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It is argued that the method of Cheng and Dashen gives a calculation of approximately three
times the 0 term, rather than the 0 term itself. This conclusion is based on a correction de-
rived from a unitarization of the t-channel xx scattering amplitude, consistent with the con-
straints of current algebra. A detailed analysis of possible model dependence of the result
is included.

I. INTRODUCTION

The study of the approximate symmetries of the
strong interactions is one of the central questions
of particle physics. ' As a necessary part of these
studies one must disentangle, from experiment,
information concerning the mechanisms which
break these symmetries. Although considerable
effort has been expended in this direction, it is
still far from a closed subject. For example, one
still does not know conclusively whether chiral
SU(2)xSU(2) is a better symmetry than SU(3), so
that the manner in which chiral SU(3)xSU(3) sym-
metry is broken is still subject to uncertainties.
The understanding of broken scale invariance is
even further from our grasp.

One may obtain some information pertaining to
these questions from the value of the so-called cr

term in pion-nucleon scattering. The earliest
estimates of this term gave support to the notion
that chiral SU(2)xSU(2) symmetry was in fact a
better symmetry than SU(3).' More recently the
numerical value of this term has been the subject
of some controversy, "throwing this conclusion
into doubt. A reliable evaluation of the 0 term
takes on further importance, as it may be useful
in providing an understanding of the mechanism by
which scale invariance is broken. '

Unfortunately, the 0 term is the value of the
pion-nucleon scattering amplitude at an unphysical
off-mass-shell point, so that ambiguities are in-
troduced by any uncertainty in the extrapolation
from off-shell to on-shell pions. Furthermore,
the connection between the 0 term and the mecha-
nisms which break chiral SU(3)xSU(3) symmetry
and scale invariance is by no means direct. At
least three stages of argument can be identified.

(1) One must make assumptions or provide dy-
namical arguments which connect the scattering
amplitude at the "0 point" to the on-shell ampli-
tude.

(2) An evaluation of the on-shell amplitude must
be made by means of dispersion relations, ' or in
terms of low-energy scattering data. '

(3) The "measured" value of the o term must be
compared with the value calculated from a postu-
lated symmetry-breaking Hamiltonian. '
In order to deal with the first two issues, Cheng
and Dashen (C-D) make a simple assumption con-
cerning the off-shell behavior so as to evaluate the
0 term from on-mass-shell dispersion relations,
and obtain a surprisingly large result.

It is the purpose of this paper to present a de-
tailed study of the first question, the extrapolation
to the mass shell. Our conclusion is that C-D
have in fact calculated approximately thr ee times
the 0 term, rather than the cr term itself. This re-
sult follows from important corrections to the C-
D result, whose origin is the unitarization of the t-
channel pg scattering amplitude consistent with the
constraints of current algebra. Our argument lead-

. ing to this conclusion is organized into two steps.
(1) A representation for vN scattering is de-

rived from the Ward identities of chiral SU(2)
xSU(2) symmetry which exhibits the one-particle
reducible part of the 0 field. This provides a
framework for the discussion of the effects of a
strong 0' t-channel exchange. This step is im-
portant irrespective of the existence of a low-lying
0' meson resonance, as the magnitude of the 0
term itself sets the over-all scale for such ex-
changes.

(2) The one-particle reducible part of the o
field is obtained from our unitarization of gm scat-
tering, given in earlier work. This additional
contribution leads to the change in the interpreta-
tion of the numerical result of C-D. We end the
discussion with a detailed analysis of this work,
with an eye towards uncovering a possible model
dependence which could weaken our conclusion.
A number of supporting calculations, and a review
of our unitarization of gm scattering, are to be
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found in the appendixes.

II. GENERAL CONSIDERATIONS

%e construct a representation for nN scattering
based on the Ward identities of chiral SU(2)XSU(2)
symmetry, starting with the equal-time commuta-
tors

[A; (x),A„'(y)] 5(x'- y') = ze.„5'(x-y) V„(y)+S.T. ,

(1a)

[A.;(x), ()"At(y)] ()(x'- y') = ()., (r(x)5'(x- y), (1b)

with V'„(x} [A'„(x)) the vector [axial-vector] current

with isospin a and S.T. the Schwinger terms.
Equation (1b) defines a local scalar field o(x) by
means of the indicated equal-time commutator.
Define ()))'(x) and A2(x) by

»A'„(x) = m„'Z„4'(x) (2)

and

A'„(x) =A'„(x) —E„()„(t)' (x), (2)

where m, (F„)is the pion mass (decay constant)
It is a straightforward matter to derive Nard iden-
tities for A„by replacing the axial-vector current
in the usual Ward identities by Eq. (3). For pion-
nucleon scattering, the result is"

Jtd'xd'y e"'*e '"'"(CI„'+m, 2)(0,2+ m, ')(p2 I T*[(t)'(x)y'(y)](p, &

=E q"I' d xd '' ~~y p T*A~ A'„p
2 Q2Q—il, p,

(
i- —:'$ d xe"-"'*(p,

l ( )lep, x) i „e'pYefmd xe'i i (p'(q'„*(x)(p )
m, '

(4)

where k (q) is the initial (final) pion four-momen-
tum. It is evident that Eq. (4) is an off-shell con-
tinuation of the pion-nucleon scattering amplitude.
This formulation of current algebra is useful since
the pion poles are explicitly removed from the
axial-vector current, and the contributions of the
vector current and o term are nonzero in the
mass-shell limit.

Let us focus our attention on the isotopic-even
amplitude. Define

q(p„q; p„p) if d x"e="-(q ')(*q 'm-')''m-

)&&f. IT*Le'(x)y'(0)] IP &, (5)

and make the decomposition

and

T (+) A(+)+ .qg(+)

where (L) = —,'(q+ k). We will be particularly inter-
ested in

(8)

which is the amplitude studied by C-D. Useful
variables for this problem, in addition to the usual
Mandelstam variables, are

v, =-q k/2m. (10)

=-i d xe"' p2 T* A„xA'„0 p,

(11)

which also serves to define T„„. The nucleon pole
contribution to the even amplitude in (11) is

A„(v, v„q', k')"= mgA(q')gA(k2)/F, 2,

(12)

(+) mgA(q )gA(k )I( v
N% t VB

)(

where g„(q') is the axial-vector form factor of the
nucleon, so that

2 k 2)(+) m gA(q )gA(k } vB
~cVt V~t g t y

.
2 2F~ Vg V

2( 2
d gqep(

)
B (18)

m kv& -v
by virtue of the Goldberger- Treiman relation.
Finally define

Let us separate the nucleon pole contribution from
the right-hand side of Eq. (4), which we indicate
schematically as

T„„(p„q; p„k}"+ "nucleon pole"

v=(q+k) (p, +p, )/4m F (t)= (P. l (o)IP & (14)
=(s- u)/4m so that on combining Eqs. (4), (5), (11), and (12)

one arrives at the identity



T( p~» q» pl» k) = llllcleoll pole'

+F q'
m. ' m.'

+F 'q"&"T„„(p„q;p„k)('

(19c)

so that in this model the evaluation of the 0 term
is reduced to a calculation of the mass-shell am-
plitude at the unphysical point v=O, t= 2m„'.
[Note from Eq. (15) that the coefficient of the o
term varies rapidly in the region 0 & q', 0' ~m, '.]

The o term of mN scattering, which is our primary
1nterest~ ls

T(p 0.p 0)'&=m(0 0 0 0)'~

=F F„(0)=C. -
The entire focus of our study, and that of others,
is in obtaining a reliable estimate of C from mass-
sheQ data.

The model of C-D (Ref. 3) is easily formulated
from Eq. (15). Assume that

III. THE o TER1Vj

If the (» term C is large, then q" 0"T„') has a
strong contribution from cr exchange in the t chan-
nel, even if there is no low-lying 0' resonance, as
F, 'F„(t)= C sets the scale for these contributions
In that case Eq. (18) may not be a reliable model
for the off-sheB extrapolation of the mN amplitude.
This question can be dealt with by removing the o
one-particle reducible parts from q"0"7„'~, and
then studying these effects separately. %e pursue
this line of analysis.

Guided by perturbation theory, one expects T„',
to have the general structure

for sufficiently small values of t, and further as-
sume that for sufficiently small p and p~

T„.(p., q; p„ I )"=F„,(q, ~)~.(f)-'F„(t)

+ T„„(p„q;p„a)", (2o)

2 $ t3

+ ]. 2.— 2 C+ +vg+ v
m.' m. '

where (x and p ale cotlstatlts and M„ ls given by
Eq. (13). Equation (18) is based on the premise
that q" O'7.'~',~ is a slowly varying function of p and

v~, for small p and v» as a1l important dynamicaI
effects have already been exhibited. (It is this
proposition which we challenge in our analysis of
the one-particle reducible part of the o field. ) One
observes that the C-0 model has the properties

M(0, 0;0,0)"=C,
~(0 0 ~.', 0)"=0,

where T„', is one-particle irreducible with respect
to the o field. The AAo vertex, which appears in
Eq. (20), is defined by

d" y„„(d,») Jd yd'y y"=*e''"'

x(0 j T+$w,'(&)A„(J)~(o)) ro}

and the propagator of the 0' field by

a,(q') =Jt(f'xe"' "(0 j T(a(x)(»(0)1 (0} .

When Eq. (20) is inserted into (15) one encounters
q" k"F„„(q,k), which itself can be calculated in
terms of the Ward identity for the wV(» vertex This.
identity ls

—~ '(»»», '- q') &.(q) —»s„'(»»», '- a')a.(O)+»»»„'~„(0),

I)"P,(d»)-f ' '
ded, "d'*ye """((),'. +m.*)(a, +m, ')'(0(y*(d'(y)d. '(y)d(D)) j()). {24)

{25)
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is the pion propagator. Combining Eqs. (15), (20}, and (23), one finds the representation

(26)

T(p» q; p» k)
' = "nucleon pole" —m, '[FD(q, k) —(m, ' —qm)A„(q) —(m„' —k )A, (k)+m, &,(0)]&0(t) 'E„(t)

+ F, 'q" k"T„„(p„q;p„k) ' .

To evaluate T ' at the o point or verify the Adler condition, one must use the Ward identity (23).
On the pion mass shell, Eq. (26) becomes

T(v, vs;m, ', m„') ' = "nucleon pole" + m, '[1—E,(t)] 4,(t) 'F„(t)+E,-'q~k" T„'„(,, & „2,

where E,(t) is the wvo form factor with the pions
on the mass shell. In arriving at Eq. (2V) we have
made the approximation

m, '~„(0)=1. (28)

This representation provides the framework for
the analysis which we present as an alternative to
that of C-D.

In Appendix A we study Eq. (2V) in the linear o
model evaluated in the tree approximation, where
we show that q"O'T~~',~=-0 in this approximation.
This example from perturbation theory provides
the interpretation of [Eo(t) —1] as the pseudovector
coupling of wvo, in accord with the PCAC (partial
conservation of axial-vector current) estimate
F,(O) =1+O(m„'/m. ').

—m, 'F„'[F,(q, k) —1]t,(t)-'C

+ Qvs+ pv (29)

is valid for sufficiently small values of v and v~,
with u and P constants [although they are not the
same constants that appear in Eq. (18)]. Equation
(29) represents q"k" T „by a slowly varying func-
tion of v and v~ after both the nucleon pole and cr

one-particle reducible parts have been removed.
(One might also remove the K" contribution, but
a posteriori this step can be shown to be unimpor-
tant for the issues raised here. ") On the pion
mass shell, Eq. (29) becomes

2 2

Vg -V
—m, 'E,'[E,(t) —1]~,(t)-'C
+ Ot Vg+ PV (30)

which has the properties

M (0, 0; 0, 0)"= C,

M(O, O;m. ', O)"=0, (31)

A. Ward-Identity Model

%e-now propose an alternative to the model of
C-D based on Eqs. (26) and (2V). We assume that

M(0, 0'm ' m ') '~= —m, F, [Eo(2m, ') —1]

&&A,(2m, ') 'C,

which are demonstrated through use of Eqs. (13),
(23}, and (30).

This model is still incomplete, as one has not
yet specified the behavior of [E,(t) —1]A, (t) '.
Fortunately this quantity is available from earlier
work, ' where it is obtained as an intermediate step
in the unitarization of vv scattering satisfying cur-
rent-algebra constraints. In Sec. III B we apply
those results.

B. nn' Unitarity

Our unitarization of gp scattering' implies

[F,(t)- I]~,(t)-'=R(t)+O(~) for 4m, ' &t &t„
(32)

with R(t) real to O(~'), also for 4m, ' & t & t, . The
interval 4~,' « t « t, describes the region for
which a basic hypothesis of our unitarization
method is valid. For our purposes this interval
need not be too large (4m„' & t & 6m, ', say).
Power counting and other heuristic arguments
indicate that e'-(m, '/m, '), while a perturbation-
theoretic study' gave

"-(m, '/m. ') ln(m, '/m. ').
Both estimates are valid for t sufficiently close to
threshold. Not only is R(t) real, but it must sat-
isfy a self-consistency condition due to the cross-
ing symmetry of nz scattering, which gives enough
information to determine R(t) for small values of
t. It is found that

(33)

(The reader will find a sketch of the derivation of
these results in Appendix B, but this should not be
a substitute for a reading of the detailed argu-
ments of Ref. 9.)

Unitarity has now provided enough information
to complete our model, at least for on-shell wN

scattering. The model, which combines Eq. (30)
with Eqs. (32)-(33), is
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2 2

kf ( ~ 2 2)(+) gwB B™,, m„m v 2 —vVg —V

+ O[ VB+ PV (34)

[P(t),—1)[a,(t) ' m,=-'E, '(1—,) (36)

(with K a constant) so that Eq. (36) has a zero when

t =m, 'K. With this replacement,

M(O, O m ' m ')"= 1 ——C
2

which leads to the important conclusion that

M(0 0'm m )[+~=—[3+0(m„ /mg )]C ~ (35)

Hence a calculation of the on-shell mN scattering
amplitude at v =0, t= 2 does not calculate the g
term, but approximately three times the 0 term.
The isolation of t-channel exchanges, combined
with zz unitarity, has led to a large correction to
the model of C-D. Let us now analyze our result
to expose possible sources of model dependence
which could weaken our conclusions.

IV. ANALYSIS OF RESULTS

This section is devoted to a detailed analysis of
several issues, in order to provide a better under-
standing of our conclusion.

A. The Crucial Zero

There is a crude way of understanding the origin
of the correction found in Eq. (35). To see this,
let us accept (32) as valid, but not impose (33).
Instead we replace Eq. (33) with the ad koc assump-
ti.on

K=—1
2 (38b)

for our theory. Strictly speaking, K=1 does not
correspond to the C-D model, as they do not sep-
arate t-channel exchanges; however, if K=1,
their conclusions are unaltered.

It is important to appreciate that this zero is de-
termined dynamically, and not as a consequence of
current algebra, PCAC, or kinematical require-
ments. For example, one can study mp scattering
in the linear 0 mode/, "'"which provides a pos-
sible theoretical laboratory to illustrate this point.
In the tree approxi mation

[E,(t) —1] t)„(t)-'=-E,-'(m, '- t),

while for the one-looP aPProximation"' "
(39)

obtains, which shows that the location of the zero
in Eq. (36) is intimately related to the magnitude
of the correction to the C-D model. For example,

(38a)

in the cr model, tree approximation, "while

[Eo(t) —1]A ()(t)
' = —F, '((m„' —t) —X()[.E,')(12B„(m,') —4B„(0)-4(m, ' —t)B,'„(m„')

—12B„(t)+4B„,(t)+ 8(AE,')[C,(t)+ 3C„(t)]]) . (40)

In this model PCAC and current-algebra con-
straints are satisfied in each order of perturbation
theory, while in principle the position of the zero
depends on the meson-meson coupling constant A,.
However, since our effect is due to zz unitarity,
it may require summing an infinite set of diagrams
to check our claim in perturbation theory. [The
functions B„(t)and C„(t) are integrals defined by
Lee" in his study of the 0 model. Note that the
meson coupling A. is of opposite sign to that of Ref.
15.]

One can also study mN scattering in the linear cr

model, as in Appendix A. In the tree approxima-
tioe

2 2

kf(v, v„q', k')"=g," . +gE, '[F;(t)-1],
m

(41)

which means the remainder +vs+ Pv' =0 in this
order of approximation. Notice that in the tree ap-

proximation, the Adler condition requires

E,(m, ') =1.
However in higher orders of perturbation theory,
the Adler condition does not provide a constraint
strong enough to locate the zero accurate to
O(m, '/m, '). But it is the magnitude of the term
which is of O(m„'/m, ') that is crucial. The Adler
condition implies (42) in the tree approximation
because E,(q, k) has no off-shell dependence on q'
or k', i.e., Eo(q, k) =Eo(t) in lowest order, which
is no longer true in higher order, so that one can-
not determine the correction of O(m, '/m, ') from
the Adler condition. It is possible that our unitar-
ization procedure is equivalent to the summation
of an infinite set of perturbation-theory diagrams,
so that it is certainly possible that the zero of
[F,(t) —1]Ao(t) ' is no longer correctly given by
the tree approximation.

If the Adler condition does not determine the
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position of this zero, what does'P We suggest that
it is the Weinberg zero of mw scattering. " To il-
lustrate this point, let us consider another result
from our current-algebra unitarization program,
where we have shown, as an intermediate result,
that the S-wave gm scattering amplitude can be
written

&,(s) =F,(s)[F,(s) —1)h, (s) '+O(e)

= Fo(s) [R(s)+ o(e)],
for energies sufficiently close to threshold. [See
Eqs. (B15)-(B18),or (3.5b) of Ref. 9.] Equation
(43) states that T,(s) has the same phase as F,(s),
as it must to satisfy unitarity. Since F,(0)
=1+O(~,'/~ '), by virtue of PCAC, the variation
of T,(s) for small values of s is due almost entirely
to R(s). But if Eq. (43) is continued below thresh-
old, it should exhibit the %'einberg zero, which

R(s) does, as can be verified by comparing Eq.
(33) with the Weinberg S-wave vw scattering am-
plitude. ' lt appears that t-channel unitarity for

nN scattering has replaced the Adler zero that ap-
pears in lowest order by the Weinberg zero of mm

scattering. We think that this is the most satisfac-
tory way of understanding the correction to the
work of C-D as given by Eqs. (34) and (35).

B. Off-Shell Behavior

It should be apparent that if there is a large cor-
rection to the C-D model for on-mass-shell pions,
there should be a corresponding correction to the
off-shell behavior. This can be investigated by
means of Eq. (29), which expresses the off-shell
behavior of vN scattering in terms of F,(q, k),
which has not as yet been specified except for its
mass-shell limit. The off-shell behavior of
Fo(q, k) cannot be fixed from the Ward identity (23)
and the mass-shell limit alone; additional infor-
mation is required. By adopting a simple smooth-
ness assumption for F„„(q,k), we show in Appen-
dix C that

a 2

-m, 'F„'[F(q,n)-1]a,(t) '= ~1-,—,+m„'[-t(q'+0')+(q'+k')+-, '5(t-q'-iP)(2- q'-)P)],
(44)

consistent with the Ward identity and mass-shell constraint. The parameter 6 is a constant undetermined
by these considerations. If Eq. (44) is combined with (29), one obtains the following model for off-shell
mN scattering:

q'
~(~, v„w', a')"=M„(v, v„q', a')"+(t- ~,—,c

m.
' m. '

+m„[- t (q'+ 0 )+ (q + p )+ —'5(f - q2 —pm)(2- q2- y2)] C+ p„ (45)

The striking difference between (45) and (18) is in
the presence of terms of O(q~/m„') which are not
present in the C-D model. These additional terms
provide a distinguishing feature of our picture of
nN scattering. We can think of no a priovi reason
to reject these terms, as Eq. (45) satisfies all the
requirements of current algebra and PCAC. It is
indeed true that M ', as given by (45), varies
rapidly for 0 & q', 4' ~ , ', but the C-D amplitude
also varies rapidly in this domain, so that this
does not seem to be a sufficient reason to reject
(45). We reiterate, the choice can only be made
on the basis of dynamics, and not from current
algebra or PCAC alone.

C. Model Dependence of Results

It is worthwhile to give some consideration to
the extent to which our results are model depen-
dent. Although it is true that our off-shell nN am-
plitude depends on a smoothness assumption, we
would like to believe that our treatment of mass-

shell wN scattering in Eqs. (32)-(35) is relatively
free from these uncertainties. This is an impor-
tant consideration, as our correction to C-D is
derived from the mass-shell equations.

One can derive a representation for pm scattering
which is analogous to Eq. (30) for vN scattering, '
with a "background term" of the form

pea0).p V2 p'4&~4a7

in analogy with the background term that appears
in (27)-(30). The background term in ww scatter-
ing also vanishes identically in the tree approxi-
mation to the linear 0 model. " If it is assumed in
general that the S- and P-wave projections of this
background term of pg scattering are predomi-
nately real for energies sufficiently close- to
threshoid, it then follows as a theorem, based on
unitarity, that R(t) is real to O(c'), and is given
explicitly by Eq (32) to O(e.) O(m, '/m, '). The de-
tailed behavior of R(t), as given by Eq (33), de-.
pends on the additional assumption that R(f) is a
linear functior. of t which can be analytically con-
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tinued to small, negative values of t. If our basic
assumptions are justified, then Eqs. (34) and (35)
follow to the stated accuracy. '

Theqe assumptions may lead to possible sources
of model dependence, which could provide the loop-
holes to save the C-D analysis. Let us summarize
some questions which deserve additional study, to-
gether with some indication as to our present
understanding of these issues.

(1) We may have underestimated the error e.
However, the work of Ford and the present author"
suggest that the estimate c -m, '/m, ' may not be
unreasonable. Nevertheless, this is the most likely
likely place to look for a source of model depen-
dence of our result.

(2) R(t) may not be a linear function of t even
for small values of t. However, Hohler et al.'
have verified that corrections to a linear extrapola-
tion in t are negligible for low-energy zN scatter-
ing.

(3) The required analytic continuation of R(t) to
small, negative values of t, required by the self-
consistency part of our unitarization program,
may not be valid. However, this question has been
studied in part by Jen,"who supports our conclu-
sions.

Although these are all possibilities for model de-
pendence of our result which must be admitted, one
does not get a strong indication from preliminary
studies of these questions that our basic results
are grossly in error.

D. Experiment:
Can Models Be Distinguished?

One might hope that one could distinguish our
theory from the Cheng-Dashen model by sufficient-
ly accurate low-energy mN scattering data. This
hope can be quickly dispelled. All models of the
type (36) can be characterized by

~( p . 2 2)(+) amÃ B pv2
2 p 2

» "ai™~m a 2
Vg —V )

«2 ™7)

(46}

The linear t dependence is not sufficient to deter-
mine the three parameters o., C, and Kindepen-
dently, so that experiment alone is unable to settle
the question. Of course if one chooses a particular
model to fix K, one can then determine the o term.
Furthermore, e and P can be calculated from
specific models. " " These models entail a cal-
culation of q" k'P„;) in Eq. (27), usually based on
dominance by low-lying K" states, together with a

(y) m 2 u
Sm(m+m, l ' (mm ) (48)

(We distinguish u and P from u and P to emphasize
that these constants are distinct. } Estimates from
models all indicate that the contribution of low-
lying N" states to m, '(u/2m P) -is negligible. " "
If C is as large as claimed by C-D, then the small
experimental value of a~', requires a cancellation
of C by (u/2m- P)m, ' [No. te that C has opposite
sign in Eqs. (47) and (48). Also note that the o
model, evaluated in the tree approximation, is de-
scribed by Eq. (47) and not Eq. (48).] If one ac-
cepts the claim that (u/2m- P) m, ' receives a
small contribution from low-lying states, then
this cancellation is effected by either a large sub-
traction constant (in the sense of dispersion rela-
tions), or by a surprisingly large Regge tail.
Either of these modes of cancellation seems sur-
prising to the author, although neither seems to be
ruled out by first principles. If C is very small,
then all treatments will be consistent.

Note Added in Proof

Since our conclusions are obviously controver-
sial, it seems appropriate to emphasize the differ-
ences between our work and the accepted point of
v ew. The manner in which the term qpk'Tp", , ap-
pearing in Eq. (15), is evaluated is crucial to these
considerations.

(1) The conventional wisdom follows from a
study of T„'„expanded in invariant amplitudes,

T„', =g„,T, +q„k,T, +k„q, T, + ~ ~ ~,(+)

so that

q" k" T'„') =q kT, +q'k'T, +(q k)'T2+ ~ ~ .
Along the plane v=q k =0, q"k'T„') is of O(q'k').
One then conventionally argues that this remainder
provides a correction estimated to be of 0(m, '/M')
smaller than C, the 0 term itself, with M some
characteristic large mass taken to be roughly the
nucleon mass. This estimate is based on the tree
approximation or low orders of perturbation the-
ory. This estimate also follows if one formally

background coming from a high-energy continuum
or Regge behavior. Indications are that these K"
states are not important, and may be neglected.

A consideration of the isotopic-even S-wave wN

scattering length a~',) is also informative. Omitting
the negligible nucleon pole contribution, one ob-
tains from Eq. (46}

(y) m 2 Q

8w(m+m, )
' (2m ) '

while the Cheng-Dashen model gives
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expand's the scattering amplitude in powers of a
chiral-symmetry-breaking parameter &." Note,
however, that this formal expansion has been
questioned by Li and Pagels. ' Similar considera-
tions may be applied to the three-point function
studied in Appendix C.

(2) In contradistinction to the above, our theory
treats q"4'T~„'~ dynamically without appealing to
the conventional intuitive arguments. An important
step in our analysis is the separation of the one-
particle reducible part of the o field from T~'~, as
described in Sec. III. There is no commitment to
the existence of a 0' resonance here. This step
merely reflects structure present in the scattering
amplitude due to the 0 field generated by the com-
mutator Eq. (lb). As Eqs. (29)-(31) reveal, our
final result follows from the f dependence of B(t)
=-[Fa(&)-I]ao(t) '. If g(f) is evaluated in the tree
approximation, as in Appendix A, there is no de-
parture from the standard conclusion.

Our evaluation of B(f) follows frolI1 the unitariza-
tion of the gp scattering amplitude satisfying cur-
rent-algebra constraints. This treatment of gg
scattering does not involve an expansion in powers
of the chiral-symmetxy-breaking parameter c, but
is in fact valid. to all orders in ~. It is significant
that Li and Pagels" have argued that scattering
amplitudes are not analytic in e, due to the appear-
ance of c'Inc terms, etc. , so that the arguments
of Dashen and Weinstein need not be applicable to
our model of gg scattering.

Since our results do not agree with the conven-
tional arguments, it follows a posteriori that the
usual intuitive estimates of the remainder term
are not valid in our theory, as shown explicitly in
Sec. IV 8 and Appendix C. Thus the unitarization
of the gg scattering amplitude leads to a modifica-
tion of the naive power-counting argument due to
dynamical considerations. We conjecture that this
departure from the usual power counting comes
from the summation of terms of order e'(1ne)".
Thus q~P" T„'„~ is O(e') in the tree approximation,
O(e'Inc) in the one-loop approximation, . . . ,
O(e'In"e) in the n-loop approximation, etc. Hence
our conjecture is that the unitarization of the gg
scattering amplitude, involving a sum over all
loops, leads to a remainder which i.s actually of
O(e) rather than the expected O(e'), with the sum-
mation of logarithms changing naive power count-
ing. It mould be interesting to demonstrate this
explicitly.

(3) Our considerations do not spoil the usual
successes of PCAC. Writing the 5-wave pg scat-
tering amplitude as T(t) =It(t)F(t), as in Eg. (43),
demonstrates that our correction derives from the
5 dependence of the numerator, rather than from
enhancements by the denominator function. This

implies that our correction is only expected to be
relevant in applications involving a 2g 0' inter-
mediate state, which does not alter the Qoldberger-
Treiman relation, etc. In fact the calculation of
the o term is the only practical example we have
found.

(4) We emphasize that our correction factor of
3 is not universal. More precisely, the correc-
tion is [3+0(m,'/m, ')], as can be seen in Eq. (34).
If m, is small, our entire theory fails. If we adapt
a more accurate calculation of A(t) by Zen, "one
finds the correction factor of 2,7.

(5) The validity of the approximation m„'g, (0)
= 1 has been questioned. In fact, this approxima-
tion is not essential to our method. If 'care is ex-
ercised to include m, a, (0), where appropriate,
throughout our treatment of both 3g and gN scatter-
ing, one finds that [Fo(t)-I] is replaced system-
atically by [Fo(t) -m„'h, (0)], so that iV(t)
= [FO(f)-m, 'a„(0)]so(t) '. Since Egs. (29) and (30)
are similarly modified, there are no changes in
our final conclusion. Further 1f one wishes to
give 8exiou8 consideration to the one-loop approx-
imation to the v model, then one should modify
Eq. (40) accordingly. We do not pursue this last
point further.

This work was undertaken as a result of num-
erous conversations with Professor Sidney Cole-
man on this subject. I have also benefited from
conversations with Professor G. Hohler, Professor
B. Renner, Professor J. Ness, and Professor B.
Zumino, and Dr. L. Maiani and Dr. J. Ellis.
Thanks are also due Professor Roger Dashen for
his comments on our work, and Professor Lowell
Brown for a stimulating correspondence. In addi-
tion~ Petel Ford has a1ded us with some numeri-
cal work.

I wish to express my appreciation to Professor
Bruno Zumino and the theory group of CERN for
their generous hospitality during the summer of
1971, where this work was completed.

APPENMX A:
mN SCATTERING IN THE g MODEL

We restrict the discussion to the isotopin-even
gN scattering amplitude evaluated in the tree ap-
proximation. " There are three diagrams which
contribute, the direct and exchange nucleon poles,
and the t-channel o-exchange pole. In this model
the Lagrangian does not contain a nucleon mass
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term, but the nucleon acquires a mass when the o
field is "translated" to remove its nonvanishing
vacuum expectation value.

The isotopic-even mN scattering amplitude in the
tree approximation is

Z
(+) ~(+)+y. qft(+)

Equation (AS) may be rewritten using (A2) as fol-
lows:

2 2 2 ( 2m, -m„ 1 ~~ vs
2

— +
m. -t m kv,'- v'

(+) -2', F" =t- .' (A 1)

2 2
=gF '[F,(t) —1]+~

VB-V (A4}

2(
&(+)

[(,V —V B

where

g= the meson-nucleon coupling constant,

A. =the meson-meson coupling constant,

F=(o),
m= gE, the nucleon mass,

m, '= p.'+3k. E',
m '= p'+A. 'F'

p, =the O(4)-invariant meson mass,
2~'F'=m '- m '

Therefore,

I( ) g(+)+ Vg(+)

2gg2F g2 V2

t-m' pn VB2 V2

(A2)

where F,(q, k) =F,(t) in the tree approximation.
Equation (A4) shows that the representation (29)

is satisfied with the background term, nvB+ pv2
= q"k'T„'„, identically zero in the tree approxima-
tion. One can understand (A2), (A4), and (29), in
the following way: Equation (A2) is the wN scatter-
ing amplitude for the o model, described by pseu-
doscalar coupling for the wNN and mmcr vertices.
On the other hand (A4) is the same scattering am-
plitude given by Feynman rules appropriate to
pseudovecto~ coupling for the same vertices, which
makes the Adler condition prinuz facie evident.
Thus one can understand Eq. (29) as a representa-
tion for mN scattering appropriate to the pseudo-
vector couplings of pions, which is what one would

expect for an amplitude which satisfies current-
algebra constraints explicitly. In particular,
[F,(q, k) —1] is the pseudovector )[vo vertex, as is
consistent with the PCAC estimate F,(0)
= 1+0 (m„'/m, 3).

APPENDIX B' m'm' SCATTERING AND UNITARITY

Let us review our method for unitarizing the zz scattering amplitude. '"' Consider the amplitude for
the scattering process w, (q,)+ v, (q3) - s,(q3)+ ((,(q4). Proceeding by analogy with Eqs. (1}-(4)and Eqs. (20)-
(2'f) of the text, one finds for the mass-shell wt( amplitude the representation

T(s, t, u}' ' = q, „q,„q,),q„1'(q» q» q3y q4)"" '.——,
' F, '[5P, + 2P,]""

+z„'(--,'+sr, ) [z,["*'(u-3~ ( [-( )+( [-( )
+ [[P,]""4[F,(s) —1]3A3(s) '+ crossed terms)

—2{[P,]"'4(u- t)[F,(s)-K,]3'.,(s) '+crossed termsj, (Bl)

where the [P,]'3'4 are s-channel projection operators for isospin I; F,(s) is the electromagnetic form fac-
tor of the pions; n„(s) is the coefficient of g„, in the two-point function of isovector currents, C„=6,(0)
& 0; K, =1+ 3C~F, '; and we have set m, = 1 in this appendix. Equation (Bl), which is an exact conse-
quence of Ward identities, is a special case of Eq. (2.1) of Ref. 9, restricted to the (-,' -') representation of
chiral SU(2)xSU(2) to which ().A and o belong. To simplify our notation, define

t,(s, t) =q, „q,„q,),q„T""~', (B2)

which is the background term Once again, .as in Appendix A, we are able to identify [F3(s)—1] as the s((o

vertex appropriate to pseudovector couplj. ng.
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Consider the decomposition of T(s, f, I) into partial waves. The S- and P-wave partial-wave amplitudes
have the general form

T(s) = h(s) + F(s)'a(s) ', (83)

h(s) = R(s) —2'(s)+ X'~(s)-', (84)

r(s) =- F(s)S(s) '

E= I for 8 waves

=K, for cwaves .
[Do not confuse this If'with the one that appears in Eq. (36) of the text. ] We have defined

tt (a)=(awave pvotaotioo)It (v t) —'W, '(Ot' va J""vZ '( ,'+it) (WJ -(o "t)"+ -—
I

+

+ [P.]- "[F.(f)-I]'~.(f)-'+ I-j I
—2 [P,]- "(.—s)[F,(t}-If,]'~,(f)-'+0 ~ ~y) 1 1 1 g C)

(85)

and R,(s) is defined similarly for P waves. [The
R(s) that appears in the text is the function Ro(s)
defined here. ] It is clear that both R,(s) and R,(s)
have right- and left-hand cuts although the right-
hand cuts are due entirely to t, (s, t).

The two-particle unitarity equations are

tude, slowly varying, and predominately real for
energies sufficiently close to threshold, for
4 ~ 8 ~ go, say. This behavior gives support to the
hypothesis that

Imt, (s) =0+0(c ) for 4 ~s ~so, (813)

1m T(s) = p(s) j T{s)j',
ImF(s) = p(s) T*(s)F(s),

Im(tt(s) = p(s) jF(s) j',

p(s) =- 8(s- 4) for S waves
327T s

1 (s —4)'~'
&(s-4) for Pwaves .

46v )(s

(86)

(»)

R(s) =real to O(e2) (81V)

with Eqs. (814)-(817)v»id for 4 ~ s ~ s,. Combin-
ing Eq. (815) with (816), one has

R(s)= [F(s)-SC)a(s) '+O(e) for 4~sos, .

which leads to a basic theorem, whose proof de-
pends on (83)-(812).

Theorem. If Imt, (s) =0+0(~') for 4 ~s ~sot then

h(s) =- r(s)+ O(~),

T(s) = E(s)[F(s)-Z]a(s) '+O(e), (815)

R(s) =T(s)F(s) '+O(e), (816)

and

It is straightforward to show that

Imh(s) = p(s) j h(s) j',
Imr(s) = p(s)h*(s)r(s),

(BIO}

(811)

Imt, (s) = jh(s)+Zr(s) j*, {812)

where f,(s) is the appropriate S- or P-wave pro-
lection of t,(s, g) appearing in (85).

One argues that t,(s) is small in absolute magni-

Since IF= 1 for S waves, this reduces to Eq, (32}of
the text,

It is to be observed that R(s) is specified in two
distinct ways, which implies the self-consistency
requirement that Eq. (85) be compatible with (816).
This self-consistency requirement, applied to both
S and I' waves, leads to two independent equations
which couple R0(s) and R,(s) and provide a means
for their determination. To carry out this program
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in detail requires a knowledge of [E(t)—K] h(t) '
for t & 0, which is again given by R(t) if it is postu-
lated that Eq. (B18) also holds (to a good approxi-
mation) for small, negative values of t.''7 For
sufficiently small values of s, one may expand

R,(s) =- (d, +f,s),
and similarly for R,(s). The self-consistency
equations can also be expanded in a Taylor series
about threshold, with a neglect of quadratic and
higher-order terms in (s —4). The coupled self-
consistency equations can then be solved explicitly
for Ro(s) and R,(s). Adopting the highly plausible
estimates

E,(0) =1+0(m„'/m, ') from PCAC,

dE,(0) = O(m. '/m. '),

APPENDIX C:
OFF-SHELL BEHAVIOR OF mm'o VERTEX

In this appendix we correlate the I; dependence
of the on-shell sso form factor E,(t) with the q'
and k' dependence of the off-shell vertex Eo(q, k).
We begin with the Ward identity for the AAo ver-
tex (23), simplified by the approximation
(m, '- q')h, (q) =1, which is valid for small q'.
Then

-m„E,'[E,(q, k) —1]
q2 Q2=. a ~„.(., a} {}-—.— . ~.(~}.
m. ' m.'

(C1)
On the pion mass shell this becomes

-m„'E„'[E,(t)- I] = q&k "E„„(q,k) ~; =~ =. ~ -~,(t) .
(C2)

dE, (0) = O(m, '/m, '),

one finds

R,(s)=-E„-' 1-, +O(c),
mp

which is Eq. (33) of the text.

(B20)

(B21)

However, from our treatment of pg unitarity, we
know that

m, 'F, '[F (t}—}}=-(}—,s (t},
m.' (C3)

which imposes a restriction on Eq. (C2). We now
assume that ~,(t) 'E„„(q,k) is the most general
quadratic function of momenta consistent with the
Ward identity and Eq. (C3). It is then a straight-
forward exercise to show that

E„„(q,k) =[g„„[A+B(q'+k )+D(q k)] —2m, 'q„k„—m„'[2m, '+(~A+B)] (q„q„+k„k,) —Dk„q„)&0(t)

(C4)

satisfies these criteria, with A, B, and D undetermined constants. When Eqs. (Cl) and (C4) are combined,
this gives

2 2

-m, 'E„'[E,(q, k) —1]~,(t)-'= 1—,—,+m, -'[-tiq2+ k')+(q'+k')+-.'~(t- q'- k')(2- q'- k2)],
r

(C5)
which is Eq. (44) of the text.

If we had assumed that a, (t) 'E~„(q, k) =Ag„„, as suggested by the tree approximation, the mass-shell
constraint (C3) would have forced E„, to have a kinematical singularity of the form (t-m, ')/(t-2m, '),
which we consider unacceptable. The avoidance of such kinematical singularities, combined with the I,

dependence given by Eq. (C3), dictates the presence of terms of O(q'/m, ') in [E,(q, k) —1] t},,(t) '.
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Noninteger-power and logarithmic light-cone singularities for forward matrix elements
of current commutators are examined in connection with the scaling properties of the Comp-
ton amplitude in the Bjorken limit and with the asymptotic properties in the Regge limit.
Properties of compact support for the scaling functions are lost for noninteger-power singu-
larities, and fixed (simple or multiple) Regge poles occur with complex residues. The resi-
dues of the fixed Regge poles are related to integrals over the scaling functions.

I. INTRODVCTION

In this note we shall examine some general
properties of the forward virtual Compton ampli-
tude for noncanonical light-cone singularities of
the current commutator. ' ' Scaling of deep-in-
elastic scattering is known to be connected to ca-
nonical behavior of the leading light-cone singu-
larity of the current correlation function. '4 In
examining noncanonical situations one is interested
in finding out whether any pathological features
emerge, which could be interpreted as arguments
in favor of canonical singularities. We shall see
that although, as expected, no definite contra-
dictions arise, noncanonical cases show up rather
peculiar features. A first distinguishing result is
found when analyzing the support of the scaling
functions: %hereas in the canonical case the sup-

port is between -1 and +1 in the scaling variable
&, for noninteger dimensions the support stretches
from +1 down to -~. Another interesting feature
obtains by examining the implications of the Regge
limit. Such a limit is generally not derivable from
the light cone alone, as it involves the whole inte-
rior of the light cone. Nevertheless one can con-
clude that, barring accidental compensations (see
Sec. IV), fixed Regge poles (which are multiple
Regge poles for logarithmic light-cone singulari-
ties) occur, of the type found in weak amplitudes. ' '
Their residues are in general complex numbers'
and can be expressed as dispersive integrals over
the structure functions. The ratio of their real to
imaginary part depends on the power of the singu-
larity near the light cone. For canonical dimen-
sions the imaginary part vanishes. Also, the res-
idue of the fixed pale can be related to the physical


