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The relativistic corrections to the Coulomb binding energies of a system of two spin-zero
particles of opposite charge. are calculated and compared with the previous results of other
authors. The decay of the bound state into two photons is discussed for various angular mo-
mentum states and a possible mechanism for production of the bound state is mentioned.

The energy levels of positronium have long ago
been calculated to a very high accuracy in an ap-
proach based on the Bethe-Salpeter equation of
quantum electrodynamics, ' and the results agree
with experiments. Nevertheless various other
methods have been proposed recently for calcula-
ting bound-state energies in relativistic systems
with long-range forces arising- from massless
scalar or vector-meson exchange. ' 4 ?n part these
efforts are motivated by a suspicion that the Bethe-
Salpeter approach may be incomplete or incorrect
(as suggested by the existence of abnormal solu-
tions in soluble cases}, but the main motivation is
probably to test new methods on problems that
have already been worked out by means of o)d ones.

One particular calculation which has been done by
several authors is that of the binding energies of
an electrodynamically bound system of two spin-
zero oppositely charged particles in the theory of
pure quantum electrodynamics. These calculations
center on evaluating the leading relativistic cor-
rections (of order a') to the binding energies.
Speculation as to these terms have been made on
the basis of the eikonal approximation, ' from a
pseudopotential approach, ' and from an examina-
tion of the infrared factor. ~ But to our knowledge
no straightforward calculation based on the Bethe-
Salpeter equation has ever been presented for the
sake of comparison. An estimate of the n4 terms
on the basis of a classical semirelativistic Hamil-

tonian seems'to us to be ambiguous and there is
not any good reason to get an answer by throwing
out the spin-dependent terms in the known posi-
tronium result.

In the present paper we report the result of the
calculation on the basis of the Bethe-Salpeter equa-
tion and compare our results with the speculation
mentioned above. The problem which has been
solved is the following: given a positively charged
spinless boson of mass m, and a negatively
charged one of mass m„ interacting via a photon
exchange, to find the binding energies to order e'.
From there we go to the special case of equal
masses, which would describe a bound state of n',

mesons; this bound state we call pionium, like
positronium in the parallel case of fermions.

In Sec. I we present an outline of the calculation
and comparison with other results mentioned above.
In Sec. II we discuss the decay widths of pionium
and in Sec. HI consider a possible production mech-
anism.

I. CALCULATION OF THE BINDING ENERGY

OF PIONIUM

Here we first mention the Feynman rules we
use, establish the Bethe-Salpeter equation for our
case, and then proceed to solve for its wave func-
tion and energies to various orders. The Feynman
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rules mere derived from the Coulomb-gauge Hamil-
tonian

1 *»,p(x, t)p(x', f)
em transverse photons + — d XIXSv.

P, = (Z„0), P, = (Z„0),
1 1

E~ =m~+ g Ep, E2 =m2+ 2 EB,

g g +g

(6)

(6)

p(x) = ie[y~+(x) s,cp, (x) —@2*(x)7,y2(x)], (2)

where q, is the field of mass m„charge e and y
that of mass m, and charge -e. The Feynman
rules turn out to be equivalent to using the usual
vertex factors, +7'e(p+ p')„ for a single-photon ver-
tex, 2iemg„„ for a two-photon vertex, and a propa-
gator for the electromagnetic field, D„„.(k),

in which p is the boson charge density, given in the
1ntex'action picture by

here ga is the binding energy of the system. In
Eq. {4}, gs(p) is the B-S wave function and G, ' and

V are given by

G (P, P) =[(P,+P)' ~-,'+2~][(P, P—)' m-, '+is],

y(p, p, p') = —(„}.(»,+p+p')„

~f1"'(P -P')(2P. —P -P').
The "potential" V is now split into 70+57, where
V' is the instantaneous Coulomb interaction ob-
tained from (9}by keeping only terms of lowest
order in a [see discussion following Eq. (21)], i.e.,

a (u)=1/lkl',

D.,(u) =a„(a)=0, (3) (2v)' lp -p'I' '

~, '(P, P)4 (P)=J"d'O'I (P, P P')4 (P'} (4)

where P= (Z, 0) is the momentum associated with

the center of mass and p and p' are the relative
momenta; E is the total energy of the system. P
is further subdivided into P, and P, for conve-
nience:

1 k)k~)
,( )=

Ikt ]
Thus diagrams such as those of Figs. 1(b), 1(c),
and 1(d) have meaning for the exchange of Coulomb
photons, even though the Hamiltonian (1) has no

part recognizable as an A.OAoq*q interaction.
We begin from the Bethe-Salpeter (8-S) equation'

for single-ladder graphs, given in the center-of-
mass frame by

and 6V' contains the difference between the true
Coulomb potential and (10}, as well as the exchange
of transverse photons.

The problem with V can be solved to give the
lowest-order B-S wave function f' Defin. ing a
three-dimensional wave function

y(p) = (const) dp, ps(p„p),

Eq. (4) reduces to

gs{P)=(const)GO(P, P) d'PV'(P, P, P')p(p').
(12}

Integrating Eq. (12) over P, we have

Bicorn,

m. . . 1 ~t
P(P) g0(P) .

(2 )3
d P

l

~ ~I l2 'P(P ) y

—(13)

S.(p) =- dp.G.(P, p)

q, (z, +z, +q, )+q,(z, +z, -q, )

2q, q, (z, +z.+q, +q.)(z, +z.+q, —q.)(z, +z, —q, —q.)' (14}

and we have defined
~2 ~4

q. =(m 2+p2)'"-~ +P — +

It mill be shown later in oux calculations that the
three-dimensional momentum p occux'ring as func-
tion Qf the p s ls effectively an ordex' Q smaller
in magnitude compared with the mass m&. If then
in (14) we keep only the lowest order te-rms, Eq.
(13) reduces to the Schrodinger equation for Cou-
lomb potential in momentum spa.ce,

E
z~ - 2„@(p)= -

2,2 J) d'p'
l

- -, l. q (p'),
(16)

where p, is the reduced mass of the system. The
solutions for y and F~ are mell knowne; the value
of the binding enexgy obtained from this equation
me call E"

Since we know y(p), Eq. (16) can be used to obtain
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a first approximation to the B-S wave function

Ps(P); from Eqs. (12) and (16) we have

yiP(P) =&G.(P, P)(E, —p'/2V)q (p), (16)

G(P P P,),. ks(P)ks(P')
E (19)

where N is a constant to be determined. To evalu-
ate N one resorts to the normalization condition.
Starting from the two-body Green's function in
momentum space' near the bound state,

m,

m,

{0)

(c)

m)

/X

mz /

/
(

I

%r

&b)

and the equation for G,

G = Go+ GOVG,

one can obtain the normalization condition

(20)

(21)

We shall evaluate this integral in some detail be-
cause important aspects of approximations we
make throughout this paper are aptly exhibited
here. We are interested in the lowest order for
g

' and so approximate G ' by G, ' in (21). The
relative energy integrals can be performed trivial-
ly using a contour in the upper half planes.

All quantities in the remaining integral are func-
tions of

~
p~' and the wave functions y go like" at

least (p'+m'o, ') '. In all integrations with ~y(p)~',
therefore, there will be very strong singularities
at

~ p ~

= xi ma and these will generally dominate
over all other poles. In the present case and in all
the cases we encounter, it is correct to estimate
the leading order in z of an integral by replacing
all such

~ p~ by mn. This explains why we were
able to neglect the higher-order terms in obtain-
ing the Schrodinger equation and, partially, why
we can approximate V(P, p, p') by V'(P, p, p') The.
integral can now be approximated to the lowest or-
der in z. It is of some interest to note that the
terms contributing to this lowest order come from
the residues of the relative energy pole nearest

FIG. 1. The fourth-order nonladder graphs,
contributing V, , Vq, V, , and V& to the potential.

the origin, E, - Q, +i ;&in fact, it will be found

that, generally, the nearby poles contribute the
lowest orders in n, while the far-away poles con-
tribute to higher orders. One obtains finally the
normalized, lowest-order B-S wave function,

q',"(p) = (2m,m, /v)'"

(E's"-p'/2t )9 (p)
f (P, +p)' —m, '+ie][(P, —p)' —m, '+is] '

(22)
where y(p) is defined by

y(p) =i(2m,m. /v)'")t dp, y'"(p). (23)

For the adjoint wave functions, one replaces ( by

g and y by y*; the ie prescription reniains the
same because it has the same source in both forms
of the 8-S equation.

With Eqs. (4), (13), (16), (22), and (23) all the
necessary groundwork has been done and the cal-
culations for corrections of order z4 to the binding
energy can begin. These corrections come essen-
tially from three sources: the part left out from
(14) in deducing the Schrodinger equation, the con-
tributions coming from 5V, and the contributions
from those second-order graphs (Fig. 1) not in-
cluded in the definition of V.

Corrections from Eq. (24). By expanding Eq. (13) to the next higher order in n one can easily pick up
the terms contributing to n4. In terms of expectation values in the three-dimensional domain, the contribu-
tion to 5E~, here called 6E~ +, is given by

4m, 'm, (m, +m, )6Eac =-2m, 'm, (Es )' — ' * (m, '-m, m, +m, ')Es' (p')+ ' ', ' ' (p').
(24)

Using Eq. (16) and taking Fourier transforms, these expectation values can be transformed into those over
r ", which are well known and tabulated":

~, -mm+m, E~), I ~) 1 m, +m, , 12 2 2 2

2m,m, (m, +m, ) m, +m, s r 2m, m, (m, +m, ) r' 25j

Corrections from 6V. To find the second group of corrections we first set up the formalism. By intro-
ducing a variation 6 on the B-S equation (4), and multiplying the resultant equation from the left by gs(p),
we have on integrating over all momenta,



A. MAND Y

~( d'P4. (»~. '(P, PN. (P) —d'Pd'P'C. (P)&&(P,P, P')y, (P')

(26)

&7»«e of the ad)oint e(l«tion to (4), the»ght-hand side is zero. Taking the variation of G,-' to be with
respect to Ee, and using the normalization condition, E(l. (21), we find that

«..~.= ~l
d'Pd'P'C, (P)&l (P, P, P')S.(P').

Fx'om the definition of 5V me have

,) () p ),,)
2 (((2, + ~Z),

( )
((',+('):(('.+)'l)' (()'+)")'-. (('*-)'")/I)'-)'I'I)

' l0-p'I' lp-p'I' (p- p')„(p- p')" +t~

All these terms contribute in various arrays. Using the approximation schemes mentioned before, expres-
sion (2V) can be calcula'ted without too much trouble~ ft fields

~~~2 K ~~~2 ~~+~2
(29)

Corrections from tiao photon exchanges. These
corrections come from essentially bvo sources:
First, those second-order graphs (Fig. 1) that
have not been included in V; since these are higher
ox'dex' in intex'Rctlon Rnd presumably have smaller
matrix elements, me consider them as perturba-
tions to V; we call this contribution X(P, P, P'). '

Second, in the perturbation calculation of the ef-
fects of 5V there will be second- and higher-order
terms like 5VQ'6V, 5V"Q'GAG'6V, etc. , where G'

is the fuB Green's function for the "potential" Vo.
It turns out that a part of AVE'5V contributes to
z» order, so that the correction to 583 from these
tw'o-photon-exchange terms can be w'ritten as a
sum

&z,,,= «vc'sv&, &+x&„

w'here the expectation values here are with respect
to the B-S wave functions )I).

To extract the u4 terms from (30) we make ap-
proximations in our calculations as before. Each
of these terms has a coefficient of, at least, o. '
(an a for each of the 6V in the first term, an e~

from various vertices in the second) so that the
integrals in, these expectation values need contrib-
ute only another factox' a' for our accuracy. This
means that fox each internal photon line, w'e need
retain only the Boo part of the propagator; the rest
wiO contribute to order ~' or higher.

Consider now the graph in Fig. 1(c). The con-
tribution Xz, to X of this graph is, to our approxi-
mation~

4e dk

4z ' dsk

(2v)'- l0-kl'Ik-p'I' (32)

say, will be common to all the second-order graphs
and, for the. moment, ee look at the second, factor
only. Since

(X.& =t d'pd'p'4(p)X. (P, p, p')y. (p'), (»)

the lowest ox'der from the p, p' integrals come
from the neax'by poles as already mentioned. An

estimate of n dependence at this stage shows that

(X~&- (z 'x (k integration)

so that all ere need is that the k integral give a
fRctox' Q '. At this point w'e need to add the other
graphs in Fig. 1 and the 6V'6'5V term represented
by I"ig. 2 to get rid of the divergences in the loop
relative-enexgy integrations. It turns out that

d'k

J Ip-&I'lk-p'I'
where f(k) is of order 1 or more in a. This inte-
gralcontributes the most when Ikl-III, Ip'I. For,

( 2)
dh, (2P, +P+k),(2P, +P'+k),

(P, +&P-m, '+i~

(31)

where k is the loop momentum. The first factor
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consider the following:

" dk
lkl»III, Ip'I: X-n'

h
f(h),

which gives a factor of n' for (X);

I kl «
I pl, I p'I: X- n. . . , , d'h f(k).

Let I k I
- n ", where n & 1. Then X- n '""f(n ")

= n" with m&4 for f(h)-1. Thus both these cases
are excluded. Further, since Ipl- p'I inorder of
n, the only other case left is when kl- lpl- I p'I,
which gives us just the factor we need. All inte-
grals involved in evaluating the expectati. on values
of Eq. (30) can now be done rather trivially and we

get the simple result

1 2 1
2(m +m ) r' (36)

Total energy of the bound system. Summing up
the various contributions to 5Es [Eqs. (25), (29),
and (36)] and knowing the expectation values from
Ref. 11 we can now write the total energy of the
bound system correct to order z4.

FIG. 2. The second-order term in the perturbation %'.
In principle the bvo intermediate lines should stand for
the zeroth-order Bethe-Salpeter Green's function in the
potential Vo, but in the present calculation they can be
replaced by the product of free propagators.

Z =m, +m, +Z',"+&Z,

Q mjm2 4 ~)o my m2 1 mym2 m jm2 1 mym2 12 2 2

)n m, +m, ,
m' (m, +m, )' Ba m, +m ( (m, +m, )') n' m, +m, 2)+I

or, for the equal-mass case which would describe
pionium (v'-v bound state),

4n' Sn' 64n' 2n'(2l+1))

(38)

Except for the 5« term, this result is the same as
the energy of positronium and agrees with the cal-
culations of Brezin, Itzykson, and Zinn-Sustin2
and with an earlier formula due to Levy. ' The or-
igin of the 5,0 term is in the Darwin interaction;
in the positronium calculation there are other s-
wave terms that all finally add up to cancel this
quantity. That such purely s-wave interaction does
not occur in the eikonal calculations is not surpris-
ing because these approximations do not take into
account singular interactions like 5 functions in
s waves. Why the rest of the terms agree with the
calculation of Brezin et a/. is not readily under-
stood. One may also note that with all the differ-
ences between boson and fermion electrodynamics,
the fact that we get almost identical results in the
case examined is no less surprising either.

As a final remark to this section, we note that
the limiting form of (3V) when one mass (say m, )
approaches infinity agrees with the energy-level
formula for a Klein-Gordon particle in a Coulomb
field:

this to happen by comparing with the positronium
case, and we know that, in either case, the B-S
equation goes over to the corresponding equation
for a single particle in the Coulomb field.

II. WIDTHS OF THE BOUND STATES

The widths of the energy levels of the bound sys-
tem in various (n, l) states can be calculated by
considering the pionium as a resonance state in
photon-photon scattering: One calculates the T
matrix of the process and then the width can be
identified using the Breit-Wigner resonance for-
mula. Because of the two types of vertices that
are permissible in photon-pion interactions, there
will be essentially two calculations for the two pro-
cesses. We consider first the process in which
each photon-pion vertex has only one photon in it.

The $-matrix element corresponding to the
graph in Fig. 3 can be calculated by expressing the
bound state B by its Green's function G(P, p, p'),
the rest of the factors being as usual. Since at or
near the bound state G has the form given by (19),
the 8 matrix comes out in the simple form

, (3 1
I,6n -n (2t, 1)

(39)

This is reassuring, for we would have expected
FIG. 3. The n+-m" bound state as a resonance

in photon-photon scattering; the os-photon vertices.



1536 A. NANDY

s„=5'(p, -p, )x(a) — x(u'), (40)
5I p)gtagt (44)

where k and k' are the relative momenta in the in-
coming and outgoing channels, respectively, and

X contains the various factors for each half of the
diagram. Using the T-matrix formalism and the
Breit-signer formula, one obtains the width of
the bound states,

I = —,'g d'kd'k'5'(P, —P, )X(k)X(k'),
polar.

(41)

r„=~mn5,
1 5I'3, = 54mo. , (42)

where the minus sign occurs because of the way
we defined t" and the factor —,

' because of identical
particles in the final state.

The polarization sums in the Coulomb gauge are
easy to evaluate. For the rest of the calculation
of I' one has to specify the angular momentum state
one is interested in. For s waves for the first
three values of n we found the following result:

Pionium then will decay more readily by annihila-
tion into 2y than passing through an intermediate
state. The width for decay into 2y for all states
is smaller than the separation of energy levels.

Considering the probable decay of pionium via
weak and strong interactions, we find that weak
decays into muonic pairs, say, will be consider-
ably slow while strong decays into, say, 2m', can
be competitive or enhanced in certain states of the
bound system.

III. PRODUCTION MECHANISM

Among the many possible ways of producing
pionium, one of rather recent interest-is via a
two-photon annihilation process in colliding elec-
tron-positron beams. In such processes (Fig. 5)
the colliding e and e' emit photons that can an-
nihilate into m'm, m', p, 'p. , etc. Brodsky, Kino-
shita, and Terazawa' have shown that at energies
E, =(-,'s, )'" above 1 GeV the most frequent
events occur in this manner and have derived a
formula for the total cross section for a process
e+e-e+e+N where N is a neutral C=+1 state:

z.e.,

Qnce again we find a remarkable result: The I'
for the (1s) wave of pionium is identical in form
to the result for the singlet positronium state.

The higher partial-wave calculations can also
be done in a similar manner. It turns out that for
P waves

25 me'"27r (43)

An order of magnitude calculation of the width for
d waves shows that it is several orders of n smal-
ler than for P waves. Thus the s waves have the
largest width and are most likely to decay into the
2y mode.

For the width from the contact interaction, con-
sider Fig. 4. In this case also, the 8 matrix can
be put in the form of Eq. (40) and I' as in (41). Not

surprisingly I' in this case has a nonzero value
only in the s wave; we obtain

f(x) =(2+x')'lnx ' —(1 —x')(3+x') (46)

and o" (s) is the two-photon annihilation cross
section for two photons of c.m. energy squared s.
In this formula F. is the c.m. energy of the elec-
tron; for the total energy of pionium, below, we
use the symbol MB.

The calculation of oz&(s) can be carried out
rather easily by using the formulas derived in
Sec. II. It turns out that

o~y(s) =8vn' —5(s —M~'),
B

from where we can easily derive the cross section
for producing pionium by using Eq. (45). We get,
to lowest order in n,

4&2 dSo'" = 2 (~
ln — t' f((s/'4—E')'")o" (s),

l~ Z me Jstl, S

(45)

where

FIG. 4. The x+-x bound state as a resonance
in photon-photon scattering; the two-photon vertices.

FIG. 5. Production of m+-m' bound state
by colliding beams.
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4~2 ( g )2
, f(~l~)

me) m
(48)

mill still be about 104 times greater than that for
pionium.

where m is the pion mass and ~ the lifetime of the
pionium bound state (s wave); This is almost the
same form as the cross section for the colliding-
beam production of n' at large E. At those ener-
gies where the f function is indistinguishable for
the tmo cases, the cross section for m', however,
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