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We give general arguments that if there are operator Schwinger terms in the equal-time
commutator of the time and space components of the electromagnetic current these must be
of both scalar and tensor nature. The contribution of the tensor term is isolated and shown
to be proportional to —(1/m) [ydwFy@). Fyw) is the Bjorken scale function less its leading
scaling Regge parts. The existence of such a term is then related to the presence of a fixed
pole at j=0 in the real part of the amplitude vT,. This seems to be substantiated by the
data. From the point of view of light-cone (or short-distance) operator-product expansions,
such a term is shown to lead to scale-invariance breaking. The specific term expressing
this breaking is then given and is shown not to disturb scaling in the variable w.

I. INTRODUCTION

Recent interest in expansions of products of op-
erators (or commutators) near the light cone stems
from the realization that such products control the
behavior of amplitudes in the Bjorken scaling lim-
it. These expansions incorporate in a simple man-
ner invariance under scale transformations and the
operators carry their physical canonical dimen-
sions. They are natural generalizations of the
short-distance expansions proposed by Wilson.'

We shall be interested in the product expansions
for the electromagnetic current found by various
authors®™ to be consistent with the Bjorken scal-
ing of the deep-inelastic electron-proton structure
functions. In particular, we shall be interested
in the presence of any scale-invariance-breaking
terms. We do this by looking at the structure of
the (time-space) equal-time commutators and
especially the nature of the operator Schwinger
terms implied by these expansions. In particular,
it is found that they admit only the existence of a
scalar term of the form R9,;6%(x); tensor-type
terms of the form S;;9,;6°(x) are not allowed. Such
tensor terms represent scale-invariance breaking.
These points are discussed in Secs. II and III and
the problem conveniently formulated in Sec. IV.

Using general analyticity and positivity argu-
ments, we show in Sec. V that if there are operator
Schwinger terms they must include tensor terms.
This is done by deriving a lower bound on the
Schwinger-term contribution that comes solely
from its tensor part. The tensor contribution is
then isolated and is found to be

17, =
—;J; dwF,(w),

len

where F,(w) is the scale function less its (scaling)
leading Regge parts.

It is found in Sec. VI that the existence of a fixed
pole at j=0 in the amplitude vT,(v, ¢%) leads also
to a tensor Schwinger term with the same contri-
bution isolated above. Experimentally this contri-
bution tends to be nonzero.

The interpretation that the fixed-pole and tensor
Schwinger-term contribution is a scale-invariance-
breaking effect is given in Sec. VII and the singu-
larity of the scale-invariance-breaking term is
specified for the commutator light-cone expansion.

In the Appendix we show, following Wilson, how
the short-distance (or light-cone) expansions
specify the equal-time commutator.

II. SCALE INVARIANCE AND OPERATOR -
PRODUCT EXPANSIONS

It was suggested by Wilson' that the product of
two local operators may be described, for short
distances, by a series over local operators with
singular c-number functions as coefficients. An
ordinary product A(x))B(y) may then, for (x-3y)
approaching zero, take the form

A(X)B(y) =3 Colx = 9)0y(x +) . (1)

The expansion in general involves an infinite set
of operators O,(x+y). However, depending on the
singularity of the functions C,(x — y), only a finite
number contribute to any finite order of (x — ).
The singularities of the functions C,(x — y) reveal
the singular nature of the product and may be of
the form

Colx =) =[(x - y)* ~ielx,— )] 77,

where P is any real number. Logarithmic singu-
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larities of the form {In[(x - y)? — ie(x, - ¥,)]}° are
also allowed.

The usefulness of expansions such as that of Eq.
(1) is dependent upon knowledge of the singularities
of the c-number functions. These may be deter-
mined if one accepts, following Wilson, two fun-
damental assumptions. The first is that for (x - y)
approaching zero the expansion is invariant under
"~ scale transformations. The second is that the
“dimensions” of the operators A(x), B(y), and
O,(x +y) under such transformations are all known
or at least specified.

With these assumptions one finds that, if d,, dg,
and d, are the dimensions, respectively, of A(x),
B(y), and O,(x+y), then the dimension of C,(x —y)
(in units of mass or inverse length) must be

d(C)=d,+dg~d,. : (2)

This implies that for (x - y) approaching zero the
singularity of C,(x — y) must be of the form

Colx = 9) =[(x = 9)? = i€(xs - 9] "a*4B™ 12 (3)

Dimensionless logarithmic terms may also be
present. For the dimensions d,, dg, and d, one
may take the natural choice, namely, the canonical
physical dimensions the corresponding operators
have in free-field theory.

An expansion for the commutator of two operators
may be obtained by subtracting the Hermitian ad-

joint of the product expansion from itself. Taking
all operators O,(x +y) to be Hermitian, one obtains

[A(x); B(y)] -"-EE,,(X - y)on(x+ 3’) ’ (4)
where
E,(x -9 =ImC,(x-y). (5)

The c-number functions E,(x — y) may then have
singularities of the form

E(x-y)=[(x-y) —ie(x, - y9)]*
~[(x - 92 +ielxy-y,)]7F. {8)

These functions vanish for (x - y) spacelike, thus
ensuring the vanishing of the commutator required
by microcausality.

Operator commutator expansions for short dis-
tances specify fully the equal-time commutator.
This is demonstrated in the Appendix. In particu-
lar, the singularity of E,(x - y) determines
whether Schwinger terms exist or not and what
their exact nature is. Since the nature of this
singularity relies so heavily on the assumptions
of scale invariance and canonical dimensions, it
should be clear then that the nature of the Schwing-
er term is a probe for the validity of these assump-
tions. This indeed will be our main tool in inves-
tigating scale symmetry-breaking effects in pro-
cesses involving expansions for the electromag-
netic current.

III. PRODUCT EXPANSIONS FOR CONSERVED NEUTRAL VECTOR CURRENTS

In order to satisfy current conservation and Lorentz covariance explicitly, one may, following Brandt
and Preparata and others,® write for the product of two conserved vector currents an expression of the

form

]u(x)]u(o) = (au 0y = guuD)Eo(x Z)Ro(x: 0) +i€umxeaaE1(x Z)R?(x; 0)
+ (guuaaas - gomaﬁau ~8ap 050y +gapruD)Ez(xz)RgB(xy 0). (7

Ey(x?), E,(x?), and E,(x?) are singular c-number functions and the operators R(x, 0), R%x, 0), and RZ%(x, 0)
are, respectively, a scalar, a four-vector, and a symmetric second-rank tensor.
In order that the expression be valid also near the light cone, these operators must generally be of the

form

Ro(x,0)= 35 2%+ -2 ™R o000, (0),

n=0

R¥(x,0)= L‘ox"l s x®RE oL, (0),

R$8(x,0)= 3 x%1 - xRS, .., (0).

n=0

®)

9)

(10)

Here Ry, o,. « - ,(0), R‘f, aye + - an(0), and R;"'Bal. .+ «,(0) are higher-rank tensors whose dimension increases
by unity with the addition of each Lorentz index o;, namely, the increase by unity of the maximum spin.
For the short-distance behavior (x, -~ 0) only a finite number of terms will contribute to Eqs. (8), (9),

and (10) to any finite order in x.

We shall be mainly interested in the electromagnetic current J,(x) and the product expansion found by
many authors®™ to be consistent with the Bjorken scaling behavior for the deep-inelastic electron-proton
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structure functions. In particular, we wish to probe for any scale-invariance-breaking effects by studying
the nature of Schwinger terms implied by the singularities of this expansion. The expansion reads as

follows:

1

I, (0)d,(0) = (2,3, = £40D) 755~ Ro(%, 0) + (€409 dp = ZaP6d — s 062y + L€ In(=x +iex)RIA(x, 0) .
. v

Using the fact that
Im(x 2 -iex,) ™" = me(x,)06(x %),
ImIn(—x2 - iex,) = me(xy)6(x %),

one obtains an expansion for the commutator

(11)

(12)
(13)

[Ju (x), J,,(O)] = (ap 0, ~ gu,,D)ne(xo)b(xz)Ro(x, 0) + (guvaotas - gowaﬁau —8op aﬁau ""gotugByD)"e(xo) 9(x2)R§B(x, 0).

The singularity we(x,)8(x?) in the first term on
the right-hand side and e(x,)6(x ) in the second
term are essential for demonstrating the scaling
behavior in the Bjorken limit. From scale invari-
ance one concludes that the dimension of the op-
erator R (x, 0) must be two and that of RS®(x, 0)
must be four. Thus from Eqgs. (8) and (9) we find
that the lowest-dimension operators contributing
to R,(x, 0) and RY8(x, 0) must be two and faur, re-
spectively., This is consistent with renormalizable
field-theory models when free-field dimensions
determine the dimensions of the operators men-
tioned above and where J, has dimension three.®

A behavior of a current commutator as displayed
in Eq. (14) specifies fully the nature of the equal-
time commutators of the electromagnetic current
components. This here is precisely the nature of
the operator Schwinger term. Using the results
of the Appendix, we find the following result for
the time-time and time-space commutator:

[7o(0, %), 7o(0)] =0, (15)
[J:(0, %), Jo(0)] = (27%)3;6%R)R(0) . (16)

We thus see that the Schwinger term is controlled

by the singularity €(x,)5(x?) and is a scalar oper-
ator of dimension two. Notably absent is any ten-
sor contribution from RJ5(x, 0) due to the singu-
larity €(x,)0(x2). Thus the absence of such a term
in the real world is a crucial test of the expansion
of Eq. (14), in other words, a test of the assump-
tions of “scale invariance” and “canonical dimen-
sionality.” Indeed, it has been pointed out by
Brown® and equivalently by Brandt® that the ab-
sence of such a tensor Schwinger term is essen-
tial in making possible the connection between the
behavior of commutators near the light cone and
the Bjorken scaling limit when one uses general-
ized representations such as that of Deser-Gilbert-
Sudarshan or Jost-Lehmann-Dyson for the invari-
ant electromagnetic structure functions in position

(14)

r

space [see Eq. (21) below]. They are led to this,
after making exchanges of limits and integrals,
via smoothness requirements for their spectral
functions. On the other hand, Jackiw, Van Royen,
and West* assume the absence of tensor Schwinger
terms in obtaining the singularity of the commuta-
tor on the light cone of Eq. (14) starting from the
Bjorken scale functions.

Having presented the necessary background, we
shall now proceed to study the nature of the oper-
tor Schwinger terms, if they exist, in pursuance
of our main quest as to whether scale invariance
is strictly respected or broken.

We note here that c-number Schwinger terms do
not appear in our discussion as these are incon-
sistent with scale invariance unless they are in-
finite.® However, since we shall be concerned
only with connected parts of amplitudes, their con-
tribution may simply be ignored.

IV. SCHWINGER TERMS AND THE FORWARD
VIRTUAL COMPTON SCATTERING
AMPLITUDE

Consider the spin-averaged connected forward
scattering amplitude given by

Tuula, P =+ [ d% e PIT(, (2, ONIP)
+Suu(qy p). (17)
S,,(q, p) is the seagull term which contributes only

to Ty; and is a polynomial in ¢ and P. One may
decompose T,,(g, P) as follows:

Ty(q, P)=[q*P,P, - V(P,q,+q,P,) +v?g,, M (q?, V)
+(q, 9y - 8uwa M (g%, v), (18)

or, kéeping in accord with convention,
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(e, P)= (L2~ ) 104% 0

+ (P,, "l}'iqu)(Pu"_Vi%) T,(q% V),

where v=q+P=¢q°P°-
with Eq. (19) one has

§-P. Comparing Eq. (18)

SCHWINGER TERMS,
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1
M= 2T2a

M, —(T1 2T).

In configuration space we may write for the spin-
averaged proton matrix element of the commuta-
tor®:

(20

(Pl[J (%), J,(0)]|P) = ~[OP P, — (P+8)(P, 8, P,3,) + (P 3)’g,,]V,(x% x + P) = (3,8, - g,,O) V,(x2, %+ P).

Then if one has for x2~0

(PR (x, 0)|P) = f,(x - P) + O(x?), (22)
(PIR%8(x, 0)|P) = g *Bf(x - P) + P*P5f,(x « P) + O(x?),

(23)
then using Eq. (14) in Eq. (21), one obtains®
V,(x2% 2+ P) ~ —€(x)5(x?)fox+ P), (24)
x*2-»0
V,(x% x-P) ~ —€(x5)0(x %) folx - P). (25)
x4=>0
Now
ImM,;=V;(q?3 u)=jd"x SV (x2, % P).  (26)
If we define
Wi(q? v)=ImT;(q? v), (27)
then we obtain
ImM1=;15 Ww,, (28)
ImM, = 1 (W1+ . Wz) (29)
q? q

Thus from Egs. (23), (25), and (26) we see that for
%0 the singularity of the tensor term [R5%(x, 0)]
in the commutator expansion controls the high-g
behavior of ImM, and hence M,(¢% v). Thus the
appearance of a tensor Schwinger term will reflect
itself in the appearance of a Schwinger term in

M (g%, v) (or equivalently T,). By this we mean
that if we consider T, (g% v) in the Bjorken-John-
son-Low limit (BJL limit) defining the equal-time
commutator (g,— %, { fixed), we obtain a contri-
bution from M, (or T,) of order 1/q,.

Similarly the existence of a scalar Schwinger
term reflects itself in a similar contribution by
M, (or T,).

We have in the BJL limit

Ty =4q04; lg}{le(qZ, v)
+( - Bg,P;

- qoq{Poz) lg-}ll:lM1(q2, V) (30)

(21)

or

Tu=4 q*nm*‘gg——)wof’ @ -P)lim _2-—T (a7, v)

(31)
A tensorial Schwinger-term contribution is here
indicated by the factor P;(§-P), for this is the
Fourier transform of the matrix element of a term
of the form S;;0,6°(X). Scalar Schwinger terms
are simply indicated by the factor g;.
Upon examining Eq. (30) we see that a tensor
Schwinger-term contribution exists if

C
llli(q ’ V)—( o)z (32)
or equivalently
lim 7,=C,, (33)

where C, is a nonzero constant. A scalar Schwinger
term exists and is provided for in our expansion if

C
2 ) 22
].g.}{le(q s V) (q 0)2 (34)
or equivalently
YmTia% W=C;, (35)

where C, is a nonzero constant. We should point
out here that Eq. (32) also provides for such a
term; however, because of Eq. (34) the existence
of this term does not imply Eq. (32).

Our problem is thus reduced to studying the be-
havior of 7; in the BJL limit and seeing whether
the equal-time commutator receives contributions
from M, or T,. We could, of course, have started
by this statement after Eqs. (18) and (19). How-
ever, the intermediate steps were intended to make
the connection between the space-time and momen-
tum-space statements clearer.

V. ANALYTICITY, POSITIVITY, AND THE
EXISTENCE OF OPERATOR
SCHWINGER TERMS

Consider the forward virtual Compton scattering
amplitude T,,(q, P). Its absorptive part receives
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contributions from two classes of states.” The
Class-I states are the usual s-channel states and
the so-called z-graph states. The Class-II states
are those that couple directly to the current, con-
tribute only for timelike ¢, and are hence physi-
cally distinct from the Class-I states. Separating
the Born term B,,(q, P), we may write

T ,.(q, P)=B,,(q, P) + T},,(q, P)+ T'}(q, P).  (36)

The Born term contains form factors that vanish
rapidly for ¢®—~ —« and hence does not contribute to
Schwinger terms.

Using the analyticity property of T,(g, P) in the
variable ¢° and the positivity of the absorptive-part
contribution of the Class-I states, it was shown by
Bitar and Khuri’ that T},O(q, v) satisfies a lower
bound of the form

Lm7T., > £ cxo. (37)
BIL (°%°
No such statement could be made regarding T.!.
Thus, unless the unknown behavior of T} cancels
precisely (and in all frames) the behavior exhibited
in Eq. (37), the lower bound will be satisfied by the
full amplitude, namely,

C
111,§{ch0 @F (38)

If the lower bound is saturated, operator Schwin-
ger terms exist; for then, using the decomposition,

Too= A*My(?, v) +[@- B - (P IM (&, v),
(39)
we may conclude that either
LUmM,(¢*, v)= —% 0 qo)z (40)
or
hli(q , V)= (41)

(q“)2

or both. If the bound is satisfied via Eq. (41), both
a scalar and a tensor Schwinger term will exist. If
the bound is satisfied via Eq. (40), then only a sca-
lar Schwinger term will appear. The latter case is
the one allowed by the light-cone expansion under
consideration. Thus this expansion is in the class
of theories where the cancellation between Class-II
and Class-I states occurs for the invariant ampli-
tude M, (4% v), but not for the invariant amplitude
M,(g?, v). The cancellation is also such that the
lower bound is saturated.

If the bound is not saturated the equality signs in
Egs. (40) and (41) become “greater than” signs.
As was pointed out in Ref. 7, and may be seen by
inspection, this implies the nonexistence. of the
BJL definition of the time-space equal-time com-

mutator.

With these properties for the light-cone expan-
sion at hand, let us see whether they are plausible.
We intend indeed to give arguments that if the low-
er bound of Eq. (38) is-saturated, this is not likely
to happen without the participation of the invariant
amplitude M,(¢?, v), that is, without the existence
of tensor Schwinger terms. Using the positivity of
ImT%,, we shall first derive a lower bound for the
constant C appearing in Eq. (37). We give here
only the main steps of a derivation presented in
Ref. 7. We have

Tooldos 1 )=~ J'qodq'l—m-qu%’o—m—), (42)

where the threshold is at
q(; - [(M"‘Ii)a +§2 + az]l/z - (M+‘I’,z)1/2 .
M is the nucleon mass and u the mass of the ™ me-
son. !
Since we are interested in the behavior of T., in

the limit g,— i, we put g,=¢X and consider the
limit A—~, We thus have

I ImT.(q2, |q))
1 = 1 g 3
Tho(awr [3D=7 | , 00 TS @)

Owing to the positivity of ImT} 00l @Ss |q |) one has the
trivial lower bound

- 1
Teoldos |0]) = @+

aO

x), adasImToolas, [,  (44)
t
where a is some large pos1t1ve number. It is pos-
sible to choose |P|and |q|large enough in Eq. (44)
so that the integral is over a spacellke region. In
this reglon ImTf,o is zero and Im7Th, =ImT,,. Put-
ting q- P=0 for simplicity,® we then find

z2
Tho(dos 1A )= m

aq) .
X f , % dg)[ImM, - (P°)*ImM,],
q

‘ (45)

with

v= qOPO = (Po)z 52,
) (46)

g
ma®(q}) +2?]

aquo
X J. vdu( -ImM,(v, ¢%)
aqpo )

Tooldoy 1)) >

(PO)Z ImM, (V, q ))
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For large A— « this inequality gives us a lower
bound for C in terms of an integral at fixed '(iz. To
get a fixed-4¢® bound, we take the limit Py~ . The
limit is legitimate since the integral is over a
compact region. As P°— we find

7~ -4, (47)
and
P~ 32Mp + G + p2) +O(1/P%) . (48)

Thus the limits of the integral remain finite in
this limit and the contribution of ImM,(v, ¢?)-is
damped out by the 1/(P°)? factor leading to

__"z avy .
¢ 1&2)_[, vdvImM,(v, ¢* =-q?).
' (49)

In the above, (—az)Ili(V’ qz = _62) is equivalent to
ImT, =W,(v, ¢ =-q?). Thus we find that

T(I,o(qo, !31 =

av
cs % j’ v Wy = -G, v). (50)
v

t

Equation (49) or (50) is then a clear indication that
in the limit"P,- « the contribution to the operator
Schwinger term is controlled by the invariant am-
plitude M,. Thus follows our assertion that such a
term is unlikely to exist without the cooperation of
M,. The integral in Eq. (50) is a measure of the
existence of such a term. The constant a may, of
course, be taken arbitrarily large. We shall see
now that, assuming that the electroproduction
structure functions scale, we shall be able to sub-
tract from W, its leading term with Regge behavior
and get expressions for the Schwinger term con-
tributed by M, in terms of integrals over all v.
Consider the invariant amplitudes M, and M, in
the Regge limit. If @;(0) are the leading Regge tra-
jectories, one has for large v the behavior

iTa
2y,0,-2 & 41
M, v’:‘mz Bi(g*w® _—Sinﬂa;— ’ (51)
2y,0 € i1
M, ~ Z:ﬁs(q o Sinra, (52)

For all a; > O we then define the modified ampli-
tudes

=M%, v) - ‘L;Bi(qzw"f—ﬂ, (53)

Sln"ai
iTa
7 = _ oy oy € il
M, = My(%, v) :4;03;(4 W (54)

Correspondingly we may write

ImM, =ImM, - Z))o Bi(g*)vi~2, (55)
4y

ImM =ImM,- 2 B,(g®)v*. (56)
oy >0

Consider now the Regge parts in the Bjorken scal-
ing limit (B) v— o, ¢~ —», at w= /(-4 fixed. In
this limit it is known experimentally that vW,(¢?, v)
scales. In other words, using W, =¢?ImM,(q% v),
one has

limvg® ImM,(¢%, v)= f(v/q%). (57)
B

For this to be satisfied by the Regge term, one
must have

Bia) ~ (@) (58)
If this is the case, then we find

, ama, 1 _(PO\™

lim B~ ~ oy (q") ' (69)

Thus for all a; >0 the Regge term does not con-
tribute to order 1/(¢°)? in M, and therefore does
not contribute to the tensorial Schwinger term.
Therefore the contribution must come from the
modified amplitude M,. A similar argument ap-
plies for M,.

One sees immediately from Eq. (59) that the
presence of a pole at @; =0 does indeed lead to the
1/(¢°)? behavior needed for a Schwinger term.
There is no physical justification for such poles
and we assume they do not exist. We hasten to say
though that these are not to be confused with fixed
poles that contribute only to the 7real part of the
invariant amplitudes, which seem to exist and are
responsible for tensorial Schwinger terms, as we
shall see later.

Define now, using Eq. (39),

Too =—(3.2Mz(qz, v)+ [(‘i' —IS)Z - az (PO)Z]MI(QZ, V),
(60)

just like T,,; this satisfies an unsubtracted disper-
sion relation in g, for fixed q. If a subtraction is
needed, the lower bound in ¢° will be satisfied be-
yond its limit Cg,™* and all operator Schwinger
terms will be infinite.

We thus have

A 1 f” 1
Tyy=— AQqs—5—
0= g ooz 4

x{q*Im A}z +[-§°P2+(q- ﬁ)z] Im A}l} .

(61)

The Born term, as usual, is not considered. Now
- = + q -P. 2 -

v=¢,P~qP, qz{'—l,oq——) -2 (62)

Again, since we are interested in the limit g,—i
we write ¢°=i\ and look at the limit A -,
Before we proceed we make the following re-
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mark, Anticipating our result that a Schwinger
term is generated by M,(q?%,v) we assume that it
has the form

= 1 Cw
lim M,(¢%v) =75 [A1 + Bi §* P+ O(@- PY*) + - - ],
BIL (¢°)

(63)

-}

lim T, =—13(a-f>13i -

‘IiPoz)[Al +B, 6_13 + O((ﬁ‘ _1;)2) +e ']

M. BITAR 5

where A, and B, are constants. A similar expres-
sion holds possibly for M, with constants A, and
B,.

Substituting in T,; as given in Eq. (30), we find

1 - = - =
+ 70 ailA.+ B, & P+ 0@ Py)+---]. (64)

Thus the tensorial Schwinger-term contribution is determined by the constant A, [coefficient of —-1/g,
=q° PP (-A4,) as seen from Eq. (17). The constant B, determmes Schwinger terms with higher than one de-
rivative of the § functlon due to the presence of the factor qe P multiplying it. The constant A also gives
the contribution of M1 to the scalar Schwinger term as it also multiplies ¢; P,%. Indeed, if M, does not con-
tribute to the Schwinger term (4,=0) the constant A, determines both the scalar and tensor Schwinger

terms, Changing variables, using Eq. (62), we find
* dv(v +ﬁ-_f’) Im M,

3 > - T 1
Too= [q2P02+ G- P)z];

$
Po'o

pp? (1/+q:§)2/P2+7t2 T

Lzl f“’ dv(v+§-P) Im M
t

TS 7. > 22 /2 <2 . 65
Pocl P2 (v +§-P/P2+)2? (85)

The integrals represent M, and M,, respectively. Clearly the terms with P in the numerator will con-
tribute to the constants B,, B,, and higher terms defined in Eq. (63). These then do not contribute to the
term A, and therefore we shall neglect them. Thus we are then concerned with

1 dvvIm M, (v,q?)

i‘:

Define P = (P2 - M?)'/2P, Since the imaginary parts
are void of their leading Regge behavior one ex-
pects that taking the A -~ limit in Eq. (66) would
give us the leading term of O(1/)2?) and thus deter-
mine A, and A,., We will then get sum rules for
these terms at fixed g2, To get a fixed-q2 sum
rule we take the limit P -« and again expect it to
be interchangeable with the integration. In this
limit the contribution of M, vanishes, leading to
A,=0 in this limit., We are left with

loimT‘ 2 [-3%+(@: P)Z]f vdvIm M,(v,q?),

Ploe vt

(67)

evaluated at g®=[-42+(§-P)?]<0, spacelike. Since
Im M,(v,q%)~v~2 at best, then the integral is at
worst logarithmically divergent. This justifies our
exchanges of limits and integrations. Since Im M,
~const at best, the justification for neglecting its
contribution in the infinite-momentum limit is not
well founded. However, we are not as concerned
with the value of A, as with the value of A, deter-
mined in Eq. (67). Using the relationship

W,(v,q%) = q*Im M, (v,q?),

if we define W, as W, minus its leading Regge-pole
contributions, we find that in the infinite-momen-
tum limit we have

[_qu +@Py ]f t(v+q P)Z/P +A2+71P2

f‘” y Im 1_‘.42(1’, q2) (66)
(v+q-PY/Pr+2?

f dvvW,(v,q2 = -& +(q + P)?) .(68)

Comparing Eq. (67) with Eq. (60) we find in the
infinite-momentum limit (A% = -¢,?)

-1 [ ~ - -
A1='1;'F§f vavImM,(v,q®=q4%+(q-P)*) (69)
0 I}t

or equivalently

1 1
7 =G4 2P+ (q- Py

1
xfdv wW,(v,q%= =42+ (G- P)). (70)

v,

s

Thus again we see that M, does contribute to a
tensor Schwinger term. Substituting A, as given in
Eq. (69) or (70), in Eq. (64), we find the infinite-
momentum frame

N 1
lim lim T; = —3
Py—>= BIL

@PP-0)(3 )

X f vdvImM,(v,q2 = =42+ (G PY)
Y
(71)

giving the Schwinger term as an integral over
ImM,, or
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1 . »»
lim im %, = —5 (4" PP; - g;)
Py—= BIL q

-\ [~ vV =
xX{— av( =W, 2 .
(ﬂ)f": (‘12 (e ))a2=-a’2+<a’~ﬁ)2
(72)

In the above expressions the contribution of A712 is
zero. The value of the integral appearing in Eq.
(72) then determines whether or not there is a ten-
sor Schwinger term (or a scalar term for that mat-
ter). The integral may be evaluated for large §?
in terms of a modified scaling function,

It is known that in the scaling limity -«, ¢*~
~w, -y/q%=w fixed, one has

WW,(v,q%) = Fy(w). (73)
If we then define

Vﬁ’z(u,qz)——l?z(w), (74a)
then

Fo(w)=0(w = 1)Fy(w) =Y, %w%™, (74p)

a‘>0
Consider now the integral in Eq. (72),
17~ vV =
e 1 2)| (75)
T, T e e

going to large values of E, and changing variables
to w=-v/q% we find

A=+ % fo " dw Fy(w). (76)

Therefore the value of this integral is the measure
of existence of a tensor Schwinger term of magni-
tude -A,.

The integral may be evaluated from experimental
data. It is found to be nonzero. Indeed, itis found
to determine (for large ¢?) the residue of a fixed
pole at j=0 in the real part of vT,=vq*M,. We
shall see in Sec. VI that such a fixed pole indeed
generates a tensor Schwinger term with a stre: gth
given by the integral of Eq. (76).

VL. FIXED POLE IN vT, AND THE TENSOR
SCHWINGER TERM

It was pointed out some time ago that the data on
deep-inelastic electron-proton scattering seem to
indicate the existence of a fixed pole at =0 in the
real part of the amplitude vT,(q%v)=vq3M,(q2,v).
We shall show here that this leads us to a Schwin-
ger term of the tensor type. Note that we have al-
ready seen from the discussion of Sec. V that Regge
poles contributing to both the real and imaginary
parts of v7, do lead to such a term if a; =0. The
argument depends on the fact that the imaginary
part ¥W,{v,q%), to which these poles would contrib-

ute, scales. Such an argument, however, is not
applicable to fixed poles contributing to the real
part of vT,. We shall see that the connection be-
tween such poles and the Schwinger term does,
however, depend on the behavior of the scale func-
tion F ).

We review briefly here the arguments of Rajara-
man and Rajasekaran® for the fixed pole and its
properties. .

Using Eq. (53) for M, then in the absence of any
poles with a; > 0, one has the superconvergence re-
lation

f dv vW,(v,q?) =0, (77)
0

where as usual W,=Im7, and T,=¢%M,. In the
Bjorken scaling limit one has from Eq. (77)

f " dw Fy(w)=0, (78)

where vW, - F,(w) given in Eq. (74a) above. Equa-
tion (78) may be checked using experimental data.
The left-hand side is reported to have a value ap-
proximately unity in Ref, 9, This discrepancy may
be eliminated if a fixed pole at j=0 exists in the
real part of v7,. That is, for large v one has
- 2 1
V7, ~ L40) +o(——m>. (79)
y—so Y 4

In this case Eqgs. ('77) and (78) are modified as fol-
lows:

fw dv uv-l'/z(q 2 v)=—1f(q?) (80)
and
jm Fy(wdw=+7 lim fEI‘I:)‘. (81)

There will be no contradiction with experiment if
for large q* one has
fg*)_ 57 _aq® (82)

One then has
L O
2 f Fy(w)dw=a. (83)
T J

We thus see that the residue of this fixed pole for
large ¢° is controlled by the same integral that
determines the tensor Schwinger term. We can
see this directly. Using Eq. (79) and substituting
in Eq. (31), we find

T, 1 1 -
im7T,; = lim—% +— a(—-—)P *P). 84
oy 0i = o4 g2 P ( )P02 ;(‘i P) (84)

0

In the limit P,~>= we get a term of the form

-qio[ﬁ,(a-ﬁ)(-an,
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where the bracketed term is the tensor Schwinger
term with coefficient —a. Here, as before, the
constant

+a=+A4A, =+% f dw F,(w) (85)
o]
is the determining factor.

From the preceding discussion we see that the
existence of a fixed pole at j=0 in vT, does not lead
to a tensor Schwinger term unless its residue be-
haves for large ¢ as ag®. If the behavior is less
than linear in ¢2, the Schwinger term does not ex-
ist and the integral in Eq. (85) is zero. If the be-
havior is of the form (¢2%)'*¢, the residue of the
Schwinger term is infinite, Various authors®:°
have discussed the consequences of the polynomial
character of the residue of the fixed pole. We
point out here that we do not require such a behav-
ior, We only require.a linear behavior in ¢® for
large ¢2.

VII. NATURE OF SCALE-INVARIANCE
BREAKING

We have seen in Sec, III that a light-cone expan-
sion for the product of two electromagnetic cur-
rents does not allow for tensor-operator Schwinger
terms in the equal-time time-space commutator.
This is because the expansion respects scale in-
variance and admits operators with canonical phys-
ical dimensions. On the other hand, we find in
the first part of Sec. IV, on the basis of general
analyticity and positivity and barring unlikely can-
cellations, that operator Schwinger terms exist
and are also of the tensor type. In this case one
may isolate the contribution of such a term and
find that it is proportional to the integral

I=l f dwi‘z(w).

T Jo
This integral has been evaluated earlier and is
found to be of the order of unity. Indeed, its non-
vanishing has led some authors to postulate the ex-
istence of a fixed pole in the real part of vT,(v,q?)
with a residue that behaves linearly in ¢ for large
¢®. As we have seen in Sec. V, this indeed leads
naturally to the tensor Schwinger term. Thus we
may conclude that the existence of such a term is
governed by the nonvanishing of the integral

I=lf dw Fy(w).
T Jo

As pointed out in Sec, II, this has consequences
for scale-invariant canonical product expansions
on the light cone and on the connection usually made
between these expansions and the scaling limit.
Let us look again at Eq. (14):

KHALIL M. BITAR

len

[, (), 7, (0)] = (8,8, —g,,,DIme(x,)5 (x*) R (x,0)
+ (guu aaaB —&av aB au ‘gau aﬂ au +g(mgﬁvD)
X me(%,)0(x 2) RSB (x,0) . (86)

The singularity of the second term does not pro-
vide for a tensor Schwinger term. This means
that the singularity has to be modified. The sim-
plest such modification would be a term of the form

Spy = (gpv aotaﬂ —gavaﬂau —gatp aﬁay +gocpruD)

X 7€ (%,)0 (x 2)S%8(x,0), (87)
where
5%8(x,0) =3 PRI 2 s‘;‘f’al. . °‘n(0) (88)
and
(PlsgO)| Pyt =2 [ do Fyfw), (89)

In a theory where the lowest dimension of a sec-
ond-rank symmetric tensor is four, an expression
like Eq. (87) for Suy generally violates scale invari-
ance. Thus it is appropriate to consider it as a
scale-invariance-breaking term. The parameter
controlling this breaking would then be the integral

1 -
- fo dw Fo(w).

Of course, if one is willing to admit, following
Wilson, that dimensions change with interaction,
then it is possible to consider a case where Eq.
(87) is scale-invariant; the case being where the
operator (or operators) 5%8 originally having canon-
ical dimension four, would in an interacting
world have dimension two. The change in dimen-
sion thus must be strictly two. A fractional change
would, of course, sustain scale-invariance break-
ing. Such a scheme might look artificial but,
though unlikely, is still possible.

VIII. DISCUSSION

As mentioned earlier, various authors have de-
rived the singularity structure of Eq. (87) upon as-
suming scaling. Such a derivation admittedly re-
lies on a cavalier exchange of limits and integra-
tion. Allowing such an exchange clearly then leads
to the absence of tensor Schwinger terms. One
may see this from the fact that T,(v, ¢%) satisfies
an unsubtracted dispersion relation in v at fixed

-g%. We have

1(~ V'Walv', q2)
) J— 2oL 9
TZ(V’ q ) T j—aZ/z dv V/2 - V2 ( 0)
Changing variables to w=-v/q¢% we find that
1 (~ Faw’, ¢%)
2 - £ 2 )
To(v, %) T jz dw WwZo? " (91)
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Scaling requires that for any fixed finite w’ one
has
2l’im Fy(w', ¢®) =Fy(w’). (92)
q2—> =
Now in the BJL limit g®—~ -« and w—140, so that
if the integral in Eq. (91) is uniformly convergent
one may conclude that

7

lim T,(v, ¢%) =0. (93)
BIL

Thus the only possibility for a Schwinger term to
arise (limg; T, =const) would be that the function
Fy(w’, % grows indefinitely for simultaneous large
values of w’ and —q®. Only such a growth in the re-
gion of large —4® and large w’ in the integral of Eq.
(91) could render Eq. (93) invalid. It is not diffi-
cult to construct functions which grow indefinitely
for large w’ and large —q® whereas they vanish for
large —q® at any fixed finite w’.!!

It is also in order to point out here that in spite
of the seemingly straightforward connection be-
tween a j=0 fixed-pole (in T,) contribution of the
form aq?/v? and the tensor Schwinger term, such
a connection could be lost in the full amplitude
through a conspiracy with lower-lying poles. The
bare Born-term contribution ag?/(v? - 3¢*) is a good
example of such a conspiracy. This conspiracy
should be happening in the light-cone-expansion
model of Eq. (84). For it has been shown by Mack!?
that the €(x,)8(x?) singularity does lead to a scaling
j=0 fixed pole; nevertheless no Schwinger term
arises. Such a Schwinger term here arises only
from a family of scaling fixed poles with leading
member at j=1 generated by the scale-invariance-
breaking singularity €(x,)5(x?). Thus in this model
the connection between the isolated j=0 contribu-
tion and the Schwinger term serves to relate the
strengths of these two singularities. The precise
connection in this model may be obtained by care-
fully isolating the two contributions. This point is
under further study.

One final word on the scalar Schwinger-term
contribution. As we have seen in Sec. IV, if M,
does not contribute to it, this contribution is the
same in magnitude as that of the tensor term. In
this case they both come from the invariant ampli-
tude M,. Such an equality is upheld in the infinite-
momentum limit. In general, however, the con-
tribution to it comes from both R,(0) and S$#(0)

(M, and M,) in Eq. (87), S28(0), thus providing a
scale-invariance-breaking correction. In the in-
finite-momentum limit, however, this term seems
to be dominant. This throws some doubt on the
validity of sum rules appearing in the literature*
estimating the scalar term. For in those estimates
the contribution of tensor terms was assumed to

be zero.
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APPENDIX

We discuss here the calculation of equal-time
commutators from short-distance expansions fol-
lowing Wilson.!

If E,(x) is the singular c-number functions, then,
using the definition of the 6 function, we have

B(x) = F (x)0%®) + F(x,) - 96*®) +- -+, (A1)
with

Fo(xg)= [ %5 B0, %), (A2)

T (x,) = -jdsx XE,(x,, %), etc. (A3)

In the limit x,~ 0, F,(x,) and F,(x,) give, respec-
tively, the regular part and the Schwinger term of
the equal-time commutator.

In evaluating integrals of the form given in Eqgs.
(A2) and (A3) we are usually faced with expressions
of the form

3 1 1 )
fu-uv(xo)zj’d x((xz—iexo)P - (x2+i€xu)P>x“ Tt Xy

(A4)

Expressions with logarithms may be treated simi-
larly using

P=0

or similar such expressions.

If the x, factors in the numerator are such that
any component of X is left unsquared, the integral
is zero from rotational invariance. Using spheri-
cal coordinates, one then first does the angular in-
tegrations and is left with

Fueen(%o) o j. v?dr F ..., (r? x°)
0

1
x((r - %o — 3i€)P(r +x, + 5i€)P c.c.).
(A5)

In the complex » plane, and for noninteger P, the
integrand displays cuts from x, to +~ and -x, to
-, The integral in (A5) is then given by

1
2 2 L0\ -
CL'V drF,...(r*x )(,',_xO)P(T_,_xO)P ’

(A8)

Fueen()
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FIG. 1. Contour C; for Eq.(A6).

where C, is the contour shown in Fig. 1. Using the
fact that the numerator is an even function of 7,
one may then, by changing variables » - -7, show
that

Sy (@) exp(-i27P) - 1] J r?ar Fy...(r% x°)
c

(AT)

where C is the contour given in Fig. 2. Thus in the
absence of other singularities in F,...,(r? x°) and
the vanishing of the integral over the great circle,
fu---o(%,) =0 for noninteger P.

For P integer the cut in Fig. 1 becomes a pole
and the integral may be evaluated by the residue
theorem.

Example. We calculate the following commuta-
tors implied by the expansion of Eq. (11):

0 ,6001,(0) =5 2

+(8,95 = 2800989 +gaogpoD)
x1In(-x2 +iex,) (RSP +xa1Rg"(3xl Feee).
(A8)

In evaluating the integrals of Eq. (A2) the contri-
bution of the first term in (A8) is zero as it is a
total derivative. In the second term, only those
parts without a spatial derivative contribute.
These lead to zero.

The Schwinger term given by Eq. (A3) gets zero
from the first term in (A8) because of the double
total divergence. In the second term only terms
with one total divergence contribute. One is then
left with integrals of the form

2 -2%,
ch vidr (r = xp) (7 +x,) (49)

coming from one time derivative. Evaluating this
at the pole and taking the limit x,~ 0 one obtains
zero. Thus we obtain

[75(%, 0),J,(0)]=0. (A10)

FIG. 2. Contour C for Eq.(AT7).

For the time-space commutator we have

—ap 1 o
J;(x)J,(0) _a"a"xz e, (Ry+x R g+ )
+(‘3iaﬁgao'gaiaﬁao*’gaigeom)
X In(=x2 +iex ) (RSB +x°"RS‘_%1+ ce).
(A11)

The regular commutator of Eq. (A2) gets zero from
the first term because of the total divergence 9;,
and then only terms with 8,3, might contribute in
the second term. These, however, differentiate
In(-x* +iex,) and eventually lead to a null contribu-
tion. Due again to the weak singularity of the sec-
ondterm, itgives zero contribution tothe Schwinger
term. Thus, here we see the effect of dimension-
ality of RZ8 on the nature of the Schwinger term.
On the other hand, we find a contribution from the
first due to the singularity (x* —iex,)™" present
there. For we then have

- "9 2960 2
F,(x,) =4ﬂjcr d’r(———————-(y -xo)2(7+xo)2) i. (A12)

¢ is a unit vector in the direction of x;. From the
residue theorem we have
7‘=x0>
=4 2mi x 4m(})

={2n% . (A13)

1d 72

1(];1110 Fi(xo) =47 X1 2m<2x0-2— ?;V- m

Thus one has
[J:(%, 0), J,(0)] =i27°R (0)5; 6°(%) . (A14)

Notice that if the singularity of the second term
was also 1/(x® - iex,), a Schwinger term would
arise from R}° and the term -3;35g,, on the right-
hand side of Eq. (A11) and a tensor term of the
form R}’9,6%(X) from the term —g,;049, next to it.
This is where scale-invariance breaking occurs.

In a theory of fermion quarks interacting with
spinless bosons R,(0) of Eq. (A14) may, for exam-
ple, be a term of the form ¢* and R$'?(0) may be
3298 ¢(0).
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We present an approach to the breaking of SU(3) X SU(3) symmetry which emphasizes the
Nambu-Goldstone realization of this symmetry. Here the octet m, K, n are the ground-state
mesons. For matrix elements which are not analytic in the symmetry-breaking parameters,
we can establish exactly the leading behavior in symmetry breaking. An example of this is

a chiral-limit theorem on the meson decay constants fﬂ,/f+ ©) fr —

= [3(my? — m,2/647%

x1In [647%,2/3(my + m,)% + O (A). For matrix elements which are analytlc to leading order in
symmetry breaking, we advance the hypothesis of threshold dominance of the Goldstone-
boson-pair states. When this hypothesis is applied to the mass splittings of the ground-state
mesons there results an eigenvalue problem to which the unique nontrivial solution corre-
sponds to octet enhancement. This is independent of any assumption about the Hamiltonian
symmetry breaking. When we apply these ideas to the baryon mass sphttmgs we again ob-
tain octet solutions corresponding to tadpole-model results and a new result -ny(f/a') B = (f/Ay/

[3(f/d) % -

—1] relating the baryon mass f/d ratio to the axial-vector—baryon f/d ratio, in good

agreement with experiment. We also discuss electromagnetic mass shifts in this context
and advocate that for AI = 1 mass shifts the Cottingham formula diverges (and should be
abandoned). If the Cottingham formula diverges for AI = 1 mass shifts, then we no longer

have Dashen’s sum rule pg+? — pgod = pu 2 — poo?

mass shifts is suggested and developed.

I. INTRODUCTION

This paper is devoted to a study of the breaking
of the SU(3) symmetry of the strong interactions.
This is undertaken with the recognition that it is
low-energy Goldstone-boson-pair states that dom-
inate symmetry-breaking matrix elements.

The primary assumption on which we base this
work is that in the absence of symmetry breaking
the Hamiltonian for the strong interactions is
SU(3) XSU(3)-invariant,! but the vacuum state is
just SU(3)-symmetric. Coleman’s theorem? then
requires that the SU(3) symmetry of the vacuum
state be manifest for all physical states so that

. An alternative, finite approach for AI=1

they may be classified according to the irreducible
representations of SU(3). But the vacuum sym-
metry, SU(3), is not the same as the Hamiltonian
symmetry, SU(3)xSU(3). In this instance the
Goldstone theorem?® requires the existence of an
octet of massless pseudoscalar ground-state me-
sons. These are identified with the octet 7, K,  and
7. That the physical pseudoscalar mesons are
massive is to be accounted for by the presence of
symmetry-breaking terms in the Hamiltonian.
Explicit symmetry breaking is also responsible for
removing the SU(3) degeneracy of other states. In
the absence of such symmetry-breaking terms,
however, the ground-state mesons are strictly



