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Since v increases monotonically with t, t =E the
energy of the particle, in units of its rest mass,
instead of decreasing should increase more rapidly
than e'~~' as t-~, so that d(j ~ r)/dt may remain
bounded. Finally, since the longitudinal speed v~~

is constant and the transverse component of veloc-
ity asymytotically tends to zero,

z(t- )=-z„=(1-,'/ ')-'".
Thus the particle may remain relativistic for large

g j rjdt)/e is not very small (Shen' ). For
charged particles accelerated to relativistic en-

ergy and injected at random into a strong magnetic
fieM so that

dr dr
&"'&=3 dt dt,

the ratio of the average loss of kinetic energy to
that of the incident Eo is given by

(z,'-z„')/z,'=1 —[3(2z,'+1)]-'", (a)

where Z'= (Z'&'~~. Their ratio tends to 3 only in
the nonrelativistic case when E, -1 is small, but
for relativistic particles (Z, » 1) it is
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The exterior-interior separation of the three-body @rave function is derived directly from
the Faddeev equations by using the Kowalski representation for the two-body t matrices.
The formalism clarifies the relationship between the quantuIn-mechanical observables in
three-body breakup experiments and the bvo- and three-body wave functions in the interior
regions. A complete parametrization of three-body breakup amplitudes suggested by this
approach provides the generalization of the %'atson-Migdal formula to include interference
bebveen resonances in different bvo-body channels.

It has been demonstrated' that if the three-par-
ticle wave function is known in the finite region
where each of.the three particles can interact
with at least one other, the wave function in the
eAerior region is determined. In contrast to the
two-body yroblem, where. the exterior wave func-
tion can be determined from the interior wave
function by a quadrature, determination of the
exterior three-body wave function requires the
solution of one-variable coupled integral equa-
tions driven by the interior part. Physica1ly these
equations resu1t from the long-range "eternal
'tl'1allgle effect ~ outgolllg waves fl'olll 0118

pairwise interaction ean perturb the interaction
between a second pair at any distance, so long as
the second pair are within the range of their own
interaction. In this note, we show how a general

property of the two-particle I-matrices allows
this exterior-interior separation to be made di-
rectly in the Faddeev equations, without the ad
hot assumptions used in a previous' treatment of
the proble. The resulting formalism clarifies
the relationship between three-body observables
and two-body phase shifts, two-body wave func-
tions inside the range of forces, and the three-
body wave function in the interior region where
three-body forces could be present.

In order to bring out the esseritial simplicity of
the dynamics, we restrict ourselves in this note
to the breakup of a single bound pair in the state
of zero total angular momentum, assuming only
S-wave interactions between three- spinless par-
ticles. Inclusion of spin, additional bound states
leading to x earrangement collisions, and higher
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angular momenta are straightforward extensions
which multiply the number of channels and indices
without introducing qualitatively different dynam-
ical phenomena. The radial wave function in con-
figuration space is

U(x, y:z) = y (x) sin(z+y')'12y

0

mg + m2 + m3 m2™3 (2b)

The scattering boundary condition is obtained by
z-E+i 0', where E is related to the laboratory
energy EI, of a beam of particles 1 incident on
bound pairs at rest by

E m2 + m3 E
ml+ m2+ m3 y

where

(2a)

K has a pole at q =E+y' which we write as
p (p)T (z)/(z+y'-q'); cere T„=(q "ex-1)/2i is
the elastic scattering amplitude. On-shell uni-
tarity is ensured, provided only 5 real, 0 &g &1,
and

4n'=1-
+(E + y2)1/2 dP2P(E P&)&&&~K(P (E P2)&P E)~27 (4)

~ min((+P j S, X- g-P~S)
dgK, (P cosP, P sing:z),K(p, q:z) = K, (p, q:z)+ g 1

3 2 sin2p&s ~ ta

The full K matrix is related to the Faddeev channels by

$ =tan '(q/p), P'=p'+q', cos'p, „=m,m, /(m, +m, ,)(m, +m, ,),
where the K, satisfy the Faddeev equations:

dq" dp" ', ' '„6„, , p' 5 q'- z+y' ' ' +K, p', q':z
SS

(6)
p&&t(q ) =p cot/»t+ vg cscp»t, P =p" + q" —q', 0,(p') = 0,(p')/(p" +y') .

The basic property of the kernel in these equations which allows a separation into interior and exterior
parts is the Kowalski representation' for the two-particle t-matrices:

t, (P, P:z —q')=F; 2(P)r, (z -q )F; 2(P)+(P'+q'-z) ,'wr, (P,P, z -q-')

=F; g(p)~, (z q')F; ~(p)-+(p" +q" z) ,'~~, (p, p-, z -- q'),

F' (p) = 1 v (p') = e' ~' e~ sin5, (p)/p .

Here r, is the resolvent kernel of the nonsingular ~ it -gral equation~' for the interior two-body wave

function F, ,~(p). This representation breaks down if the two-body phase shift 5, (p) has zeros, but Os-
born' has shown that the separable form can be restored for this case as well by adding one term for each
zero of the phase, so we will assume this has been done when necessary. Inserting this representation
into Eq. (6), we see that K, is the sum of two terms:

K. (P, q:z) =F:.(P)~. (z —q')&. (q:z)+ (P'+ q'-z)I. (P, q:z)

which satisfy the coupled equations

r &»' (P) Fs P
+ 2

&.(q:z) =2 g .
2 „~

dq" ' dp" p, .' ",. [6,.8,(p')6(q'-(z y')'+") K.+(p', q':z)],
(6)

+ 2

=1I.(p, q:z)=—g . dq"
i

dp" '„' '„j&,.q„(p')6(q'-(z+ ')"')+K. (p', q'. z)].

In order to demonstrate the unitarity of the K, obtained by solving these equations, the simplest route is
to first derive the equations for K, which, in the operator sense, contain K, i G,(z) t, rather than t,G,(z)K, .
as above; this is trivial if we start from the configuration-space equation for U(x, y:z). Given the equa-
tions in both orders, Freedman, I.ovelace, and Namyslowski' have proved that the unitarity of K, follows
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immediately from the unitarity of t, . But Kowal-
ski' has shown that the full off-shell unitarity of
t, is maintained for arbitrary real values of r„
including ~, =0. Thus, we can exploit this arbi-
trariness in ~, to obtain an arbitrary function

I,(p, q:z) to insert in the one-variable equation
for H, (q:z) without destroying the unitarity of K, .
This proves rigorously that the on-shell phenom-
enology previously presented4 can be made uni-
tary, and that we can even extend the phenomen-
ology to three-body off-shell amplitudes by ex-
ploiting the arbitrariness of ~, in the second half
of Eq. (8). On-shell three-body unitarity is trivial;
we need merely require that the integrals con-
verge, that the I, have no singularities which clash
with the vanishing of the (P'+q' -z) coefficient,
and that the I, contain constants adjusted to ensure
that Eq. (4) (or its generalization when more chan-
nels are included) is satisfied.

The separation of K into functions of one and
two (vector) variables already occurs in Faddeev's
treatment" [cf. Eq. (5.23) of Ref. 11], but he uses
(P&(P)/(z+y'- q') rather than our choice of
E,' ~(p)7, (z —q') for the coefficient of H, (q:s)
These coincide at the pole; all we have done is
to include the continuum singularities of the two-
body on-shell amplitude in addition to the bound-
state pole. Faddeev did not choose to do this; as
noted above, the difficulty discussed by Osborn'
would then have restricted the class of two-body
interactions he could consider. Now that this
difficulty has been solved, our approach can be
understood as a logical extension of Faddeev's
treatment, like most valid work on the three-
body problem during the last decade.

The separation we propose here is also not new
in another sense. For separable interactions,
~, = 0 and the Faddeev equations reduce to the one-
variable equation for H, (q:z) given above [Eq. (8)
with I, =0]. Thus all calculations using separable
interactions necessarily confine their dynamics
to the long-range ("eternal triangle" ) region. It
is, therefore, not surprising that they are reason-
ably satisfactory for elastic scattering and break-

up, "but give quite different binding energies for
the triton" than local potentials fitted to the same
two-nucleon low-energy parameters, '~ unless
they are supplemented by three-body forces"
which reintroduce I, phenomenologically.

The full observable breakup amplitudes are
known if we know H, (q:z) for 0&q'&E, while the
elastic scattering amplitude T (z) =H,((E+y')'":z))
completes the description of the on-shell three-
body T matrix. Viewed in this light, Eq. (8) for
H, (q:z) restricted to these values appears to be a
formula for computing the physical scattering
amplitude if the wave function K, (p, q:z) is known.
If this were true, it would be strictly analogous
to the formula' for the two-body amplitude 7, (k')
in terms of the wave function F22(p):

v (z(=r (kk) (1+- dP; ' ". ),ngO P' —O'- Ze

rn
73(k,P)=- 2 (

dx' ' dx'j, (kx) V(x, x')j, (Px').
JO ~0

The analogy fails to be complete because even if
we know the unobservable pieces of the wave
function, that is, I, (P, q:z) and H, (q:z), q'&E,
q' x E+y', Eq. (8) is an integral equation for the
functions

Z, (q:z) = [q(q') —e(q'- E)]H, (q:z)

and the constant T„(z). This integral equation is
caused physically by the long-range ("eternal tri-
angle" ) effect, as already noted. A dramatic ex-
ample of this long-range interaction was discov-
ered by Efimov" and rigorously proved by Amado
and Noble": The number of bound states of three
identical bosons goes to infinity like (I/w) In(~aj/E),
where 8 is the range of forces and the S-wave
scattering length a is large.

The separation of the three-body T matrix into
observable and unobservable pieces allows us to
construct an on-shell phenomenology for three-
body breakup. The integral equations for the ob-
servables are

T~(z) =g~(z)+ g dq "Qz, (q')&'(q'. z),
S=2 ~ 3 0

&, (qz)=y, (qz)+(1-5,.)Qy(q)Ty(z)+Z [ dq"Q..(q q')&'(q':z),
s'vzs JO

where
p+ 2(~+ y2)

( Ep+)1/2 . p p/2 + qi2+Z z-q'2(p ) z ( I ) r
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277 slIlp. ~~if Jp-, 2(p) p + g

'Y 27/(E +y2)i~2 2 sin2p,x (z)=
t

+ (P"+ q" —z}1.,(p', q':z)],

which have been derived from Eq. (8) by the decomposition

H. (qz) = [8(q') —i (q'-E)]A (q z)+5,.0(q'-E) T,(z)+ 0(q'-E)H. (q z),

H, (q:z) =H, (q:z) —5„T (z).
Therefore, the driving terms are determined from the unobservable pieces through

oo
~ P 2(Q+ y2)

dq/2 dp/2 0 ) ( [P// 2(P/)+ (z q/2)ii(q/2 E}H (q/ E)
a)/- 2(z+ &) P +qls'

1
x. (q: )=2,lip Sln p, (}

P(~) ~~ r-s
dq/2

I
dp/2 8 // (P) [ps 2(p/)T (z q/2)e(q/2 E}H (q/ E)

Jp 2(q2)

(12)

+ (p" + q" —z)I, (P', q'. z) + 5„,it „(P')5(q' - (E+y'}'"}].
Pa

These equations are still exact, if H, and I, are obtained by solving Eq. (8).
For data of finite accuracy, the information contained in the breakup spectrum is exhausted by deter-

mining a finite number of coefficients in the expansion of the spectrum in terms of any set complete on
the interval 0&q'&E. The Legendre polynomials P„(l -2q'/E) provide such a set, so we assume that

A'(q:z) =g A„'(z)P„(1-2q'/E).

We project Eq. (10) onto this set and obtain a matrix equation of dimension (N, + N, + N, +4) for the con-
stants A„'(z) and T (z). By inserting this representation back into Eq. (4) and (5), we find that the cross
section for breakup is proportional to

dn da dp
"P(E-'}'"~T(I'}~'

where

(14)

Ny Ns s E min(g+)/i~, //-L'~-i/&~)

T(p) = v, (p) g A'„(E)P„(1-2P'/E)+ g g . d/j/ T,

(Ecosoc)P„(1-2

cos'/t/),
n=o s=2, 3 n=o &~ "

&.p P].s
(15)

tan-a(1 -E/f/ a)

Thus, if we know the two-body phase shifts 5, (p)
over the finite energy range 0 &p' & E, we can de-
scribe a breakup spectrum of arbitrary com-
plexity in terms of a finite set of parameters
A'„(E). The number of parameters is determined
by the complexity of the data to be confronted.
Clearly the A'„provide the equivalent of a phase-
shift analysis for three-body breakup. Note that
resonances in the direct channel (or the tails of
bound-state or virtual-state poles} are explicitly
exhibited in r, (P) and the kinematic reflections of
similar structure in the other two channels in the
v, (E cosp}, with specified phase relations. Equa-
tion (15}therefore provides a generalization of
the Watson-Migdal final-state expression to in-
clude all three Faddeev channels, and is capable
of confronting data of arbitrary complexity. For
example, using the effective-, range approxima-

tion

(p) =(i)- ~)/(P - e)(~ )

for the n-P and n-n 'S, and the n-P 'S, amplitudes
in the J =-,' state of n-d breakup already exhibits
all the observed features of the energy spectrum
at a single angle, ' although of course not the an-
gular variation, using only 8 real constants A,'.
The over-all normalization of the breakup spec-
trum fixes one of these three constants from Eq.
(4} if the inelasticity parameter of the state in
question is known.

Although we have provided a phenomenology
capable of fitting (when generalized to include an-
gular momentum and spin) any breakup experi-
ment, actual data analysis directly for the A'„

wouM obviously encounter all the woes of am-
biguous solutions encountered in two-particle
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yhase-shift analyses in a much more severe form,
and might well prove hopeless without theoretical
guidance. We, therefore, sketch a systematic
approach for refining the analysis. To obtain a
first approximation for the A„', we note that the
wave-function dependence in Eq. (10) does not con-
tribute to the singularities of T, on the physical
cut, since

and the zero-range approximation f~ =O=f' still
gives aQ the correct physical singularities to T.
But if we make this approximation, and keep only

o„fq,a(q (E+—y')'~'}

in the driving terms, Eq. (10}becomes an explicit
matrix equation for the A„' which requires only
knowledge of known (or knowable) two-body phase
shifts and binding energies. Thus, solving this
matrix equation is a reasonable dynamica/ first
approximation with no unknown constants. If this
equation succeeds in reproducing a particular
breakup experiment to the accuracy available, we
can learn nothing more from that experiment in
an unambiguous way.

Provided the three-body data are rich enough,

and the zero-range approximation fails, we can
then introduce off-shell effects (two body wave
functions f}and see if the fit to experiment can be
improved. A specific method for yarametrizing
these wave functions which preserves the fit to
the two-body on-shell data and insures the orthog-
onality of wave functions at different energies has
been described elsewhere. ' Such a parametriza-
tion allows the H, (q} to be computed in the unob-
servable region q'&E, and also allows I, to be
computed under the assumPtion that there are no
three-body forces. Such an assumption is highly
questionable, ""but until we have actually deter-
mined the two-body wave functions from three-
body breakup, we will be unable to proceed very
far in the calculation of I, even under this as-
sumption. It is, therefore, crucial to find out
where I, significantly affects our results, and
where it can be very crudely approximated. Since
I, is restricted to a finite region, it may well be
possible to expand it in the hyperspherical har-
monics"' "; the long-range pieces which usually
frustrate such expansions in breakup problems
are clearly removed by the seyaration of the ex-
terior function II, from the interior wave function

~. ~

*Work supported by the U. S. Atomic Energy Com-
mission.

'H. Pierre Noyes, Phys. Rev. Letters 23, 1201 {1969);
24, 493(E) (1970).
~H. Pierre Noyes, Bull. Am. Phys. Soc. 16, 20 (1971);
Nuclear Forces and the Three Nucleon Problem, Ref. 3.

H. Pierre Noyes, Nuclear Forces and the Th~ee Nu-
cleon Problem (Centro de Investigaci6n y de Estudios
Avanzados del Instituto Politecnico Nacional, Mexico,
D. F. 14, 1972).

4For earlier discussions of the "eternal triangle"
effect, see The Three Body Problem in Nuclear and
Particle Physics, edited by J. S. C. McKee and P. M.
Bolph (North-Holland, Amsterdam, 1970), pp. 2, 434.

~H. Pierre Noyes, Phys. Rev. Letters 25, 321 (1970).
K. L. Kowalski convinced me in private discussion that
the ansatz used to achieve unitarity in this treatment is
essentially arbitrary.

8K. L. Kowalski, Phys. Bev. Letters 15, 798 (1965).
7K. L. Kowalski and D. Feldman, J. Math. Phys. 4,

507 (1963); see also 2, 499 (1961); Phys. Rev. 130, 276
(1963).

SH. Pierre Noyes, Phys. Bev. Letters 15, 538 (1965).

ST. A. Osborn, Nucl. Phys. A138, 305 (1969).
~ D. Z. Freedman, C. Lovelace, and J. M. Namyslow-

ski, Nuovo Cimento 43A, 258 (1966).
~~L. D. Faddeev, Mathematical Aspects of the Three-

Body Problem in Quantum Scattering Theory (Davey,
New York, 1965).

~ R. D. Amado, Ann. Rev. Nucl. Sci. 19, 61 (1969).
3H. P. Noyes and H. Fiedeldey, in Th~ee Particle

Scattering in Quantum Mechanics, edited by J. Gillespie
and J. Nuttall (Benjamin, New York, 1968), p. 195.

~4L. M. Delves and M. A. Hennel, Nucl. Phys. A168,
347 (1971).

~5A. C. Phillips, Phys. Rev. 142, 984 (1966).
~V. Efimov, Phys. Letters 338, 563 (1970); Yadern.

Fiz. 12, 1080 (1970) f.Soviet J. Nucl. Phys. 12, 589
(1971)].

~YB. D. Amado and J. V. Noble, Phys. Letters 35B,
25 (1971).

Yu. Simonov, Yadern. Fiz. 3, 630 (1966) tSoviet J.
Nucl. Phys. 3, 461 (1966)].

~SV. V. Pustovalov and Yu. A. Simonov, Zh. Eksperim.
i Teor. Fiz. 51, 345 (1966) )Soviet Phys. JETP 24, 230
(1967)].


