function for the deuteron is not
realistic, of course, and (15) can consequently
have only qualitative validity. Unfortunately, the
integrals involved cannot be performed analytically
using any of the standard wave functions. We have
therefore carried out calculations analogous to (15)
using a multi-Gaussian wave function (with p in
GeV/c)

y(p) =0.9824exp[-(9.228p)']

+ 0.01715exp[-(2.990p)']

+0.000 413 6 exp[-(0.655IP)'], (16)

which resembles the Hulthen wave function quite
closely out to P=0.9 GeV/c. For larger values of
p the integrand of (13) is small because of

~f,~', so
the resulting integrals should be fairly accurate.
The results obtained for do, /dj„using a = 6
(GeV/c) ' and a = 9 (GeV/c) ', are shown in Fig.
2. The peak at small P, corresponds to the first
term of (15), and its shape is essentially indepen-
dent of a,' at large p„ the dominant contribution
corresponds to the second term of (15), and shrinks
rapidly as a increases.

The parametrization (14) may be inappropriate,
however, for amplitudes describing spin-flip pro-
cesses, requiring instead

g) IO
I-

K
KI-
CQ

do+ /dp&

NO INTERFERENCE—a~ /dp,

/

I
I

cltT+

dpt

IOO

IO

—IOOO

d tT

dp)
—IOO

IO

0 0.2
pt (GeV/c)

0.4 0.6
I I l }

0.0 0.2 0.4 Oe6 0.8
Pt (G eV/c)

I.O

FIG. 1. Distributions in nucleon transverse momenta
obtained using a Gaussian deuteron form factor tEq. $5)
in text] with constructive, destructive, and no interfer-
ence between the final-state nucleons. The curves are
normalized to have the same area.

FIG. 2. Predicted distributions of nucleon transverse
momenta corresponding to diffraction peak slopes of a
=6.0 (GeV/e) and g =9.0 (GeV/c) and dominance of
symmetric or antisymmetric final states. The curves
have been normalized to the same area of 32.0 (GeV/c)2.
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Integrating (13) with this parametrization yields a
rather lengthy expression most simply written as

dpi' 80

dpi'

where do, /dp, refers to (15), or to the curves of
Fig. 2 if the wave function (16) is used. In Fig. 3
are shown the curves corresponding to the latter
case.

The effects of double scattering on all of these
results are negligible. The correction to the first
term of (15), for example, is significant compared
with that term around P, = 0.4 GeV/c; but both are
buried under the much larger contribution of the
second term of (15) in that region. Thus the domi-
nant contributions to do„/dp, arise entirely from
the impulse approximation.

As an example of how this analysis may be used,
let us consider the process K'd-K PP. Here we
know kinematically that the spin-flip amplitude
must vanish in the forward direction. Therefore
we write

The net differential cross section (9) is then

dQ
(K'd K pp) =(c [I —S(Z)] +d n'(1 ——,'S(b)]] e '

(20)

Experimental data can be fitted directly to (20),

but unless the data are extremely precise the re-
sult will be relatively insensitive to the ratio c,/d,
because both multiply terms which are vanishing.
Perhaps for this reason, Firestone, Alexander,
and Goldhaber' assumed do

—= 0 in analyzing their
data, while Cline, Penn, and Reeder' took c,/d,
to have the same value as the ratio of correspond-
ing quantities in m p- won. Choosing the wrong
value here affects only those data points in the re-
gion where S(Z) is significant, of course; but those
are some of the most interesting and important
ones.

The co~rect value of c,/d, can be obtained by fit-
ting these parametrizations simultaneously to do/
dp, . Using the above notation, one finds that

Ikx
(Kyd Kp )

d(7
d
-1 do+ 2 dg

dpi' .

dpi'

3 dpi' 3 dpi'

(21)

Figures 2 and 3 show that the term multiplying d,
will dip much more deeply than that which multi-
plies c,. In other words, one can determine c,/d,
from the depth of the structure of the p, distribu-
tion. It is hoped that future experiments on this
reaction will not ignore this extra bit of experi-
mental information.

As a second example, we consider the process
K'd- K*'( 390)PP In this case it is possible for

I I I 1 I I I

I I I I I

0 = 6(Gev]'c}-2———a = 9(GeV/c}

IOO —IOOO

IO —IOO z IO—

—IO

O.l
O.O 02

I

0.4 06 0.8
pt ~GeV/

FIG. 3. Curves analogous to those of Fig. 2 for pro-
cesses dominated by nucleon spin-flip terms.

I I I l l l I

IOO 200 500 400 500 600 700
p, (MeVZc)

FIG. 4. Comparison of preliminary data (Ref. 3) for
the proton transverse-momentum spectrum in I+0
-K*OPP at 4.2 GeV/e with do+/dP~ for a =6.0 (GeV/e) 2.
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the amplitude D to have components which do not
vanish in the forward direction. Therefore we re-
place (19) by

)C['=c e 'a

(a('=d a'e '~ +d e 'n (22)

It follows then that

(Ã 'd- X *o(890)pp)

=(C,[I -S{b,) j+(d, +d,h')[1 —-',g(g) g
8-'a'

da'

lpga
(Z'd-X+'(890) pp)

1& do+ do 1 cd,' 2 do'
1 yp Ogp 0

(24)

In Fig. 4 we show preliminary data' for this pro-

cess at 4.2 GeV/c, compared with the curve ob-
tained with c,=do=0 in Eg. (24). Including the lat-
ter two terms will always tend to deepen the dip.
Thus the good agreement shown indicates that the
scattering proceeds predominantly via the d, term.
The importance of d, is also shown by the fact that
de/dQ does not vanish in the forward direction;
but the complete negligibility of c, and d, is indi-
cated only by the p, distribution. Unless one knows
these quantities, it is not possible to reconstruct
do/d Q(K'n-K*'p) accurately in the small-6' re-
gion.

Similar comparisons can be made for any exper-
iment, provided one can guess an appropriate pa-
rametrization of If,la. In addition to removing the
difficulty introduced by symmetrization in tradi-
tional "spectator distribution" analysis, our
transverse -momentum technique makes available
an important piece of previously neglected experi-
mental information. We therefore hope that it will
be utilized in future deuteron-breakup experiments.
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